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The effect of magnetic field and feedback control is studied in a double diffusive binary fluid on the 

stability of Rayleigh - Benard convection. The boundaries were set to represent the lower - upper 

boundaries as rigid - rigid, rigid - free or rigid - rigid. The lower boundary was set to be conducted to 

temperature and the upper boundary to be insulated to temperature. The critical stability parameters 

were obtained using linear stability analysis and the Galerkin method. The effect on the critical number 

of Rayleigh is also reported from the magnetic field, feedback control, Soret and Dufuor parameter. 
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I. INTRODUCTION 

 
 

Convection in a two and multicomponent system where a 

horizontal fluid is heated from below has drawn attention 

in the fluid dynamic field as it may solve many problems 

arising in engineering field and in natural phenomena, such 

as in oceanography and astrophysics (Teamah 2008). When 

a more complex system is taken into account, two or more 

diffusive elements might exist in the system. For example, 

thermosolutal exists when two diffusive elements which are 

the temperature and salinity gradients compete with each 

other in a fluid. In a binary mixture, Soret (thermo-

diffusion) and Dufour (diffusion-thermo) parameter exist in 

the system. Literature on double diffusive was started by 

Stommel et al. (1956) and later explained by Stern (1960) 

where they discover the salt fountain phenomenon that 

occurs when hot salt water lies above cold fresh water. 

Turner (1974) studied the double diffusive phenomena in 

lakes, stars, oceans and also in atmosphere. 

Temperature dependent viscosity effect is when the 

viscosity varies exponentially with temperature. Few 

researchers have included the temperature dependent 

viscosity in their research. Hilt et al. (2014) did a research 

to include this effect in a binary mixture where they study 

on the separation ratio which is related to the Soret effect. 

Currently, Abidin et al. (2017) has built their interest to 

include temperature dependent viscosity in a binary fluid. 

Rodríguez & Brennecke (2006) studied the coupled 

temperature and composition dependence of both density 

and viscosity. The study was done experimentally in a 

binary mixture which is the water and ionic liquid. To our 

knowledge, there is still limited research done on the 

temperature dependent viscosity effect in a binary fluid 

whereas this effect is important to understand the 

instability of a convection (Ramírez & Sáez, 1990) 

Convection can also be controlled by an external 

constraint such as the Lorentz force which exists due to the 

electron magnetic field. Chandrasekhar (1961) did a linear 

theory in a single component system where his research 

integrated the magnetic field. It showed that higher 

magnetic field will stabilize the system since the critical 

value of Rayleigh number will increase. Shivakumara et al. 
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(2011) also integrate the magnetic field dependent viscosity 

parameter in a porous medium where their result shows 

that an increase of magnetic field dependent viscosity will 

delay the onset of ferromagnetic convection, but it shows no 

influence on the critical wave number. 

The importance of understanding the feedback control is 

to stabilize nonstable states or maintaining a state of no-

motion so that we can optimize any process involved. It 

may also help in gaining deeper insights into the dynamics 

of flow.  Tang & Bau, (1998) and showed that it was 

possible to delay the critical Rayleigh number for the 

Rayleigh - Bénard convection. Hashim & Siri (2009) 

showed that feedback control could also delay the onset of 

Marangoni convection at the bottom with free - slip 

boundary conditions. In this study, we studied the effects of 

vertical magnetic field and feedback control in a double 

diffusive binary layer with temperature dependent 

viscosity. The linear stability theory is applied and the 

resulting problem of own value is numerically solved in 

order to obtain a detailed description of the marginal 

stability curves for Rayleigh convection. 

 

II. MATHEMATICAL FORMULATION 
 
 
We consider two horizontal layers of quiescent double 

diffusive binary fluid with thickness d heated from below 

and we examined the stability of the fluid with the existing 

of temperature dependent viscosity. The temperature 

difference between the lower and upper surfaces is 

represented by ∆T where the lower boundary temperature, 

Tl is higher than the upper boundary, Tu. 

We choose a Cartesian coordinate system with z pointing 

upward and (x, y) in the horizontal direction at the lower 

boundary. The magnetic force has an opposite direction to 

the velocity. We assumed that the physical properties of the 

fluid are constant for a Boussinesq approximation except 

the viscosity, and density, is taken in the form 

  ( )  0 0μ = μ exp -γ T -T  (1) 

 ( ) ( )  0 t 0 s 0ρ = ρ 1 - χ T -T + χ S - S  (2) 

 

where 0μ , γ  and 0ρ are the reference values of the 

dynamic viscosity, mass diffusion constant and the density 

at the reference temperature, 0T  and the reference 

concentration, 0S . tχ is the rate of change density with 

temperature and sχ  is the rate of change density with 

concentration. Let the solute concentrations to be taken as 

0S + SΔ  at the lower boundary and 0S at the upper 

boundary.  

The derivation will start from four governing equations 

used for the Rayleigh-Benard convection following the 

analysis by Nield & Kuznetsov (2011), Nanjundappa et al. 

(2013) and Siddheshwar & Pranesh (2002). 
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where the variables are represented as follows;

( )= u v wv , ,  is the velocity, p is the pressure, g is the 

gravity, ze is a unit vector in the z-direction, His the 

magnetic field,  is the thermal diffusivity, Sis the solute 

concentration, s is the solutal diffusivity, STD  is the Soret 

diffusivity, TSD is  the Dufour diffusivity and lastly

m

m m

1
γ =

μ σ
is the magnetic viscosity where m is the 

magnetic permeability and mσ  is the electrical 

conductivity. The fluid’s basic state is quiescent and is given 

by:  

( ) ( ) ( ) ( )
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and ( ) zb oz = eH H .    (8) 
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where the subscript b denotes the basic state. 

In this state, we perturb the system with perturbed 

variables (denoted by primes) in the following form: 

( )

( ) ( ) ( )

( )

  

  



b

b b b

b

u = 0 + u v = 0 + v w = 0 + w T =T z +T΄
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H H H
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Using the following definitions,  
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and by using equation (8) and equation (9), we obtain the 

non-dimensional equations:  

    • 0=v    (11)
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where




3
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is the Rayleigh number, 
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S
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μ
 is the Solutal Rayleigh number, 


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Δ

Δ
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 is the Soret 

number, 
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Δ

Δ

TSD S
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T
 is the Dufour number, 



μ
Pr =

ρ
 is 

the Prandtl number, m

m

μ
Pr =

ργ
 is the magnetic Prandtl 

number and 
2 2

m 0 mQ = μ H d / γ   is the Chandrasekhar 

number (asterisks dropped for easier reference).  

The equation of the normal form is given by

( ) ( ) ( ) ( ) ( )

( )
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 
 x y
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Substituting equation (17) after taking operators curl on 

equations (12) and (15) and later together with equations 

(11) and (16), we obtain the linearized form 

( ) ( )

( )

( )

2
2 2 2 2 2

2 2 2 2

2

m
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+2Df D - a DW - a RaΘ - Lea Rsη

Pr
-H D - a DH =

Pr
0

 (18) 

( ) ( )2 2 2 2W + D - a Θ + Df D - a η = 0   (19) 

( ) ( )2 2 2 2W + Sr D - a Θ + Le D - a η = 0  (20) 

 ( )2 2 mPr
D - a H + DW =

Pr
0                (21) 

where  

( )
1

2 2 2
x ya = a + a  represents the wave number, 

d
D =

dz
 

represents the differential operator and 

( )
( )  

  
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0 aT -T1
f z = exp B z - +

2 βd
where B = γβd  is 

the dimensionless viscosity parameter and aT  represents 

the average temperature. 

Further, it is worth mentioning that Equation (18) and 

equation (21) can be combined to give  

( ) ( )

( )

2
2 2 2 2 2

2 2 2 2 2

f D - a W + D f D - a W + 2Df

D - a DW - a Θ - Lea Rsη - HDRa W = 0

       (22) 

The boundary conditions for the temperature conditions 

were set to be conducting at the lower boundary, Θ = 0  

and insulating at the upper boundary, DΘ = 0 . For the 
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velocity conditions, boundaries were set to be free-free, 

rigid-free or rigid-rigid representing the lower-upper 

boundaries. If boundary has a free-slip, 
2D W = 0  and if 

rigid-slip, DW = 0 . The uniform temperature boundary at 

the lower boundary, z = 0 , is restored to include a gain K 

controller rule, 

  ( ) ( )Θ 0 + KΘ 1 = 0   (23) 

The method used to find an approximate system solution 

is by Galerkin-type weighted residuals method where the 

series of basis function are 

  
N N N

p p p p p p

p=1 p=1 p=1

W = A W ,Θ = B Θ ,η = C η (24) 

pA , pB  and pC  are constants and the base functions pW

, pΘ  and pη  where 1,2,3, ,p = ... N  will be chosen 

respective to the trial function satisfying the boundary 

conditions. Later, the Rayleigh number, Ra as the 

eigenvalue were obtained. 

 

III. RESULTS AND DISCUSSIONS 
 
 
In this research, we limit the temperature conditions to be 

conducting at the lower boundary and insulating at the 

upper boundary. Most past research investigates the case 

where both boundaries are conducted to temperature. 

Since no work has been done on different type of 

boundaries in double diffusive, we make an acceptable 

comparison with Nield & Kuznetsov (2011) results. Their 

research on double diffusive convection with both 

boundaries were set to be conducting to temperature and 

they obtained the critical Rayleigh number, Rac = 1140 

which is 3.58% greater than the well-known exact value of 

1100.65 in a regular fluid. In this research, we obtained 

Rac = 691.27 which is 3.33% greater than 669.001 

obtained by Sparrow et al. (1964)in a regular fluid. We 

also represent the comparison of the critical Rayleigh 

number for different type of boundaries as shown in Table 

1. 

Figure 1 represents the Rayleigh number, Ra against 

wavenumber, a with values of vertical magnetic field, H = 1, 

3 and 5. It is found that the marginal stability curves shift 

upwards as the vertical magnetic field, H increase. The rate 

of convection is delayed. The applied magnetic field impact 

in the Lorentz force and stabilize the system (Siddheshwar 

& Pranesh, 2002). 

 

Table 1. The critical Rayleigh number for regular fluid and 
present study 

Lower-upper 
boundaries 

Regular fluid 
(Sparrow et 

al., 1964) 

Double 
Diffusive 

Binary Fluid 
(Present study) 

Rac Rac 

Free-free - 404.64 

Rigid-free 669.001 691.27 

Rigid-rigid - 1446.78 

 

Figure 2 shows Rayleigh number's marginal stability 

curves, Ra with the wavenumber, a for the feedback 

control, K = 10, 20, 30 in three types of boundaries values. 

The other values were set to be H = 2, B = 2, Le = 100, Rs = 

100,     Sr = 0.5 and Df= 0.5. It shows that as K increases, 

Ra also increases, thereby stabilizing the system. 

Essentially, the controller modifies the dynamics of the 

system improving the disruption of fluid dissipation 

mechanisms (Tang &Bau, 1998).  

 

 

Figure 1. Ra vs. a for different values of H 
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Figure 2. Ra vs. afor different values of K 

 

Figure 3 indicates the variations of Rayleigh number, Ra, 

with wavenumber, a, for different values of temperature 

dependent viscosity, =1, 2, 2.5B .  The marginal stability 

curves shift downwards when the value of B increases, 

which state that the temperature dependent viscosity 

destabilized for all wavenumber, a.  

The illustration of the Lewis number, Le can be seen in 

Figure 4 when Le = 3, 4, 5. The Rayleigh number decreases 

as Lewis number increases and thus enhance the onset of 

convection in the system. Figure 5 shows that as the solutal 

Rayleigh number, Rs increases, the Rayleigh number also 

increases. In other words, an increase of Rs will stabilize 

the system. 

 

 
 

Figure 3. Ra vs. a for different values of B 
 

 

 

Figure 4. Ra vs. a for different values of Le 

 

Figure 5. Ra vs. afor different values of Rs 
 

 

Figure 6. Ra vs. afor different values of Df 

 

 

 

 



ASM Science Journal, Volume 12, Special Issue 6, 2019 for SKSM26  
 

 

191  

 

Figure 7. Ra vs. a for different values of Sr 

 

Figure 6 shows that the marginal stability shift upwards 

when Dufour parameter increase. Dufour parameter which 

is the diffusion-thermo arises due to the concentration 

gradient. When the solute concentration increase, it drives 

the mass gradient of the system and delay the convection to 

make the system more stabilized. Figure 7 represents the 

other parameter that exists due to diffusion which is the 

Soret parameter. The Soret parameter or known as the 

thermo-diffusion arises due to temperature gradient 

whereas the temperature flux increases, it expedites the 

onset of convection to destabilize the system. 

 

IV. SUMMARY 
 
 

The magnetic field, feedback control and temperature 

dependent viscosity effect in a double diffusive binary is 

being examined in this research paper. The results show 

that the magnetic field, H and feedback control, K suppress 

the convection meanwhile the temperature dependent 

viscosity, B augments the convection. The stability of the 

convection due to the effects that exist in a double diffusive 

binary fluid which are the Lewis number, solutal Rayleigh 

number, Dufour and Soret number is also investigated. It is 

found that Lewis number, Le and Soret number, Sr 

destabilize the system, when both effects were increased. 

The other effects which are the Solutal Rayleigh number, Rs 

and Dufuor number, Df, make the system more stable when 

the values increase. 
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