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Heat equation is widely used in engineering problem specifically for prediction of temperature 

distribution during heating or cooling of solid material in high temperature furnace. This paper 

presents the implementation of Alternating Direction Implicit (ADI) method to solve the two-

dimensional (2-D) heat equation with Dirichlet boundary condition. The boundary condition, initial 

condition, space and time step are programmed and executed in MATLAB to approximate the 

temperature distribution within the studied solid material. ADI formulation is validated by the semi-

analytical method and is proven to be used successfully to solve 2-D heat equation.  
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I. INTRODUCTION 
 
 

The heat conduction equation is categorized as a 

parabolic partial differential equation (PDE) and generally 

can be solved analytically or numerically.  Analytical 

methods, namely Laplace transform (Lawal et al., 2015), 

conformal mapping (Fan et al., 2013), and homotopy 

analysis (Mahalakshmi et al., 2012) have been used to solve 

transient heat conduction. Yet, they were successfully 

resolved the equation, provided that the problems are 

highly simplified and has regular geometries. In contrast, 

numerical methods serve the practical solution to the real 

problems involving irregular shape and non-uniform 

thermal conditions (Cengel, 2003) and have shown an 

excellent accuracy (Sameti et al., 2014). 

To date, the reports that available in the literature are 

focusing on the estimation of temperature distribution 

inside the walking-beam type reheating furnace or inside 

the heated metal slab or billet. Four numerical methods 

that commonly used are Finite Element Method (FEM), 

Boundary Element Method (BEM), Finite Volume Method 

(FVM) and Finite Difference Method (FDM). 

FDM has been used extensively to estimate the 

temperature profile in metal slab (Banerjee et al., 2004) or 

billet (Dubey et al., 2012) or during the skid cooling 

(Abuluwefa & Alfantazi, 2014) when reheating furnace is 

operated. Validation of the numerical solution is frequently 

compared with the analytical solution (Dubey & Srinivasan, 

2013) or based on the measured temperature from the 

experimental work (Abuluwefa & Alfantazi, 2014). 

Researchers also incorporated other factors during the 

numerical work such as temperature-dependent properties 

of furnaces (Chen et al., 2005) and including the 

significances from the temperature variation to the 

formation of oxide on the surface of the metal (Anton et al., 

2002). 

Alternating Direction Implicit (ADI) is recognized as 

simple and efficient method for solving 2-D parabolic 

problems particularly the heat equation. This method was 

originally proposed by Peaceman and Rachford in 1955 

(Peaceman & Rachford, 1955). The main principle of the 

method is to break a 2-D problem into two 1-D problems 
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solved by implicit schemes without forgoing the stability 

limitation (Li & Chen, 2008). Since then this method has 

been used widely in heat transfer analysis for engineering 

design. 

In the present paper, one problem of transient 2-D heat 

equation is solved using ADI method and the approximated 

temperature is validated by semi-analytical solution.  

The process of discretisation is presented thoroughly and 

simulated using MATLAB. The algorithm is believed can be 

extended to be used for various heat conduction problem 

involving Dirichlet boundary condition. 

 
II. MATERIALS AND METHOD 

 

A. Problem 
 
A square solid material is cooled from its initial 

temperature of 30°F  with boundary condition for each 

sides are fixed at 0°F (Bruh & Zyvoloski, 1974). as shown 

in Figure 1. 

 

Figure 1. Schematic diagram of the problem 

 

A transient 2-D heat conduction in the material can be 

mathematically expressed by [14]: 
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where the density,  and the heat capacity, pC  of the 

material are  
3

m1Ib /m and m1Btu/Ib , respectively. The 

heat conductivity for both axis, xk  and yk is 

o
1.25Btu/hr.m F .The heat conduction is subjected to the 

following boundary and initial conditions as follows: 

 

= = = =(0, , ) ( ,0, ) ( , , ) ( , , ) 0x yT y t T x t T L y t T x L t      (2) 

=( , ,0) 30T x y                                             (3) 

 

where 
xL =3m  and 

yL =3m  are the length of the 

solution domain in x and y  directions, respectively. 

B. ADI Method 

 
1.  Discretisation of 2-D heat equation 

 
The main principle of ADI method is solving the x  -sweep 

implicitly and y sweep explicitly. First, the equation is 

discretised using forward differencing for the time 

derivative and central differencing for the space derivatives. 

The discretised equation is then producing two equations 

that will be solved sequentially from time level of n  to   

+
1

2
n  and finally to  +1n  as illustrated on the grid 

system in Figure 2. 

 

Figure 2. Illustration of the grid system for the ADI method 

[15] 

 

For the time level of 𝑛to 𝑛 + 1, the Equation (1) is 

discretised into the following forms: 
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Where t  = time spacing; x  = x  spacing and y  = y  

spacing. By substituting

( )



= =


2 2

1 1

2 2
x

t
d d

x
into 

Equation (4), yields: 
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 (6)            

by replacing 
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1 1
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y
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d d

y
, the Equation (5) 

becomes: 
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By introducing the coefficients as follows: 
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= −
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a d
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the Equation (6) becomes: 
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The right-hand side of Equation (7) can be represented as 
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In addition, by inserting the following coefficients into 

Equation (7): 
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produces:  
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The right-hand side of Equation (10) can be represented as: 
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𝐷1and𝐷2 are the important elements in the matrix 

formulation of Equations (8) and (10) that need to be 

solved in the next step. 

 

C. Development of Numerical Algorithm 
of ADI Method 

 
Numerical algorithm of ADI for Equation (8) is developed 

for all grid points to produce set of linear algebraic 

equations. At initial condition, 1D  is the same at all grid 

points. Based on Equation (8), at 2i = and 2j = : 

+ + +

+ + =

1 1 1

2 2 2
1 1,2 1 2,2 1 3,2 1

n n n

a T b T c T D   (12) 

Since 
+

1

2
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n

T is located at the boundary, the equation 

becomes: 

+ + +
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At = −1i IN  and =2j  (at the boundary), yields: 
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Where IN =Number of i, and JN = Number of j. 

Therefore, the ADI algorithm for x  -sweep can be written 

as: 
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         (15)                                                          

Using the same step, the ADI algorithm for y  -sweep can 

be presented as: 
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The tridiagonal system of equations (15) and (16) are then 

solved for all 𝑖 and 𝑗.The approximated temperature will be 

validated with analytical method. 
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D. Semi-Analytical Solution 
 

The semi-analytical solution for this problem is: 

 
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E. Error Analysis 
 

Both methods are compared and evaluated based on 

percentage of relative error calculated as follows 

(Hoffmann& Chiang, 2000): 


 
 
 

value value

value

ADI -Analytical
Relative error (%) =  100

Analytical
 (19) 

III. RESULTS AND DISCUSSION 
 
 
The temperature distribution is depicted in Figure 3. After 

1.2 hrs, the temperature at the middle of the square domain 

is estimated to reach 1.8266oF. The comparison between 

the ADI method with the semi-analytical solution is 

illustrated in Figure 4 and the error analysis is depicted 

numerically in Table 1 and Table 2 respectively. 

 

 

Figure 3. Surface plots of temperature distribution 

using ADI method 

 

Figure 4. Comparison between ADI method with semi-
analytical method for the heat conduction problem along x-

axis at 0.3y = m and 1.5y = m for 1.2  hr 

 

Table 1. Relative Error percentage (%) at y=0.3 along x-
direction 

 

x  TADI Tanalytical 

Relative 
error 

percentage 
(%) 

0.300 0.175 0.173 0.578 
0.600 0.332 0.329 0.912 
0.900 0.457 0.453 0.883 
1.200 0.537 0.533 0.750 
1.500 0.565 0.560 0.893 
1.800 0.537 0.533 0.750 
2.100 0.457 0.453 0.883 
2.400 0.332 0.329 0.912 
2.700 0.174 0.173 0.578 

 
 
 

Table 2. Relative Error percentage (%) at y=1.5 along y-
direction 

 

x  TADI Tanalytical 

Relative 
error 

percentage 
(%) 

0.300 0.565 0.560 0.893 
0.600 1.074 1.065 0.845 
0.900 1.478 1.466 0.819 
1.200 1.737 1.723 0.813 
1.500 1.827 1.812 0.828 
1.800 1.737 1.723 0.813 
2.100 1.478 1.466 0.819 
2.400 1.074 1.065 0.845 
2.700 0.564 0.560 0.893 

 
 

IV. SUMMARY 
 

In overall, the ADI method successfully predicted the 

temperature distribution with Dirichlet boundary condition 

with the percentage of error less than 1%. The same method 

can also be applied to predict the 2-D transient mass 
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diffusion problem particularly the kinetics of percentage 

carbon penetration during carburising heat treatment. 
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