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In this paper, an efficient solver known as higher order block backward differentiation formula 

(HOBBDF) is applied to chemical kinetic equations. In order to prove the applicability of this higher 

order solver, the chemical kinetic ordinary differential equations (ODEs) are numerically tested. Then, a 

comparison of performance between HOBBDF and two ODE solvers in MATLAB, particularly ode15s and 

ode23, are made. Evidently, it is proven that HOBBDF method outperforms ODE solvers in terms of 

accuracy. Therefore, HOBBDF method can also be applied to solve chemical kinetic equations. 
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I. INTRODUCTION 

 
Air pollution is a very serious issue around the world 

considering its adverse effects on human health and the 

environment. Numerous efforts have thus been made to 

improve air quality and reduce air pollution, including the 

establishment of the air pollution forecast model to predict 

the atmospheric conditions. In air pollution models that 

describe atmospheric gas-phase chemical reactions, 

chemical kinetic equations play an important factor (Huang 

& Chang, 2001). The air pollution model is based on the 

Chemistry Transport Models (CTM) where the 

concentrations of various pollutants are described by a set 

of Reaction-Diffusion-Advection partial differential 

equations (PDEs) (Feng et al., 2015). Chemical kinetic 

equation is considered as a first order ODEs. A set of initial 

condition and chemical reactions can be written in the 

following form: 

  

( ) ,0

,

0CC

LCP
dt

dC

=

−=
(1) 

 

where 0   ,0  LP , t is time, P and LC are the chemical 

production and loss rates, C is the concentration, C0 is the 

initialvalue and 
dt

dC
represents the changes in 

concentration, while the actual solution depends on initial 

condition, P and L. 

This type of equations is implied as stiff due to the 

extremely fast chemical reactions (Alexandrov et al., 1997). 

As implicit methods are normally used to deal with the 

stiffness of chemical ODE system, an appropriate chemical 

solver should be selected to find the solution to this 

problem. In the literature, there are numerous chemical 

solvers that are already developed for this type of equations. 

For atmospheric chemical kinetic, several suitable solvers 

are Livermore Solver for Ordinary Differential Equations, 

LSODE (Hindmarsh, 1980), quasi-steady-state-

approximation, QSSA (Mott et al.,2000) and Modified 

backward Euler, MBE (Feng et al., 2015). LSODE is one of 

the earliest solvers for numerical solution stiff ODE. It is 

based on the Gear method and explicitly solves the ODE. 

QSSA is based on the forward Euler method while MBE is 
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based on the backward Euler method. 

In recent years, the study of block backward 

differentiation formula (BBDF) is well developed using 

constant and variable step size. BBDF was first introduced 

by (Ibrahim et al., 2008) as a good solver for solving stiff 

ODEs since it produces better accuracy than non-block 

method. In addition, it is also proven effective for solving 

the stiff ODEs both in the lower and higher order problems 

(Asnor et al., 2018; Zainuddin et al., 2016; Yatim et al., 

2013). Owing to the fact that this solver is efficient, we 

introduce HOBBDF solver which is developed using the 

variable step size approach for the numerical 

approximations of chemical kinetic equations in (1). 

This paper is organised as follows. The development of 

the introduced solver is summarised in Section 2 and the 

use of Newton’s iteration in HOBBDF is briefly explained in 

Section 3. In Section 4, a few examples of the chemical 

kinetic equations from (Feng et al., 2015; Hindmarsh, 

1980) are numerically tested and the performance 

comparison of this solver with two Matlab’s ODE solver will 

be discussed in the same section. The conclusion of this 

study is presented in the last section. 

 

II. HIGHER ORDER BLOCK 
BACKWARD 

DIFFERENTIATION 
FORMULA 

 
Three backvalues will be used to approximate two new 

solutions in the current block. First, find order four 

Lagrange polynomial and replace x  with hsxn ++1  

gives the following equation 

 

( ) ( ) ( )
=

+−+
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Proceed to the derivation by differentiating polynomial 

(2) thrice. Then, substitute s with 0 and s with 1 for 

obtaining the first and second point. Since this method is 

variable in step size, let ( ) rhxx nn =− −1
, ( ) rhxx nn =− −− 21

, ( ) hxx nn =− ++ 12
, ( ) hxx nn =−+1

. Note that h is step 

size and r is step size ratio. Therefore, we have the 

updated polynomial after differentiation as follows: 
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• Second point 
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Second derivative : 

• First point 

( )( ) ( )

( )( ) ( )( )
( ) ( )

( )( )
( )

( )( )21

12

2

1

22

1
2

112

212

2

11

2

1

21

2

1122

1

2

12

2

1112

2

1

22
1

1

22

2

1

2

2

2

2

++

+
+

+
+−

++
+

+
−

+
−

++
+

++
−

+

+
+

++

++
+

+

−−

+

rr

ry

r

y
y

rr

y

r

ry

r

ry

rrr

y

rrr

y

r

ry

r

rry

nn
n

nnn

nn

nn

(5) 

• Second point 
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Third derivative : 

• First point 
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• Second point 

( )( )

( )( )

( )( )

( )( )

( )( )

( )( )
( )( )

( )( )
( )( ) ( )( )

( )( )
( )( )

( )( ) ( )( )
( )( )

( )( )
( )( )

( )( )21

12

2

3

21

1

2

3

212

9

112

126

112

1612

2

3

112

121

2

3

2

3

21

126

21

18

112

1

2

3

1122

9

22

21

1

2

1

22

2

1

2

1

2

2

2

2

++

++
+

++

++
+

++
+

++

++
−

++

++
−

++
+

++
−

++
++

++

++
−

++
−

++

++
+

++

++

++

+

+

−−

−−

rrh

hrhy

rrh

hrhy

rr

y

rrh

hrhy

rrh

hrhy

hr

hrhy

rr

y

hr

hrhy

r

y

rrhr

hrhy

rrr

y

rrhr

hrhy

rrr

y

nn

nn

nn

nnn

nn

nn

 

     (8) 

 

Lastly, replace the value of r with 1, 2 and 10/19 into (3-8) 

gives the coefficients for the first point and second point as 

shown in the following equations. 

• Constant step size 
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• Half of the step size 
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• Increment of the step size to a factor 1.9 
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III. IMPLEMENTATION OF 
HOBBDF METHOD  

 
We used Newton’s iteration to implement the method. The 

formulae in the previous section are written in Newton’s 

iteration form which require the solution of linear systems 

at each iteration with an approximate Jacobian matrix. 

Rearranging the equation will produce the system of linear 

equations that will be solved later. Therefore, the system of 
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linear equations is as follows. 

 
Noted that 
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The general form of linear systems, NME ˆˆˆ 1−= is shown 

below. 
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IV. NUMERICAL EXPERIMENTS 

 
Numerical experiments are conducted on the chemical 

kinetic equations taken from (Feng et al., 2015) and (Feng 

et al., 2017). Results of the performance for the three 

solvers are presented in this section. All the results are 

presented in Tables 1-3 and Figure 1-12. The general form 

of the model is described earlier in equation (1): 

 

Model 1 

( ) ( )
 5,0

,200   ,1030

,130



=−= −

t

CetC

, L=P=

t
 

 

Model 2 

( ) ( )
 5,0

,200   ,1535

,15



=+= −

t

CetC

, L=P=

t
 

 

Model 3 

( ) ( )
 5,0

,500   ,1060

,160



=−= −

t

CetC

, L=P=

t
 

 

The notations used in the tables and figures are listed as 

follows. 

 

The numerical results are illustrated in the following tables 

and figures. 

 

MR  Maximum error 

AR  Average error 

TL  Tolerance limit 

HOBBDF Higher order block backward 

differentiation formula 

ode15s  

and ode23s MATLAB’s ODE solvers 

 

Table 1. Performance of all the methods for Model 1 

 

 

Method TL MR AR 

HOBBDF 

10-2 

10-3 

10-4 

10-5 

 5.0258e-004 

9.4945e-005 

4.8851e-005 

1.1892e-005 

7.8750e-006 

2.9670e-006 

1.0177e-006 

1.2388e-007 

ode15s 

10-2 

10-3 

10-4 

10-5 

 

1.4221e-001 

2.0884e-002 

2.5744e-003 

3.7705e-004 

 

3.6458e-002 

8.7366e-003 

1.5591e-003 

1.6426e-004 

ode23s 

10-2 

10-3 

10-4 

10-5 

3.2447e-002 

1.9854e-002 

4.7127e-003 

1.0651e-003 

1.4571e-002 

9.7256e-003 

3.1245e-003 

7.4249e-004 
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Table 2. Performance of all the methods for Model 2 

 

 

Table 3. Performance of all the methods for Model 

 

Figure 1. Solutions for Model 1 at tolerance 10-2 

 

 

Figure 2. Solutions for Model 1 at tolerance 10-3 

 

 

 

 

 

Figure 3. Solutions for Model 1 at tolerance 10-4 

 

 

Figure 4. Solutions for Model 2 at tolerance 10 

 
 

 

Figure 5. Solutions for Model 2 at tolerance 10-2 

 

 

  Figure 6. Solutions for Model 2 at tolerance 10-3 

 

 

Figure 7. Solutions for Model 2 at tolerance 10-4 

 

 

 

 

 

 

 

 

Method TL MR AR 

HOBBDF 

10-2 

10-3 

10-4 

10-5 

1.2373e-003 

3.3781e-004 

8.3498e-005 

2.5054e-005 

2.8019e-005 

1.0557e-005 

1.4910e-006 

2.3636e-007 

ode15s 

10-2 

10-3 

10-4 

10-5 

 

1.5746e-001 

2.1590e-002 

3.1403e-003 
3.8742e-004 

 

3.8563e-002 

6.3368e-003 

6.3397e-004 
1.7889e-004 

ode23s 

10-2 

10-3 

10-4 

10-5 

4.8578e-002 

1.6555e-002 
3.5750e-003 
7.6955e-004 

2.1378e-002 

9.6202e-003 
2.3225e-003 
5.1699e-004 

Method TL MR AR 

HOBBDF 

10-2 

10-3 

10-4 

10-5 

2.0700e-002 

8.3437e-003 

2.3445e-003 
7.7423e-004 

5.4845e-003 

1.9041e-003 

5.3644e-004 
2.2145e-004 

ode15s 

10-2 

10-3 

10-4 

10-5 

2.5892e-001 

4.7026e-002 

9.5387e-003 
8.9294e-004 

 

6.9056e-002 

1.3441e-002 

3.2398e-003 
3.6767e-004 

 

ode23s 

10-2 

10-3 

10-4 

10-5 

3.9526e-002 

2.9072e-002 

7.6836e-003 
1.7573e-003 

1.8409e-002 

1.3174e-002 

4.8750e-003 
1.2258e-003 
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Figure 8. Solutions for Model 2 at tolerance 10-5 

 

Figure 9. Solutions for Model 3 at tolerance 10- 

 

 

Figure 10. Solutions for Model 3 at tolerance 10-3 

 

 

 

Figure 11Solutions for Model 3 at tolerance 10-4 

 

 

Figure 12Solutions for Model 3 at tolerance 10-5 

 

 

Tables 1-3 show that the accuracies of the approximate 

solution are improved when the problems are solved using 

HOBBDF method as compared to ode15s and ode23s. The 

errors are also reduced as the tolerance values decrease. 

As the accuracy is improved, the approximate solutions 

are converged to the actual solution as presented in 

Figures 1-12. 

V. CONCLUSIONS 
 
 
An efficient solver was employed to solve the chemical 

kinetic equations. The numerical results show the 

accuracy of HOBBDF method. This solver is found to 

produce more accurate results than ode15s and ode23s 

since it converges to the exact solution when the tolerance 

value is reduced. In conclusion, HOBBDF method can be 

applied to solve the chemical kinetic equations. 
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