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Accurate modeling of many natural phenomena utilizing fractional differential equations is
essential to understand the structure, behavior, and construction of these problems. In this
article, an analytic-numeric solution of mixed integro-differential equation of fractional-
order is presented by using a residual power series expansion principle. This approach
constructs to express the solutions in convergent series expansion form with effectively
compatible components. Some basic properties for the RPS method are investigated. The
numerical example is tested to illustrate the theoretical statements. Numerical results
obtained indicate that the exact solution in good agreement with approximate solutions. The
main features of the proposed method lie in that it can be directly applied for solving
nonlinear fractional problems without the need for unphysical restrictive assumptions, such
as linearization, perturbation, or guessing the initial data.
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I. INTRODUCTION

The subject of integro-differential equations (IDEs) of
fractional order has received a great deal of interest during
the last decades due to their broad applications in the study
of complex systems arising in several fields of applied
mathematics, physics and engineering. Indeed, the term
"fractional calculus" is not new. It is a generalization of
classical calculus that deals with the ordinary
differentiation and integration of an arbitrary order. Unlike
the classical calculus, which has unique concepts and
precise physical and geometrical explanations, there are
different definitions and concepts of the operations of
fractional differentiation and integration as well. Riemann-
Liouville, Conformable, Griinwald-Letnikov, Atangana-
Baleanu and Caputo are some examples of these definitions

(Oldham, K. and Spanier, 1974; Abu Arqub & Al-Smadi,
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2018; Moaddy, et al., 2018; Al-Smadi, 2018; Al-Smadi, et
al.,, 2017). The exact solution of such equations is not
available in most cases. So, different numerical or analytical
techniques have been applied by numerous experts to
investigate the approximate solutions for IDEs of fractional
order, such as Adomain decomposition method (ADM)
(Aladhab, 2016), Homotopy perturbation method (HPM)
(Zhang, et al., 2011),Variational iteration method (VIM)
(Sweilam, 2007),Fractional differential transform method
(DTM) (Arikoglu & Ozkol, 2009),and reproducing kernel
method (RKM) (Abu Arqub & Al-Smadi, 2018; Al-Smadi &
Arqub, 2019; Abu Arqub, et al., 2018).

The basic aim of this study is to provide the approximate
solution of fractional IDEs of Fredholm-Volterra type by
using the fractional power series (FPS) method. This
method yields Taylor’s series expansion of the solutions, as

a result, in this case, the exact solutions are available when
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the solutions are polynomials(Abu-Gdairi, et al., 2015;
Freihet, et al., 2019; Moaddy, et al., 2015; Al-Smadi, 20109;
Komashynska, et al., 2016).Following the RPS procedure,
modifications or linearization are not needed when
switching from the lowest order to the top. While the
proposed method can be applied directly by choosing
appropriate values for the initial guessing estimates, then
the residual terms to reduce

minimizing error

computational requirements and to obtain optimal
approximation with less time, effort and cost (Momani, S.,
Arqub, O.A., Freihat, A. and Al-Smadi, M.,

Komashynska, et al., 2016; Altawallbeh, et al., 2018).

2016;

This work is arranged as follows. In Section II, essential
definitions and basic results about the Caputo fractional
concept and fractional power series representations are
given. The analysis of FPS scheme is presented in Section
III. In Section IV, we present one numerical example to
show potentiality, generality, and superiority of the

method. The last section is dedicated to the conclusion.
II. BASIC CONCEPTS

In this section, some fundamental definitions and
preliminaries about the fractional calculus theory(Abu
Arqub & Al-Smadi, 2014; Moaddy, et al., 2017; Hasan, et
al., 2019; Podlubny, 1999; El-Ajou, et al., 2015)and

fractional power series representations are given.

Definition 1. The Riemann-Liouville fractional integral

operator of order a is given as

Jow(®) = —— [Tw(§) (¢t — §)'"9dE, 0 < § <t,a> 0.

@

Fora = Othen J*w(t) = w(t).
Further, the Riemann-Liouville fractional integral operator
has the following:

o JYPw® =JFIw(D),

o JYPw(®) =JPw(D),

Arr r(r+1)
s U =t

trte r > —1.
Definition 2. (Moaddy, et al., 2017) The Caputo fractional
derivative of order «a is given as:

1 £wE)
p(n — a,) o (t — S;)a—n+1 df,

D*w(t) = n—1<a<n,

On other hand, the operator D¢ has the following;:

e D% =0, for any constant.

48

a.r . T(r+1)
¢ ]t _I"(r+1—a)

e D¥*w(t) = w(t).

t"Y r > —1.

_ . t-&)ia
o JUDW(E) = w(t) - T w(EH

Definition 3. (Podlubny, 1999) The fractional power series
(FPS) about t = t, represented by

TiZow;(t — to)/® = wo + wy (t = to)* + wy(t —
()2 + -+,
where 0<n-1<a<n,t=ty, and w;’s are constants

coefficients of the series.

Theorem 1. (El-Ajou, et al., 2015) Suppose that h(t) has

the FPS representation at t = tjas follows

h(t) = X5 Wi (t — t)*, ty S t Sty + a.

If h(t) € C[ty,to +a), and D/%h(t) € C(ty, to +a), for j
0,1,2,..., then

thecoefficients w; willtake the form w;

DI%h(t,)
rGa+1)’

where D/% = D% - D% - D* (j-times).

III. ANALYSIS OF FRACTIONAL

POWER SERIES ALGORITHM

In order to illustrate the basic procedure of the FPS
the Fredholm—

Volterraintegro-differential equation are considered

technique, following  fractional

b t
Daw(t) + f k(t, W) dE + f h(t, &) w(§)dé
— £,

subject to the initial condition

)

w(0) = wy. (2)

wheree (0,1], a <t,& <b,f:[a, b] » R, is acontinuous real-
valued function and k(t,¢), h(t,é) are two continuous
arbitrary kernel functions, while D% stands to Caputo
fractional derivative.

Regarding applying the FPS method (Momani, S., Arqub,
O.A., Freihat, A. and Al-Smadi, M., 2016; Komashynska, et
al., 2016; Altawallbeh, et al., 2018), the solution of
Egs.(1)and (2) can be expressed as FPS expansion about t =

0 of the form

na

w(t) = X5o Wy ——— (3)

rna+1)’

where w(0) = wy, so the series solution (3) will be as

w(t) = wy + S5 Wy —— )

rtna+1)’
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We can approximate the series solution (4), by the k-th

truncated series

na

t
wi(t) = wo + Xk wy e’

(5)

According to the FPS method, we define the k-th residual
function Res; (t) for Egs.(1)and (2) as

Resi(t) = Dw;c(t) — [} k(t, O)wyc(£) d§ —

LR © wi()dE — f(©).

Further, we define the following residual function Res(t) as

(6)

follows
Res(t) = ,lim Resy (t) = D%*wy (t) —

12 ket Owi(©) dE — [ h(t, ) wi (E)dE — F (0. @

Here, we noted that Res(t) =0 for all >0 . Also,
D*Res(t) = 0. Moreover, D™%Resq(0) = D™*Res;(0) =0
form =12, ..., k.
Consequently, the following differential equation of
fractional order assist us to determine the value of the
coefficientsw,,, forn = 1,2, ...,k
Dk-DapRes, (0) =0, k =1,2,3, ... (8
In view of that to obtain the unknown coefficients w,,, for
n=1,2,..,k of Eq. (3), write the k-th truncated series into
the k-th residual Eq. (6), findD®*~D2Res, (t)fork = 1,2,3, ...,
substitutet = 0 in the resulting equation and then equal it

by zero.
IV. NUMERICAL EXAMPLE

The RPSM is practical as well as useful to solve not only
differential equations but also the integral and integro-
differential equations. This section is concerned with
applying the proposed method to demonstrate the
simplicity and effectiveness for solving mixed IDEs of
fractional order. The method is implemented directly with
no required to transformation or restrictive assumptions.
Numeric outcomes indicate that the present approach is
very convenient for solving such problems. Anyhow, we all
know that the algorithms have a limited set of principles for
performing calculations on the computer with specific
digits so that principles are determined at each instant

exactly what the computer must do afterward.

49

Consider the mixed IDE in the following form:

1 1 t
pw®) + [ sin@w(e)dg - [ £w(e)dg ©
0 0

1
=1- Et(t —4)et + sin(t),

subject to initial condition
w(t) = 0. (10)

The exact solution at a = 1 is given by w(t) = te®.

This example explores more large scale to apply the RPS
algorithm for solving Egs. (9) and (10). To do so, we
construct appropriate residual functions, and we simplify
the used the RPS algorithm and computations step by step.

The k-th residual function Res; (t) is given by

1
Res () = D%, (£) + f sin(t)w, (£) dE
0 (11)

3 [ Ewi@az -1
0
1
+ Et(t — 4)et —sin(¢),

wherew, (t) has the form

wi(t) = iWn
n=1

tna

I na+1)

The exact and approximate solutions are compared in
Table 1. The results obtained by the RPS method show that
the exact solutions are in good agreement with approximate

solutions at @ = 1, n = 10 and step size 0.16.

Table 1. Results of solutions at & = 1

t Exact RPS Abs. Error | Rel. Error
0.16 | 0.1877 | 0.1877 | 49x 1071 | 2.6 x 10™%°
0.32 | 0.4406 | 0.4406 | 1.0 x 10712 | 2.3 x 10712
0.48 | 0.7757 | 0.7757 | 9.0 x 107 | 1.2x 1070
0.64 | 1.2137 | 1.2137 | 22x107° | 1.8x107°
0.80 | 1.7804 | 1.7804 | 3.0x107® | 1.4x 1078
0.96 | 2.5072 | 2.5072 | 19%x1077 | 7.7x 1078

As consequence, the solutions obtained are smooth and
convergent to the approximate ones as well as the capability
of the process to handle different interesting numerical
examples where no time discretization is considered for

computations.
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Figure 1. Solution plots of the exact and approximation at

a = 1 (---- Exact, ¥** approximate)

V. SUMMARY

In this article, the fractional power series (FPS) algorithm
has been applied successfully for providing RPS
approximate solution of fractional integro-differential
equations of Fredholm-Volterra type. This technique based
on the residual error functions and generalized Taylor
series to derive the FPS solution without linearization,
perturbation, or discretization. The results indicate that the
present method is extremely effective for solving such of
these IDEs. Thus, the FPS technique is powerful and
convenient to derive the approximate solutions for such

these of fractional differential equations.
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