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Accurate modeling of many natural phenomena utilizing fractional differential equations is 

essential to understand the structure, behavior, and construction of these problems. In this 

article, an analytic-numeric solution of mixed integro-differential equation of fractional-

order is presented by using a residual power series expansion principle. This approach 

constructs to express the solutions in convergent series expansion form with effectively 

compatible components. Some basic properties for the RPS method are investigated. The 

numerical example is tested to illustrate the theoretical statements. Numerical results 

obtained indicate that the exact solution in good agreement with approximate solutions. The 

main features of the proposed method lie in that it can be directly applied for solving 

nonlinear fractional problems without the need for unphysical restrictive assumptions, such 

as linearization, perturbation, or guessing the initial data. 

Keywords: mixed integro-differential equation; caputo fractional concept; power series 

expansion 

 

I. INTRODUCTION 

 

The subject of integro-differential equations (IDEs) of 

fractional order has received a great deal of interest during 

the last decades due to their broad applications in the study 

of complex systems arising in several fields of applied 

mathematics, physics and engineering. Indeed, the term 

"fractional calculus" is not new. It is a generalization of 

classical calculus that deals with the ordinary 

differentiation and integration of an arbitrary order. Unlike 

the classical calculus, which has unique concepts and 

precise physical and geometrical explanations, there are 

different definitions and concepts of the operations of 

fractional differentiation and integration as well. Riemann-

Liouville, Conformable, Grünwald-Letnikov, Atangana-

Baleanu and Caputo are some examples of these definitions 

(Oldham, K. and Spanier, 1974; Abu Arqub & Al-Smadi, 

2018; Moaddy, et al., 2018; Al-Smadi, 2018; Al-Smadi, et 

al., 2017). The exact solution of such equations is not 

available in most cases. So, different numerical or analytical 

techniques have been applied by numerous experts to 

investigate the approximate solutions for IDEs of fractional 

order, such as Adomain decomposition method (ADM) 

(Aladhab, 2016), Homotopy perturbation method (HPM) 

(Zhang, et al., 2011),Variational iteration method (VIM) 

(Sweilam, 2007),Fractional differential transform method 

(DTM) (Arikoglu & Ozkol, 2009),and reproducing kernel 

method (RKM) (Abu Arqub & Al-Smadi, 2018; Al-Smadi & 

Arqub, 2019; Abu Arqub, et al., 2018). 

The basic aim of this study is to provide the approximate 

solution of fractional IDEs of Fredholm-Volterra type by 

using the fractional power series (FPS) method. This 

method yields Taylor’s series expansion of the solutions, as 

a result, in this case, the exact solutions are available when 
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the solutions are polynomials(Abu-Gdairi, et al., 2015; 

Freihet, et al., 2019; Moaddy, et al., 2015; Al-Smadi, 2019; 

Komashynska, et al., 2016).Following the RPS procedure, 

modifications or linearization are not needed when 

switching from the lowest order to the top. While the 

proposed method can be applied directly by choosing 

appropriate values for the initial guessing estimates, then 

minimizing the residual error terms to reduce 

computational requirements and to obtain optimal 

approximation with less time, effort and cost (Momani, S., 

Arqub, O.A., Freihat, A. and Al-Smadi, M., 2016; 

Komashynska, et al., 2016; Altawallbeh, et al., 2018). 

This work is arranged as follows. In Section II, essential 

definitions and basic results about the Caputo fractional 

concept and fractional power series representations are 

given.  The analysis of FPS scheme is presented in Section 

III. In Section IV, we present one numerical example to 

show potentiality, generality, and superiority of the 

method. The last section is dedicated to the conclusion. 

 

II. BASIC CONCEPTS 

 

In this section, some fundamental definitions and 

preliminaries about the fractional calculus theory(Abu 

Arqub & Al-Smadi, 2014; Moaddy, et al., 2017; Hasan, et 

al., 2019; Podlubny, 1999; El-Ajou, et al., 2015)and 

fractional power series representations are given. 

 

Definition 1. The Riemann-Liouville fractional integral 

operator of order α is given as 

𝐽𝛼𝑤(𝑡) =
1

Γ(𝛼)
∫ 𝑤(𝜉) (𝑡 − 𝜉)1−𝛼𝑑𝜉

𝑡

0
, 0 ≤ 𝜉 < 𝑡, 𝛼 > 0. 

 
 

For𝛼 = 0then 𝐽𝛼𝑤(𝑡) = 𝑤(𝑡). 

Further, the Riemann-Liouville fractional integral operator 

has the following: 

• 𝐽𝛼𝐽𝛽𝑤(𝑡) = 𝐽𝛽𝐽𝛼𝑤(𝑡), 

• 𝐽𝛼𝐽𝛽𝑤(𝑡) = 𝐽𝛼+𝛽𝑤(𝑡), 

• 𝐽𝛼𝑡𝑟 =
𝛤(𝑟+1)

𝛤(𝑟+1+𝛼)
𝑡𝑟+𝛼, 𝑟 > −1. 

 

 

Definition 2. (Moaddy, et al., 2017) The Caputo fractional 

derivative of order 𝛼 is given as: 

𝐷𝛼𝑤(𝑡) =
1

𝛤(𝑛 − 𝛼)
∫

𝑤(𝑛)(𝜉)

(𝑡 − 𝜉)𝛼−𝑛+1  𝑑𝜉,   𝑛 − 1 < 𝛼 ≤ 𝑛,
𝑡

0

 

On other hand, the operator 𝐷𝛼 has the following: 

• 𝐷𝛼𝑐 = 0, for any constant.  

• 𝐽𝛼𝑡𝑟 =
𝛤(𝑟+1)

𝛤(𝑟+1−𝛼)
𝑡𝑟−𝛼, 𝑟 > −1. 

• 𝐷𝛼𝐽𝛼𝑤(𝑡) = 𝑤(𝑡). 

• 𝐽𝛼𝐷𝛼𝑤(𝑡) = 𝑤(𝑡) − ∑ 𝑤(𝑗)(𝜉+)
(𝑡−𝜉)𝑗𝛼

𝛤(𝑗+1)
𝑛−1
𝑗=0 . 

Definition 3. (Podlubny, 1999) The fractional power series 

(FPS) about  𝑡 = 𝑡0  represented by 

∑ 𝑤𝑗(𝑡 − 𝑡0)𝑗𝛼∞
𝑗=0 = 𝑤0 + 𝑤1(𝑡 − 𝑡0)𝛼 + 𝑤2(𝑡 −

𝑡0)2𝛼 + ⋯, 

 

where  0 ≤ 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑡 ≥ 𝑡0,   and 𝑤𝑗 ’s are constants 

coefficients of the series.  

Theorem 1. (El-Ajou, et al., 2015) Suppose that ℎ(𝑡) has 

the FPS representation at 𝑡 = 𝑡0as follows 

ℎ(𝑡) = ∑ 𝑤𝑚(𝑡 − 𝑡0)𝑗𝛼∞
𝑗=0 ,  𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑎.  

If ℎ(t) ∈ C[t0, t0 + a), and 𝐷𝑗𝛼ℎ(𝑡) ∈ C(t0, t0 + a), for 𝑗 =

0,1,2, …, then  thecoefficients 𝑤𝑗  willtake the form 𝑤𝑗 =

𝐷𝑗𝛼ℎ(𝑡0)

𝛤(𝑗𝛼+1)
, where 𝐷𝑗𝛼 = 𝐷𝛼 ∙ 𝐷𝛼 ∙∙∙ 𝐷𝛼 (𝑗-times). 

 

III. ANALYSIS OF FRACTIONAL 

POWER SERIES ALGORITHM 

 

In order to illustrate the basic procedure of the FPS 

technique, the following fractional Fredholm–

Volterraintegro-differential equation are considered 

𝐷𝛼𝑤(𝑡) + ∫ 𝑘(𝑡, 𝜉)𝑤(𝜉)
𝑏

𝑎

𝑑𝜉 + ∫ ℎ(𝑡, 𝜉)
𝑡

𝑎

𝑤(𝜉)𝑑𝜉

= 𝑓(𝑡), 

 

(1) 

subject to the initial condition 

𝑤(0) = 𝑤0.         (2) 

 

where∈ (0,1], 𝑎 ≤ 𝑡, 𝜉 ≤ 𝑏, 𝑓: [𝑎, 𝑏] → ℝ, is acontinuous real-

valued function and 𝑘(𝑡, 𝜉), ℎ(𝑡, 𝜉) are two continuous 

arbitrary kernel functions, while  𝐷𝛼 stands to Caputo 

fractional derivative.  

Regarding applying the FPS method (Momani, S., Arqub, 

O.A., Freihat, A. and Al-Smadi, M., 2016; Komashynska, et 

al., 2016; Altawallbeh, et al., 2018), the solution of 

Eqs.(1)and (2) can be expressed as FPS expansion about t =

0 of the form  

𝑤(𝑡) = ∑ 𝑤𝑛
∞
𝑛=0

𝑡𝑛𝛼

𝛤(𝑛𝛼+1)
. (3) 

where 𝑤(0) = 𝑤0, so the series solution (3) will be as  

𝑤(𝑡) = 𝑤0 + ∑ 𝑤𝑛
∞
𝑛=1

𝑡𝑛𝛼

𝛤(𝑛𝛼+1)
. (4) 
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We can approximate the series solution (4), by the 𝑘-th 

truncated series  

𝑤𝑘(𝑡) = 𝑤0 + ∑ 𝑤𝑛
𝑘
𝑛=1

𝑡𝑛𝛼

𝛤(𝑛𝛼+1)
. (5) 

According to the FPS method, we define the 𝑘-th residual 

function 𝑅𝑒𝑠𝑘(𝑡)  for Eqs.(1)and (2) as 

𝑅𝑒𝑠𝑘(𝑡) = 𝐷𝛼𝑤𝑘(𝑡) − ∫ 𝑘(𝑡, 𝜉)𝑤𝑘(𝜉)
𝑏

𝑎
𝑑𝜉 −

∫ ℎ(𝑡, 𝜉)
𝑡

𝑎
𝑤𝑘(𝜉)𝑑𝜉 − 𝑓(𝑡). 

 

(6) 

Further, we define the following residual function 𝑅𝑒𝑠(t) as 

follows 

𝑅𝑒𝑠(t) = lim
𝑘→∞

𝑅𝑒𝑠𝑘(𝑡) = 𝐷𝛼𝑤𝑘(𝑡) −

∫ 𝑘(𝑡, 𝜉)𝑤𝑘(𝜉)
𝑏

𝑎
𝑑𝜉 − ∫ ℎ(𝑡, 𝜉)

𝑡

𝑎
𝑤𝑘(𝜉)𝑑𝜉 − 𝑓(𝑡). 

 

(7) 

Here, we noted that 𝑅𝑒𝑠(t) = 0 for all ≥ 0 . Also,  

𝐷𝛼𝑅𝑒𝑠(t) = 0. Moreover, 𝐷𝑚𝛼Resq(0) = 𝐷𝑚𝛼𝑅𝑒𝑠𝑘(0) = 0  

for𝑚 = 1,2, … , 𝑘. 

Consequently, the following differential equation of 

fractional order assist us to determine the value of the 

coefficients𝑤𝑛,  for 𝑛 = 1,2, … , 𝑘 

𝐷(𝑘−1)𝛼𝑅𝑒𝑠𝑘(0) = 0, 𝑘 = 1,2,3, …. (8) 

In view of that to obtain the unknown coefficients 𝑤𝑛,  for 

𝑛 = 1,2, … , 𝑘 of Eq. (3), write the 𝑘-th truncated series into 

the 𝑘-th residual Eq. (6), find𝐷(𝑘−1)𝛼𝑅𝑒𝑠𝑘(𝑡)for𝑘 = 1,2,3, …, 

substitute𝑡 = 0 in the resulting equation and then equal it 

by  zero. 

 

IV. NUMERICAL EXAMPLE 

 

The RPSM is practical as well as useful to solve not only 

differential equations but also the integral and integro-

differential equations. This section is concerned with 

applying the proposed method to demonstrate the 

simplicity and effectiveness for solving mixed IDEs of 

fractional order. The method is implemented directly with 

no required to transformation or restrictive assumptions. 

Numeric outcomes indicate that the present approach is 

very convenient for solving such problems. Anyhow, we all 

know that the algorithms have a limited set of principles for 

performing calculations on the computer with specific 

digits so that principles are determined at each instant 

exactly what the computer must do afterward. 

 

 

 

 

Consider the mixed IDE in the following form: 

𝐷𝛼𝑤(𝑡) + ∫ sin (𝑡)𝑤(𝜉)
1

0

𝑑𝜉 −
1

2
∫ 𝜉

𝑡

0

𝑤(𝜉)𝑑𝜉

= 1 −
1

2
𝑡(𝑡 − 4)𝑒𝑡 + 𝑠𝑖𝑛(𝑡), 

 

(9) 

subject to initial condition 

𝑤(𝑡) = 0. (10) 

The exact solution at 𝛼 = 1 is given by 𝑤(𝑡) = 𝑡𝑒𝑡. 

This example explores more large scale to apply the RPS 

algorithm for solving Eqs. (9) and (10). To do so, we 

construct appropriate residual functions, and we simplify 

the used the RPS algorithm and computations step by step. 

The 𝑘-th residual function 𝑅𝑒𝑠𝑘(𝑡) is given by  

𝑅𝑒𝑠𝑘(𝑡) = 𝐷𝛼𝑤𝑘(𝑡) + ∫ sin (𝑡)𝑤𝑘(𝜉)
1

0

𝑑𝜉

−
1

2
∫ 𝜉

𝑡

0

𝑤𝑘(𝜉)𝑑𝜉 − 1

+
1

2
𝑡(𝑡 − 4)𝑒𝑡 − sin(𝑡), 

 

(11) 

where𝑤𝑘(𝑡) has the form 

𝑤𝑘(𝑡) = ∑ 𝑤𝑛

𝑘

𝑛=1

𝑡𝑛𝛼

𝛤(𝑛𝛼 + 1)
. 

 

The exact and approximate solutions are compared in 

Table 1. The results obtained by the RPS method show that 

the exact solutions are in good agreement with approximate 

solutions at 𝛼 = 1, 𝑛 = 10 and step size 0.16. 

 

Table 1. Results of solutions at 𝛼 = 1 

𝑡 Exact RPS Abs. Error Rel. Error 

0.16 0.1877 0.1877 4.9 × 10−16 2.6 × 10−15 

0.32 0.4406 0.4406 1.0 × 10−12 2.3 × 10−12 

0.48 0.7757 0.7757 9.0 × 10−11 1.2 × 10−10 

0.64 1.2137 1.2137 2.2 × 10−9 1.8 × 10−9 

0.80 1.7804 1.7804 3.0 × 10−8 1.4 × 10−8 

0.96 2.5072 2.5072 1.9 × 10−7 7.7 × 10−8 

 

As consequence, the solutions obtained are smooth and 

convergent to the approximate ones as well as the capability 

of the process to handle different interesting numerical 

examples where no time discretization is considered for 

computations. 
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Figure 1. Solution plots of the exact and approximation at 

𝛼 = 1 (---- Exact, *** approximate) 

 

V. SUMMARY 

 

In this article, the fractional power series (FPS) algorithm 

has been applied successfully for providing RPS 

approximate solution of fractional integro-differential 

equations of Fredholm-Volterra type. This technique based 

on the residual error functions and generalized Taylor 

series to derive the FPS solution without linearization, 

perturbation, or discretization. The results indicate that the 

present method is extremely effective for solving such of 

these IDEs. Thus, the FPS technique is powerful and 

convenient to derive the approximate solutions for such 

these of fractional differential equations. 
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