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In this paper, a study of a numerical approximate solution to fuzzy Volterra integro-differential equations 

is presented under strongly generalised differentiability by applying an influent effective technique, called 

the Residual Power Series (RPS) method. The solution approach can be expressed on Taylor's series 

formula in terms of elementary 𝜎-level representation, whereas the coefficients can be computed by 

utilising its residual functions. Furthermore, a numerical computational example is given to test and 

validate the proposed method. The results reached show several features concerning the RPS method 

such as potentiality, generality and superiority to handle many problems arising in physics and 

engineering. 
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I. INTRODUCTION  
 

In recent years, the topic of fuzzy integro-differential 

equations (IDEs) has gained more attention by many scholars 

for its essential role in modelling many phenomena that arise 

in various applications in physics and engineering (Gumah et 

al., 2016; Abu Arqub et al., 2016; Arqub et al., 2017).  Several 

scholars in scientific areas widely use the fuzzy IDEs to 

understand the structure and predict the behaviour of 

solutions to the issues under study. Typically, during the 

formulation of many problems, the resulting information will 

be subject to uncertainty for various reasons such as errors in 

the measurement process, inaccurate prediction, collection of 

erroneous data, as well as bad estimation when determining 

the initial guesses. Therefore, effective mathematical tools 

are needed to understand this uncertainty. Consequently, the 

theory of fuzzy set is a powerful tool for handling and 

modelling such issues under uncertainty. For other numerical 

techniques about integro-differential equations, we refer to 

(Abu Arqub & Al-Smadi, 2018; Al-Smadi & Arqub, 2019; 

Saadeh et al., 2016; Abu Arqub & Al-Smadi, 2018). 

On another aspect, investigations of numerical solutions for 

fuzzy IDEs are missing and rare. In (Abbasbandy & Hashemi, 

2012; Abbasbandy & Hashemi, 2010), the authors relied on the 

method of homotopy analysis and the variational iteration 

method to find a numerical solution of such equations. The 

reproducing kernel algorithm was applied for solving a class 

of fuzzy Fredholm–Volterra integro-differential equations 

(Abu Arqub, 2017). Haar wavelet method was used to solve 

a class of fuzzy Volterra integro-differential equations 

(Altawallbeh et al., 2018). In the current paper, we extend 

the application of the residual power series (RPS) method 

to investigate the approximate analytic solutions of fuzzy 

Volterra IDEs under generalised H-differentiability (Abu-

Gdairi et al., 2015; Al-Smadi et al., 2017; Al-smadi, 2019; 

Abu Arqub et al., 2018; Al-Smadi, 2018; Freihet et al., 

2019). 

     The skeleton of this article is structured as follows: In 

section 2, some basic definitions and preliminary facts 

related to fuzzy calculus are given. The fuzzy Volterra 

integro-differential equations are discussed in section 3. In 

section 4, a description of the RPS method is presented.  

One numerical example is given to illustrate the RPS 

method. Finally, a summary of this paper has been 

provided. 
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II. PRELIMINARIES 
 
The material in this section is fundamental of some concepts. 

For convenience, the necessary definitions and theories used in 

the theory of fuzzy calculus are briefly given.  

 

Definition 1. (Kaleva, 1987)  A non-empty fuzzy set 𝑣  in a 

universe of discourse 𝑋  is described by a membership function 

𝜇𝑣: 𝑋 → [0,1] , which associates with every point in X a real 

number in [0,1] . 𝜇𝑣(𝑥)  is interpreted as the grade of 

membership of an element x in the fuzzy set 𝑣 for each 𝑥 ∈ 𝑋. 

 

Definition 2. (Kaleva, 1987) Let ℝ stands to the set of all real 

numbers and 𝑣 is a non-empty set in ℝ. Then one says 𝑣 is a 

fuzzy number if it holds the following requirement: 

 

1-  𝑣  is normal if there exists  𝑥0 ∈ ℝ for which 𝑣(𝑥0) = 1. 

2- 𝑣  is convex, for each 𝑥1, 𝑥2 ∈ ℝ  and λ ∈ [0,1]  which holds 

that  𝑣(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≥ min (𝑣(𝑥1), 𝑣(𝑥2)). 

3- 𝑣 is an upper semi-continuous, for each 𝑥0 ∈ ℝ, 

𝑣(𝑥0) ≥ lim
x→x0

+
𝑣(𝑥) and 𝑣(𝑥0) ≥ lim

x→x0
−

𝑣(𝑥). 

4- The closure of supp(𝑣) is compact. 

 

For each σ ∈ (0 , 1] , set [𝑣]σ = {𝑥 ∈ ℝ: 𝑣(𝑥) ≥ σ}  and [𝑣]0 =

{𝑥 ∈ ℝ ∶ 𝑣(𝑥) > 0 }̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, where {·}̅̅ ̅ denote the closure of {·}. Then, it 

can be easily proved that 𝑣 is a fuzzy number if and only if [𝑣]σ 

is compact and convex set on ℝ for all σ ∈ [0,1] and [𝑣]1 ≠ ∅ 

(Goetschel & Voxman, 1986). Further, let 𝑣 be a fuzzy number, 

then [𝑣]σ = [𝑣1(σ), 𝑣2(σ)] . That is, [𝑣]𝜎 referred to the σ-cut 

representation or parametric form of a fuzzy number 𝑣. Where 

𝑣₁(σ) = min{𝑥 ∶ 𝑥 ∈ [𝑣]σ}  and 𝑣₂(σ) = max{𝑥 ∶ 𝑥 ∈ [𝑣]σ}  for 

each σ ∈ [0,1].  

 

Theorem 3. (Goetschel & Voxman, 1986) Suppose  

that 𝑣₁, 𝑣₂: [0,1] → ℝ which satisfies the following conditions; 

 

1- 𝑣₁  is a bounded increasing function, and  𝑣₂  is a bounded 

decreasing function with 𝑣₁(1) ≤ 𝑣₂(1); 

2- 𝑣₁ and 𝑣₂ are left-hand continuous functions at  σ = 𝑘 , for 

all 𝑘 ∈ (0 , 1],   

3. 𝑣₁  and 𝑣₂ are right-hand continuous functions at σ = 0.  

 

Then, 𝑣: ℝ → [0,1]  defined by 𝑣(𝑥) = sup{σ ∶ 𝑣₁ (σ) ≤ 𝑥 ≤

𝑣₂(σ)}  is a fuzzy number and the parametric form is 

[𝑣₁(𝜎), 𝑣₂(𝜎)].  Otherwise, the functions 𝑣₁  and 𝑣₂  satisfy the 

conditions above if 𝑣: ℝ → [0,1]  is a fuzzy number with 

parametrisation [𝑣₂(𝜎), 𝑣₁(𝜎)]. 

 

Definition 4. (Puri & Ralescu, 1983) For arbitrary fuzzy 

numbers 𝑣 and 𝑤 on  ℝF  we define the Hausdorff distance 

by the mapping d: ℝF × ℝF → ℝ+ ∪ {0} such that 

 

d(𝑣, 𝑤) = sup0 ≤σ≤1 max{|𝑣1(σ) − 𝑤1(σ)|, |𝑣2(σ) −

𝑤2(σ)|}, 

 

 

Definition 5. (Puri & Ralescu, 1983) Let 𝑓: [a, b] → ℝF be 

a fuzzy valued function. For fixed 𝑥0 ∈ [a, b]  and ϵ >

0, there is δ > 0  with |𝑥 − 𝑥0| < δ   this implies  

d(𝑓(𝑥), 𝑓(𝑥0)) < ϵ, then we say that 𝑓 is continuous at 𝑥0.  

 

Definition 6. (Friedman et al., 1999) Suppose that 

𝑓: [a, b] → ℝF be a fuzzy valued function. For each partition  

P = {𝑥0, 𝑥1, … , 𝑥𝑛}  of [a, b]  and ζi ∈ [𝑥𝑖−1, 𝑥𝑖] , 1 ≤ 𝑖 ≤ 𝑛 . 

Assume that RP = ∑ 𝑥𝑖(𝜁𝑖)𝑛
𝑖=1 (𝑥𝑖 − 𝑥𝑖−1)  and ∆=

max
1≤𝑖≤𝑛

|𝑥𝑖−1, 𝑥𝑖| . The definite integral of 𝑓(𝑥)  over [a, b]  is 

∫ 𝑓(𝑥)𝑑𝑥
b

a
= lim

∆→0
RP  such that the limit exists in (ℝF, d). If 

the fuzzy function 𝑓(𝑥)  is continuous in the metric 𝑑 , its 

definite integral exists (Goetschel & Voxman, 1986). 

Moreover, 

(∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
)

1𝜎
= ∫ 𝑓1𝜎(𝑥)𝑑𝑥

𝑏

𝑎
, 

and 

(∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
)

2𝜎
= ∫ 𝑓2𝜎(𝑥)𝑑𝑥

𝑏

𝑎
. 

 

The fuzzy number 𝐴 is called the Hukuhara difference or 

“H-difference” of 𝑣, 𝑤 ∈ ℝF and indicated by v ⊖ w, which 

is mean ⩝ 𝑣, 𝑤 ∈ ℝF, ∃ an element A ∈ ℝF provided that 𝑣 =

𝑤 + 𝐴. As well we referred always for Hukuhara difference 

by the sign “ ⊖ ’’ and let us mention that  𝑣 ⊖ 𝑤 ≠ 𝑣 +

(−1)𝑤. 

 

Definition 7. (Bede & Gal, 2005) Let 𝑓: [a, b] → ℝF  and 

fixed 𝑥0 ∈ [a, b].  We say that 𝑓  is strongly generalized 

differentiable at 𝑥0, if there exists an element 𝑓′(𝑥0) ∈ ℝF 

such that either: 

i- The H-differences  𝑓(𝑥0 + ℎ) ⊖ 𝑓(𝑥0) , 𝑓(𝑥0) ⊖

𝑓(𝑥0 − ℎ) exist and 

   𝑓′(𝑥0) = 𝑙𝑖𝑚
ℎ→0+

𝑓(𝑥0+ ℎ)⊖𝑓(𝑥0)

ℎ
= 𝑙𝑖𝑚

ℎ→0+

𝑓(𝑡0)⊖𝑓(𝑥0−ℎ)

ℎ
, 

for all ℎ > 0 sufficiently close to 0, where the limits in a 

metric d, 
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 ii-The H-differences  𝑓(𝑥0) ⊖ 𝑓(𝑥0 + ℎ), 𝑓(𝑥0 − ℎ) ⊖ 𝑓(𝑥0) 

exist and  

𝑓′(𝑥0) = 𝑙𝑖𝑚
ℎ→0+

𝑓(𝑥0) ⊖𝑓(𝑥0 + ℎ)

−ℎ
= 𝑙𝑖𝑚

ℎ→0+

𝑓(𝑥0−ℎ)⊖𝑓(𝑥0)

−ℎ
,  

for all h > 0 sufficiently close to 0, where the limits in a metric 

d. 

 

Theorem 8. (Chalco-Cano & Román-Flores, 2008) Assume 

that 𝑣: [a, b] → ℝF, [𝑓(𝑥)]𝜎 = [𝑓1𝜎(𝑥), 𝑓2𝜎(𝑥)] for each σ ∈ [0,1], 

then: 

1- If 𝑓  is (1)-differentiable, then 𝑓1σ  and 𝑓2σ  are differentiable 

functions and [D1
1𝑓(𝑥)]σ = [𝑓1σ

′ (𝑥) , 𝑓2σ
′ (𝑥)], 

2- If 𝑓 is (2)-differentiable, then 𝑓1σ  and 𝑓2σ  are differentiable 

functions and [D2
1𝑓(𝑥)]σ = [𝑓2σ

′ (𝑥) , 𝑓1σ
′ (𝑥)]. 

 

III. FUZZY VOLTERRA 
INTEGRODIFFERENTIL 

EQUATIONS 
 

This section aims to provide and discuss the fuzzy approximate 

solution of the following   fuzzy Volterra integro-differential 

equations with the fuzzy initial conditions under the concept of 

strongly generalised differentiability 

 

𝑢′(𝑥) = 𝜑(𝑥) + 𝜆 ∫ 𝑔(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
,      (1) 

     subject to the initial condition 

         𝑢(0) = 𝑢0,                                                      (2) 

where  𝜆  is a positive parameter,  𝑔(𝑥, 𝑡) is a function, called 

an arbitrary kernel function and 𝜑 is a continuous function 

of 𝑥 . To solve Eq. (1) and (2), we write the given fuzzy 

equation in the parametric forms as follows: 

𝑢1𝜎
′ (𝑥) = 𝜑1𝜎(𝑥) + 𝜆 ∫ 𝐺1𝜎(𝑥, 𝑡, 𝑢(𝑡))𝑑𝑡

𝑥

0
, 

𝑢2𝜎
′ (𝑥) = 𝜑2𝜎(𝑥) + 𝜆 ∫ 𝐺2𝜎(𝑥, 𝑡, 𝑢(𝑡))𝑑𝑡

𝑥

0
, 

with  𝑢1𝜎(0) = 𝑢01𝜎  and 𝑢2𝜎(0) = 𝑢02𝜎 , 

 

(3) 

 Where, 

𝐺1𝜎(𝑥, 𝑡, 𝑢(𝑡)) = {
𝑔(𝑥, 𝑡) 𝑢1𝜎(𝑡),    𝑔(𝑥, 𝑡) ≥ 0,

𝑔(𝑥, 𝑡) 𝑢2𝜎(𝑡),   𝑔(𝑥, 𝑡) < 0,
 

and 

𝐺2𝜎(𝑥, 𝑡, 𝑢(𝑡)) = {
𝑔(𝑥, 𝑡) 𝑢2𝜎(𝑡),   𝑔(𝑥, 𝑡) ≥ 0,

𝑔(𝑥, 𝑡) 𝑢1𝜎(𝑡),   𝑔(𝑥, 𝑡) < 0.
 

 

 

IV. DESCRIPTION OF THE RPS 
METHOD 

 

In this section, we describe the RPS scheme to provide the 

approximate solution for Eq. (1) and (2). To do so, we assume 

that the solution of Eq. (3) has the following power series 

expansion about the initial point 𝑥0 = 0: 

𝑢1𝜎(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

, 

𝑢2𝜎(𝑥) = ∑ 𝑏𝑛𝑥𝑛

∞

𝑛=0

. 

(4) 

Applying the initial conditions of Eq. (3) in the 

series solutions in Eq. (4), we get that 𝑢1𝜎(0) = 𝑢01𝜎 = 𝑎0 

and 𝑢2𝜎(0) = 𝑢02𝜎 = 𝑏0, and hence we can approximate 

the solutions 𝑢1𝜎(𝑥)  and 𝑢2𝜎(𝑥)  by the 𝑚th -truncated 

series as: 

𝑢𝑚,1𝜎(𝑥) = 𝑎0 + ∑ 𝑎𝑛𝑥𝑛

𝑚

𝑛=1

, 

𝑢𝑚,2𝜎(𝑥) = 𝑏0 + ∑ 𝑏𝑛𝑥𝑛

𝑚

𝑛=1

. 

(5) 

According to the RPS approach (Moaddy et al., 

2015; Gumah et al., 2018; Komashynska et al., 2016; 

Hasan et al., 2019; Komashynska et al., 2016) in finding 

the unknown constants 𝑎𝑛  and 𝑏𝑛, 𝑛 = 1,2, … , 𝑚 , we 

define the 𝑚𝑡ℎ-residual functions as the following: 
 

𝑅𝑒𝑠𝑚,1𝜎(𝑥) = 𝑢𝑚,1𝜎
′ (𝑥) − 𝜑1𝜎(𝑥)              

− 𝜆 ∫ 𝑔(𝑥, 𝑡) 𝑢𝑚,1𝜎(𝑡)𝑑𝑡

𝑥

0

, 

𝑅𝑒𝑠𝑚,2𝜎(𝑥) = 𝑢𝑚,2𝜎
′ (𝑥) − 𝜑2𝜎(𝑥)                 

− 𝜆 ∫ 𝑔(𝑥, 𝑡) 𝑢𝑚,2𝜎(𝑡)𝑑𝑡

𝑥

0

. 

 

 

(6) 

 

Now, to obtain the unknown constants 𝑎1 and 𝑏1, 

substitute  𝑢1,1𝜎(𝑥) = 𝑎0 + 𝑎1𝑥  and 𝑢1,2𝜎(𝑥) = 𝑏0 + 𝑏1𝑥 , 

into the first residual equation as follows 

𝑅𝑒𝑠1,1𝜎(𝑥) = 𝑎1 − 𝜑1𝜎(𝑥) − 𝜆 ∫ 𝑔(𝑥, 𝑡) (𝑎0 + 𝑎1𝑡)𝑑𝑡

𝑥

0

, 

𝑅𝑒𝑠1,2𝜎(𝑥) = 𝑏1 − 𝜑2𝜎(𝑥) − 𝜆 ∫ 𝑔(𝑥, 𝑡) (𝑏0 + 𝑏1𝑡)𝑑𝑡

𝑥

0

. 
(7) 

 Then, by using the facts Res1,1σ(0) = Res1,2σ(0) = 0 , it        

yields  

𝑎1 = (
𝜑1𝜎(𝑥) + 𝜆𝑎0 ∫ 𝑔(𝑥, 𝑡)𝑑𝑡 

𝑥

0

1 − 𝜆 ∫ 𝑡𝑔(𝑥, 𝑡)𝑑𝑡 
𝑥

0

)

𝑥=0

, 

𝑏1 = (
𝜑2𝜎(𝑥) + 𝜆𝑏0 ∫ 𝑔(𝑥, 𝑡)𝑑𝑡 

𝑥

0

1 − 𝜆 ∫ 𝑡𝑔(𝑥, 𝑡)𝑑𝑡 
𝑥

0

)

𝑥=0

. 

 

 

(8) 

    Again, to find 𝑎2 and 𝑏2, substitute 

𝑢2,1𝜎(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2and𝑢2,2𝜎(𝑥) = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 

into the second residual    equation as 
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𝑅𝑒𝑠2,1𝜎(𝑥) = (𝑎1 + 2𝑎2𝑥) − 𝜑1𝜎(𝑥)

− 𝜆 ∫ 𝑔(𝑥, 𝑡) (𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2)𝑑𝑡

𝑥

0

, 

𝑅𝑒𝑠2,2𝜎(𝑥) = (𝑏1 + 2𝑏2𝑥) − 𝜑2𝜎(𝑥)

− 𝜆 ∫ 𝑔(𝑥, 𝑡) (𝑏0 + 𝑏1𝑡 + 𝑏2𝑡2)𝑑𝑡

𝑥

0

. 

 

 

(9) 

    Using the fact  
𝑑

𝑑𝑥
Res2,1σ(0) =

𝑑

𝑑𝑥
Res2,2σ(0) = 0, we get that  

 

𝑎2 = (
𝜑1𝜎

′ (𝑥)+𝜆𝑎0 ∫
𝜕

𝜕𝑥
𝑔(𝑥,𝑡)𝑑𝑡+𝜆𝑎1 ∫

𝜕

𝜕𝑥
𝑔(𝑥,𝑡) 𝑡𝑑𝑡 

𝑥
0  

𝑥
0

2−𝜆 ∫
𝜕

𝜕𝑥
𝑔(𝑥,𝑡) 𝑡2 𝑑𝑡 

𝑥
0

)
𝑥=0

, 

𝑏2 = (
φ2𝜎

′ (𝑥)+𝜆𝑏0 ∫
𝜕

𝜕𝑥
𝑔(𝑥,𝑡)𝑑𝑡+𝜆𝑏1 ∫

𝜕

𝜕𝑥
𝑔(𝑥,𝑡) 𝑡𝑑𝑡 

𝑥
0  

𝑥
0

2−𝜆 ∫
𝜕

𝜕𝑥
𝑔(𝑥,𝑡) 𝑡2 𝑑𝑡 

𝑥
0

)
𝑥=0

. 

 

 

(10) 

   Likewise, for 𝑚 = 3, and by using the facts 

  
𝑑2

𝑑𝑥2
Res3,1σ(0) =  

𝑑2

𝑑𝑥2
Res3,2σ(0) = 0, we can find 𝑎3 and 𝑏3 as 

𝑎3 = (
1

6−λ ∫
𝜕2

𝜕𝑥2𝑔(x,t) 𝑡3𝑑𝑡 
x

0

(φ1𝜎
′′ (𝑥) + λ𝑎0 ∫ 𝑔(𝑥, 𝑡)𝑑𝑡 +

x

0

             𝜆𝑎1 ∫
𝜕2

𝜕𝑥2 𝑔(𝑥, 𝑡) 𝑡𝑑𝑡 
𝑥

0
+ 𝜆𝑎2 ∫

𝜕2

𝜕𝑥2 𝑔(𝑥, 𝑡) 𝑡2 𝑑𝑡 
𝑥

0
))

𝑥=0

, 

 

 

𝑏3 = (
1

6−λ ∫
𝜕2

𝜕𝑥2𝑔(x,t) 𝑡3𝑑𝑡 
x

0

(φ2𝜎
′′ (𝑥) + λ𝑏0 ∫ 𝑔(𝑥, 𝑡)𝑑𝑡 +

x

0

             𝜆𝑏1 ∫
𝜕2

𝜕𝑥2
𝑔(𝑥, 𝑡) 𝑡𝑑𝑡 

𝑥

0
+ 𝜆𝑏2 ∫

𝜕2

𝜕𝑥2
𝑔(𝑥, 𝑡) 𝑡2 𝑑𝑡 

𝑥

0
))

𝑥=0

.  

 

V. ILLUSTRATIVE EXAMPLE 
 
In the current section, we illustrate the efficiency and 

applicably of the proposed method by providing the numerical 

solutions of the following fuzzy Volterra integro-differential 

equation  

𝑢′(𝑥) = 𝛼(𝑒𝑥(2 − 𝑥) − 1) + ∫ 𝑡𝑢(𝑡)
𝑥

0
𝑑𝑡 , 𝑥 ∈ [0,1] , 0 <

𝑡 ≤ 𝑥, 

with the fuzzy initial conditions  

𝑢(0) = 𝛼, 

 

 

(11) 

where the 𝜎-cut representation of 𝛼 is [0.5 + 0.5𝜎, 2 − 𝜎], 0 ≤

𝜎 ≤ 1. 

The exact solution is given by 𝑢(𝑥) = [0.5 + 0.5𝜎, 2 − 𝜎]𝑒𝑡. 

Thus, Eq. (11) can be written in the parametric forms as follows: 

 

 

 

𝑢1𝜎
′ (𝑥) = (0.5 + 0.5𝜎)(𝑒𝑡(2 − 𝑡) −

1) ∫ 𝑡𝑢1𝜎(𝑡)
𝑥

0
𝑑𝑡,  

 

𝑢2𝜎
′ (𝑥) = (2 − 𝜎)(𝑒𝑡(2 − 𝑡) − 1)

+ ∫ 𝑡𝑢2𝜎(𝑡)
𝑥

0

𝑑𝑡, 

Subject to   𝑢1𝜎(0) = 0.5 + 0.5𝜎  

and 𝑢2𝜎(0) =  2 − 𝜎. 

 

 

(12) 

 

To show the accuracy of the RPS technique, the exact 

and approximate solutions are compared in Table 1. The 

results obtained by the RPS method show that the exact 

solutions are in good agreement with approximate 

solutions at 𝜎 = 1 and 𝑛 = 8. 

 

Table 1: Numerical results at 𝜎 = 1 and 𝑛 = 8.  

𝑥𝑖 Exact Approximation Absolute error  

0.1 1.105170918 1.10517091807 2.88657 × 10−15  

0.3 1.349858807 1.34985880752 5.59139 × 10−11  

0.5 1.648721271 1.64872126503 5.66416 × 10−9  

0.7 2.013752707 2.01375258795 1.19513 × 10−7  

0.9 2.459603111 2.45960193894 1.17221 × 10−6  

 

To show the fuzzy behaviour of the proposed algorithm, 

the lower and upper approximate solutions are plotted in 

Figures 1, 2 and 3 for 𝑡 = 0, 0.25 and 0.75 with 𝑛 = 5, and 

𝜎 ∈ [0,1] . From these figures, it can be noted that the 

solutions are represented in the shapes of symmetric 

triangular fuzzy along the direction of 𝜎 and with different 

values of 𝑡. 

 

 

Figure 1: Solution plot for 𝜎 ∈ [0,1], 𝑡 = 0, 𝑛 = 5. 
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Figure 2: Solution plot for 𝜎 ∈ [0,1], 𝑡 = 0.25, 𝑛 = 5. 

 

 

Figure 3: Solution plot for 𝜎 ∈ [0,1], 𝑡 = 0.75, 𝑛 = 5. 

 

VI. CONCLUSION 
 
In this paper, the RPS scheme has been applied to provide the 

approximate solution for fuzzy Volterra IDEs with appropriate 

fuzzy initial conditions under strongly generalised H-

differentiability. This method can be applied directly to the 

given problem by choosing an appropriate initial guess 

approximation. Numerical results have shown the performance 

and reliability of the present approach. The results indicate that 

the RPS method is very efficient and powerful in solving fuzzy 

differential equations with fewer calculations and time. 
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