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Recently, much research on defining composite refactorings by composing component refactorings 

has been conducted. The main problem of composite refactorings is that we can’t say in advance 

whether the composite refactoring is applicable to a program or not. The methods through which 

previous researches solve the problem are classified into two approaches. The first one uses an 

‘undo’ operation, and the second one uses the joint precondition of the composite refactoring. But 

there are problems, in that the first one wastes resources spent on executing and undoing the 

composite refactoring, and the second one is useless if the joint precondition can't be computed 

because of its derivation complexity. In this paper, we try to decide the composability for the 

composite refactoring, even though the joint precondition is not explicitly specified. To do this, 

first, we propose a method to specify elementary refactorings. Second, we propose a method to 

decide the composability for the composite refactoring defined by the refactoring composition 

language. Based on these methods, we develop a prototype tool that can decide composability. 

Finally, we verify the effectiveness of this research through case studies, in which we define 

composite refactorings and decide the composability. 
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I. INTRODUCTION 
 

Refactoring is actively used in the latest software 

development. Refactoring is the transformation that modifies 

program structure but keeps program behavior (Fowler, 

2018). As the result of refactoring, we can improve the quality 

of code, such as extendibility, modularization, reusability, 

and maintainability. This improvement causes increase in the 

speed of development and decrease in code complexity (Mens 

& Tourwé, 2004; Eckel, 2000). Today, to verify the 

effectiveness of the study, the application software is actually 

implemented in various studies such as researches 

(Suryadibrata & Kim, 2017; Kim & Song, 2017; Cao et. al., 

2017). The use of refactoring in such software development 

will improve the quality of implementation.  

There are popular literatures about refactorings, such as 

Fowler (Fowler, 2018) and Kerievsky (Kerievsky, 2004). 

These literatures describe a way of applying refactorings 

through stepwise procedures. If we look into these 

literatures carefully, we can find the cases that some 

refactorings are repeatedly used in other refactorings. It 

will be very efficient, if we reuse these component 

refactorings. Therefore, to increase the reusability of 

refactoring, many studies are trying to define composite 

refactoring by assembling component refactorings. 

The main problem of composite refactorings is that we 

can't say, in advance before applying a composite 

refactoring, whether the composite refactoring is 

applicable to a program or not. If the composite 

refactoring is applied even though one of the components 
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refactorings in the composite refactoring fails, the behavior 

preservation of the program will not be guaranteed. There are 

many previous researches for addressing the problem, such 

as Opdyke (Opdyke, 1992) which introduces the composite 

refactoring concept, Roberts (Roberts, 1999), Cinnéide 

(Cinnéide, 2001), Kniesel (Kniesel & Koch, 2004), Huang 

(Huang et. al., 2011), Saadeh (Saadeh & Kourie, 2009), and 

Li (Li & Thompson, 2012). The methods through which the 

previous researches solve the problem are classified into two 

approaches. The first one uses an ‘undo’ operation. If certain 

component refactoring fails during applying a composite 

refactoring, we have to roll back the entire composite 

refactoring through undoing the effects of component 

refactorings applied previously. It is a waste of resources 

spent on executing and undoing the composite refactoring.  

The second one uses the joint precondition of composite 

refactoring. This approach must complete the derivation of 

the joint precondition of composite refactoring in advance. 

Since the entire composite refactoring is not applied if the 

joint precondition of the composite refactoring fails, the 

rollback problem would not arise. But the derivation of the 

joint precondition is very complex and difficult, since we 

must take into account the effects of applied component 

refactoring. Moreover, if the joint precondition can't be 

computed because of its derivation complexity, the first 

approach instead of the second one should be used. In this 

paper, the authors try to decide the composability for the 

composite refactoring, even though the joint precondition is 

not explicitly specified. 

The rest of the paper is organized as follows: We introduce a 

refactoring composition language that can be used to define 

composite refactorings in Section 2. Section 3 proposes a 

method to specify elementary refactorings, and Section 4 

proposes a method to decide the composability for the 

composite refactorings defined by the refactoring 

composition language. Based on these methods, we develop a 

prototype tool that can decide composability in Section 5, and 

Section 6 verifies the effectiveness of this research through 

case studies, in which we define composite refactorings by 

using the refactoring composition language, and decide the 

composability of the composite refactorings. Section 7 

provides a comparison of the related works with our research. 

Finally, we conclude in Section 8. 

 

 

 

 

II. AN OVERVIEW OF 

REFACTORING 

COMPOSITION LANGUAGE 

 

This section briefly introduces a refactoring composition 

language (RCL) for defining composite refactoring’s. 

Because details of RCL have already been described in our 

earlier work, Kim (Kim & Kim., 2012), only relevant things 

are presented here. 

 

A. Types of Component Refactoring 

 

Composite refactorings are assembled with component 

refactorings. There should be various types of component 

refactoring to define many composite refactorings. In Kim 

(Kim & Kim., 2012), they classify the types of component 

refactoring as elementary refactoring, creation refactoring, 

and defined refactoring.  

For example, as shown in Figure 1, defined refactoring 

DR1 is assembled with elementary refactorings ER1 and 

ER2, and defined refactoring DR2 is assembled by 

elementary refactorings ER1 and ER3. The bigger defined 

refactoring DR3 is defined by composing the component 

refactorings, such as the already defined refactorings DR1, 

DR2 and the creation refactoring CR1. We could improve 

the extendibility and reusability of refactoring, if we define 

composite refactorings by assembling component 

refactorings, like this example. 

 

 

Figure  1. Examples of composite refactoring 

 

B. A Meta Model of RCL 

 

An abstract syntax of RCL can be defined as a meta model, 

based on EMF (Budinsky et. al., 2004). Figure 2 shows a 

meta model of RCL. The meta model is made up of the 
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name of composite refactoring, the types and names of 

parameters of composite refactoring, a way to compose 

refactoring, and the types of refactoring call.  

The sequential composition method applies component 

refactorings sequentially. If at least one of the preconditions is 

not satisfied during the application of the composite 

refactoring, the entire composite refactoring could not be 

applied. This composition method is a basic one that is used in 

most existing researches. A meta model element that is related 

to sequential composition is DefinedRefactoringDeclaration. 

DefinedRefactoringDeclaration represents a composite 

refactoring to define, and refactoringStatements, a property of 

DefinedRefactoringDeclaration, represents  component 

refactorings that will be composed sequentially. 

Meta model elements related to selectional composition are 

IfRefactoringStatement, and ChoiceRefactoringStatement. 

The IfRefactoringStatement represents a conditional 

composition method. If the result of the given condition is 

true, it should be able to apply the thenRC part of the 

composite refactoring. Otherwise, the elseRC part should be 

able to be applied. The ChoiceRefactoringStatement 

represents a multiple choice composition method. The 

component refactorings in the case part that has the same 

value as the given expression, should be able to be applied. If 

there is no case part that has the same value as the given 

expression, the component refactorings in the default part 

should be able to be applied. 

A meta model element related to iterative composition is the 

Loop Refactoring Statement. It should be able to apply the 

component refactorings of the loopbody part repeatedly, 

on each element included in the source. The 

LoopRefactoringStatement has two subclasses. One is the 

SequenceLoopRefactoringStatement for ordered iterative 

composition, and the other is the SetLoop_ 

RefactoringStatement for unordered iterative composition. 

If there is an order on elements in the source, it is 

necessary to use the SequenceLoopRefactoringStatement. 

 

III. A FORMAL SPECIFICATION 

OF ELEMENTARY 

REFACTORINGS 

 

A. Program Representation 

 

In our research, we use the JavaEAST meta model (Kim et. 

al., 2011) to represent Java source code. The JavaEAST 

meta model is one that extends the JavaAST (Java 

Abstract Syntax Tree) meta model proposed by MoDisco 

(Eclipse Modisco, 2019), including binding information. If 

we use this JavaEAST meta model, we can search and 

analyze source code efficiently.  

Figure 3 (b) is a part of the XMI (W3C, 2019) document 

that represents a certain Java program of Figure 3 (a) 

based on JavaEAST meta model. 

 

 

Figure  2. A meta model of RCL 
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Figure  3. A part of the XMI document that represents a Java 

program based on JavaEAST meta model 

 

B. A Method for Elementary Refactoring 

Specification 

 

An elementary refactoring has both a precondition and a delta 

specification which can be specified by using OCL (OMG, 2014; 

Warmer & Kleppe, 2003; Ol'Khovich & Koznov, 2003; 

Ziemann & Gogolla, 2003; Benattou et. al., 2002) and the 

JavaEAST meta model. A precondition is a condition that 

should be satisfied before applying a refactoring. Delta 

specification represents how the interpretation of a model 

property should be changed after applying a refactoring. If we 

use this delta specification, we can have the same effect as we 

obtain when we apply a refactoring to a program directly. A 

simple precondition can be defined by using model 

properties which are defined in a meta model. But for a 

complex precondition, we should use user-defined features 

which are defined using model properties and another 

existing user-defined features.  

In this paper, we describe refactoring effects by using 

‘@post’ keyword, on the basis of the state before the 

application of refactorings. Refactoring effects described in 

this way can be easily transformed into delta specification. 

We can represent the effect of a refactoring accurately, if 

we use delta specification. Basically, delta specification is 

specified by using only model properties of the meta model. 

Therefore, it has no impact on existing delta specifications 

of other refactorings, even if a new user-defined feature is 

added. 

 

C. Examples for Elementary Refactoring 

Specification  

 

For example, we specify RenameClass elementary 

refactoring with the method for elementary refactoring 

specification previously proposed. RenameClass is the 

elementary refactoring that alters class name, and it has 

two parameters.  

 

 

Figure  4. A precondition and delta specification of 

RenameClass(TypeDeclaration td, String tdName) 

public class A { 
              private int x; 

              public int getX() { 

                    return x; 
              } 

} 

(a) Java sample program 

<?xml version="1.0" encoding="ASCII"?> 
<Project xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"  

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="JavaEAbstractSyntaxtk3"  
xsi:schemaLocation="JavaEAbstractSyntaxtk3 JavaEAbstractSyntaxtk3.ecore"> 

 <compilationUnits container="/"> 
<types xsi:type="TypeDeclaration" container="//@compilationUnits.0  

referenceNames="//@compilationUnits.1/@types.0/@superclassType/@name"> 
   <modifiers xsi:type="Modifier" container="//@compilationUnits.0/@types.0"  

public="true"/> 
   <bodyDeclarations xsi:type="FieldDeclaration"  

container="//@compilationUnits.0/@types.0"> 
    <modifiers xsi:type="Modifier" 

 container="//@compilationUnits.0/@types.0/@bodyDeclarations.0" private="true"/> 
    <fragments container="//@compilationUnits.0/@types.0/@bodyDeclarations.0" 

referenceNames="//@compilationUnits.0/@types.0/@bodyDeclarations.1/@body/ 
@statements.0/@expression//@compilationUnits.0/@types.0/@bodyDeclarations.2/@body/ 
@statements.0/@expression/@leftHandSide/@name"> 

     <name container="//@compilationUnits.0/@types.0/@bodyDeclarations.0/@fragments.0"  
fullyQualifiedName="x" identifier="x" eclaration="true"/> </fragments> 

    <type xsi:type="PrimitiveType" container="//@compilationUnits.0/@types.0/ 
@bodyDeclarations.0" code="int"/>  </bodyDeclarations> 

   <bodyDeclarations xsi:type="MethodDeclaration" 
 container="//@compilationUnits.0/@types.0"> 

    <modifiers xsi:type="Modifier" 
 container="//@compilationUnits.0/@types.0/@bodyDeclarations.1" public="true"/> 

    <body container="//@compilationUnits.0/@types.0/@bodyDeclarations.1"> 
     <statements xsi:type="ReturnStatement"  

container="//@compilationUnits.0/@types.0/@bodyDeclarations.1/@body"> 
      <expression xsi:type="SimpleName" container="//@compilationUnits.0/@types.0/ 

@bodyDeclarations.1/@body/@statements.0" fullyQualifiedName="x" identifier="x"  
definition="//@compilationUnits.0/@types.0/@bodyDeclarations.0/@fragments.0"/>   

</statements>  </body> 

    <name container="//@compilationUnits.0/@types.0/@bodyDeclarations.1"  
fullyQualifiedName="getX" identifier="getX" declaration="true"/> 

    <returnType xsi:type="PrimitiveType" container="//@compilationUnits.0/@types.0/ 
@bodyDeclarations.1" code="int"/>  </bodyDeclarations> 

   <name container="//@compilationUnits.0/@types.0" fullyQualifiedName="A"  
identifier="A" declaration="true"/>   </types>  </compilationUnits>  </Project> 

(b) XMI document 
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Figure 4 is the specification of RenameClass elementary 

refactoring. The precondition consists of three conditions. 

First, the TypeDeclaration ‘td’, whose name is trying to be 

changed, should exist. Second, the TypeDeclaration, whose 

name is ‘tdName’, should not exist. Third, the method whose 

name is ‘tdName’ should not exist in TypeDeclaration ‘td’. The 

delta specification of Figure 4 means that the name of ‘td’, the 

names that are referencing ‘td’, and the names of constructors 

of ‘td’, should all be changed to the new name ‘tdName’. 

 

IV. A COMPOSABILITY TEST 

FOR COMPOSITE 

REFACTORING 

 

A. Program Abstraction 

 

‘undo’ operations should be used if a program is modified 

directly when a composite refactoring is applied, since it is 

necessary to roll back already applied component refactorings 

if it fails to compose a certain component refactoring while 

applying the composite refactoring. As mentioned in Section 1, 

it is a waste of resources spent on executing and undoing the 

composite refactoring. A composability test of this paper 

solves the rollback problem through changing the abstraction 

of the program instead of modifying the program directly.  

As shown Figure 5, we abstract programs with model 

properties and user-defined features. So an abstraction of a 

program will become different, if the interpretation of the 

model property changes. And the interpretation of the model 

property will be changed after refactorings are applied. We 

can see the changed interpretation of the model property 

through a delta specification of an elementary refactoring, 

since the delta specification represents how the interpretation 

of a model property should be changed after applying the 

elementary refactoring as mentioned earlier. 

 

Figure  5. Associations among concepts related to program 

abstraction and refactoring 

The interpretation of a user-defined feature is defined by 

using the current interpretations of model properties. 

Therefore, the interpretation of a user-defined feature 

should become different according to the interpretations 

of model properties. There is no description about user-

defined features in the delta specification of an elementary 

refactoring. However, we can infer which user-defined 

features’ interpretation should be changed by using a 

feature dependency graph, when the interpretation of a 

model property is changed. The feature dependency graph 

represents dependency relationships between model 

properties and user-defined features. Based on OCL 

metamodel (OMG, 2014), we construct a feature 

dependency graph by analyzing feature call relationships 

between model properties and user-defined features. If the 

definition of a feature is modified, the caller features which 

depend on the feature should be redefined using the 

modified feature instead of the original feature. In other 

words, if the interpretation of a callee feature is changed, 

the interpretations of caller features should be changed 

accordingly. Figure 6 shows a part of feature dependency 

graph. 

 

 

Figure  6. A part of feature dependency graph 

 

In this way, the abstraction of a program is changed 

automatically, by using delta specifications and a feature 

dependency graph, during performing the composability 

test for a composite refactoring. 

For example, let’s see how the abstraction of a program is 

changed, when RenameClass(x, “Circle”) elementary 

refactoring is applied. If RenameClass(x, “Circle”) is 

applied, the interpretation of the model property 

‘identifier’ in SimpleName context will be changed by 

using delta specifications of the elementary refactoring in 

Figure 4 of Section 3.3. Figure 7 (a) shows the changed 

interpretation of the model property. Such a change of the 

model property interpretation entails the changes of 

interpretations of the user-defined features that depend on 
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the model property. As shown in Figure 6, the user-defined 

feature ‘equal’ in SimpleName context directly depends on the 

‘identifier’, and the user-defined feature ‘isSameName’ in 

MethodDeclaration context indirectly depends on it. 

Therefore, the change of the ‘identifier’ interpretation entails 

the changes of the interpretations of ‘equal’ and ‘isSameName’. 

Figure 7 (b) shows the changed interpretations of the user-

defined features. Of course, the changes of interpretations of 

another user-defined features are propagated along the 

dependency relationships in a feature dependency graph. 

 

context SimpleName  

def : identifier@post : String =  

if (self = x.name) or ( x.referenceNames->includes(self) )  

or (x.getConstructorMethodSNs->includes(self))  

then 'Circle' else self.identifier endif  
 

context SimpleName  

def : equal@post (sn : SimpleName) : Boolean =  
if self.definition->notEmpty() and sn.definition->notEmpty()  

then self.identifier@post = sn.identifier@post else false endif  
 

context MethodDeclaration  

def : isSameName@post (method : MethodDeclaration) : Boolean =  
self.name.equal@post (method.name) 

 

Figure  7. A part of redefined features after applying 

RenameClass(x, “Circle”) elementary refactoring  

 

To decide whether we could apply another RenameClass(y, 

“Rectangle”) elementary refactoring after RenameClass(x, 

“Circle”) is applied, we should reinterpret the precondition of 

RenameClass(y, “Rectangle”) to fit in the changed abstraction 

of the program. Figure 8 shows the reinterpreted precondition 

of RenameClass(y, “Rectangle”) which is originated from the 

precondition of RenameClass specification in Figure 4. In this 

figure, we can notice that the model property ‘identifier’ of 

SimpleName context is reinterpreted as new user-defined 

feature ‘identifier@post’. 

 

y.exists()  

and not(TypeDeclaration.allInstances() 

->exists(t|t.name.identifier@post ='Rectangle'))  
and not(y.methods()->exists(m|m.name.identifier@post = 'Rectangle')) 

 

Figure  8. The reinterpreted precondition of RenameClass(y, 

“Rectangle”)  

 

B. A Composability Test Method 

 

In this section, we propose a composability test method for a 

composite refactoring, to decide whether the composite 

refactoring is applicable, according to the composition 

method. To do this, we serialize programs to XMI 

documents based on the JavaEAST meta model. And we 

also serialize refactorings to XMI documents based on the 

RCL meta model.  

To decide the composability of a composite refactoring, 

all the nodes should be visited, starting at the root node of 

the XMI document corresponding to the composite 

refactoring. A node should be handled according to the 

proper type of the node, when each node is visited. For 

example, if the ElementaryRefactoringCall node is visited, 

the precondition corresponding to the node should be 

checked after reinterpreting the precondition to fit in the 

current abstraction of the program. If that elementary 

refactoring is applied in the case that the precondition is 

false, the behavior preservation of a program could not be 

guaranteed. Therefore, we can decide that the composite 

refactoring, including that elementary refactoring, could 

not be applied. Like this, if at least one of the outcomes of 

visiting nodes is false, we decide that the composite 

refactoring, on which the composability test is being 

performed, could not be applied. And if all the outcomes of 

visiting nodes are true, we decide that the composite 

refactoring could be applied. 

For brevity, we consider only the DefinedRefactoringCall 

and ElementaryRefactoringCall nodes, among the nodes 

that are visited when a composability test is performed. 

Let’s look at the detailed procedures to be handled in a 

composability test. 

Figure 9 shows the procedures to be handled, when 

visiting the DefinedRefactoringCall node drc. It proceeds 

as the following steps. 

1) Load DefinedRefactoringDeclaration node drd, 

which corresponds to DefinedRefactoringCall node 

drc, among DRD XMI documents based on the 

RCL meta model. 

2) Bind the parameters of drd to the arguments of drc. 

3) Load the first RefactoringStatement node of drd. 

4) Decide the type of the RefactoringStatement node. 

5) Visit the node so as to handle properly according to 

the node type. 

6) Return false as a final result if the result of visiting 

the node is false at step 5) Otherwise, it decides 

(a) 

(b) 
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whether there is next RefactoringStatement node. 

7) If there is no next RefactoringStatement node, it 

returns true as a final result. Otherwise, it repeats 

again starting at step 4) after loading next 

RefactoringStatement node. 

 

 

Figure  9. The handling process while visiting 

DefinedRefactoringCall node drc 

 

If false is returned as the final result of visiting a 

DefinedRefactoringCall node, it means that at least one of the 

preconditions of component refactorings is not satisfied 

during the application of the composite refactoring. Therefore, 

behavior preservation could not be guaranteed, if the 

composite refactoring corresponding to the 

DefinedRefactoringCall node is applied. On the other hand, if 

the composite refactoring is applied when true is returned, 

behavior preservation could be guaranteed. 

Figure 10 shows the procedures to be handled, when visiting 

the ElementaryRefactoringCall node erc. It loads a 

precondition corresponding to ElementaryRefactoringCall 

node erc, among Precondition XMI documents based on the 

‘Precondition Metamodel’. It modifies the arguments of erc to 

fit into the current abstraction of the program, and binds 

parameters used in the precondition to the arguments of erc. 

And it evaluates the precondition, after reinterpreting the 

precondition to fit into the current abstraction of the program. 

If the result of the evaluation is false, it returns false as a 

result. Otherwise, true is returned as a final result, after 

changing the abstraction of the program through the delta 

specification corresponding to erc, and a feature dependency 

graph. 

 

Figure  10. The handling process while visiting 

ElementaryRefactoringCall node erc 

 

V. AN IMPLEMENTATION 

OF THE TOOL 

 

In this section, we describe a tool that can define a 

composite refactoring by using RCL, and check 

composability of the composite refactoring. We develop a 

prototype tool by using the Eclipse modeling framework 

(Budinsky et. al., 2004; Eclipse EMF, 2019) and MDT OCL 

Interpreter (Eclipse OCL, 2019). And as quoted in Study 

(Youn et. al., 2017), we have placed organized buttons so 

that users can navigate the tool more easily so that they 

have a clear and consistent conceptual structure of the 

layout.  

Figure 11 is a screen capture that defines a composite 

refactoring by using the tool. If you enter the name and 

parameter information of the composite refactoring to 

define, and select the desired RefactoringStatement type, 

then a dialog box pops up, which helps you draw up the 

selected statement type to fit in the syntax. And once all 

the information of the corresponding composite 

refactoring is drawn up and stored, an XMI document, 

which is based on the meta model of RCL.  

Figure 12 is a screen capture that performs a 

composability test for the composite refactoring defined by 

using the tool. PullUpVDF composite refactoring needs an 

argument of the VariableDeclarationFragment type. For 

example, we assign the target field in TreeViewer 

(rectangle part) of Figure 12 as the value of the Value 

column of the table by drag-and-drop. And then the 
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composability test will start, if the ‘check’ button is clicked. 

 

 

Figure  12. Composability test of PullUpVDF composite 

refactoring by the tool 

 

VI. CASE STUDY 

 

In this section, we define IPCwFM composite refactoring, and 

then we decide whether or not the composite refactoring is 

applicable to an example Java program. 

 

A. Definition 

 

IPCwFM that is introduced as ‘Introduce Polymorphic 

Creation with Factory Method’ in Kerievsky (Kerievsky, 2004), 

is the refactoring that targets the ‘Factory Method’ design 

pattern. This refactoring can be applicable, when sibling 

subclasses implement a method similarly, except for an 

object creation step. For example, IPCwFM could be 

applied to the Java code of Figure 13 (a). This code 

introduced in Kerievsky (Kerievsky, 2004) is a part of 

‘XML Builder’, which makes it easy to create an XML 

document. 

 

 

Figure  13. Application of IPCwFM composite refactoring 

 

Figure 14 (a) shows the steps of IPCwFM refactoring. 

After making an abstract class, it sets up an inheritance 

hierarchy between the abstract class and the classes 

including an object creation step. It makes methods that 

create the same object as the object creation step on each 

Figure  11. A definition of PullUpVDF composite refactoring by tool 
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element of sequence ‘cics’, and adds these methods as 

program elements. It changes each object creation to the 

object creation method call. And then it pulls up the methods 

to superclass, if the bodies of the methods become the same. If 

we represent the procedure of IPCwFM by using a concrete 

syntax of RCL, it is like Figure 14 (b). We can define the 

procedure as a defined refactoring, by using the prototype tool. 

 

 

Figure  14. A definition of 

IPCwFM(Sequence(ClassInstanceCreation) cics) 

 

IPCwFM can be defined by composing a composite 

refactoring, which is assembled by one iterative composition, 

and another two composite refactorings, sequentially. Table 1 

explains about the component refactorings that IPCwFM 

consists of. 

 

Table  1. Component refactorings that IPCwFM consists of 

Component 

refactoring 
Explanation 

createSetterMethod 

(VDF vdf) 

creation refactoring to create a new MD for the 

setter method that assigns the value of vdf 

createGetterMethod 

(VDF vdf) 

creation refactoring to create a new MD for the 

getter method that returns the value of vdf 

addMethod 

(MD md, TD td) 
elementary refactoring that adds md to td 

replaceFieldRead 

(SimpleName ref,  
MD getterM) 

composite refactoring that changes ref, which is a 

read access of a field, into invocation to the 
getterM method that returns the value of the field 

replaceFieldWrite 

(SimpleName ref,  

MD setterM) 

composite refactoring that changes ref, which is a 

write access of a field, into invocation to the 

setterM method that assigns the value of the field 

replaceModifierTo 
Private(VDF vdf) 

elementary refactoring that changes the access 
modifier of vdf into private 

MD: MethodDeclaration, VDF: VariableDeclarationFragment,  
TD: TypeDeclaration 

 

B. Composability Test 

 

Let’s decide whether IPCwFM is applicable to the Java code of 

Figure 13 (a). IPCwFM needs a sequence of 

ClassInstanceCreation type as an argument. Therefore if the 

composability test starts after selecting ‘new 

DOMBuilder(“orders”)’ and ‘new XMLBuilder(“order”)’ 

object creation steps as the argument values, true is 

returned as the result. This means that behavior 

preservation could be guaranteed, if we apply the IPCwFM 

to the example program. 

 

Table  2. Chain of RefactoringCalls occurred during the 

composability test for IPCwFM 

# Name Type Time(sec) 

1 abstractClass DRC 0.1958 

1.1 createAbstractClass CRC 0.0009 

1.2 addClass ERC 0.0217 

1.3 addExtendsLinkHasSuperclass DRC 0.1598 

1.3.1 createSuperclassType CRC 0.0007 

1.3.2 addExtends ERC 0.0213 

1.3.3 replaceExtends ERC 0.0498 

1.3.4 replaceExtends ERC 0.0491 

2 createConstructorMethod CRC 0.0008 

3 addMethod ERC 0.0246 

4 replaceCICtoMI DRC 0.1376 

4.1 replaceCICinRHSofASMTtoMI DRC 0.1103 

4.1.1 createStaticMI CRC 0.0008 

4.1.2 replaceCICinRHSofASMTtoMI ERC 0.0622 

5 createConstructorMethod CRC 0.0007 

6 addMethod ERC 0.0278 

7 replaceCICtoMI DRC 0.1342 

7.1 replaceCICinRHSofASMTtoMI DRC 0.0967 

7.1.1 createStaticMI CRC 0.0007 

7.1.2 replaceCICinRHSofASMTtoMI ERC 0.0571 

8 pullUpMethod DRC 0.2803 

8.1 abstractMethodinSuperclass DRC 0.0617 

8.1.1 createAbstractMethod CRC 0.0009 

8.1.2 addMethod ERC 0.0229 

8.2 pullUpVDF DRC 0.0857 

8.2.1 pullUpFieldHavingOnlyOneVDF ERC 0.0565 

8.3 pullUpMethodNotUsingMember ERC 0.0591 

ERC: ElementaryRefactoringCall,  

CRC: CreationRefactoringCall, DRC: DefinedRefactoringCall 

 

Table 2 represents the detailed component refactoring 

calls occurred during the composability test for IPCwFM 

and the running time. The results were obtained on a 

Pentium Dual-Core desktop with 4 gigabytes of memory 

running Windows 7. As expected, the average time spent 

on processing ERCs is less than that of DRCs. The average 

time of ERCs, CRCs and DRCs are 0.0411 seconds, 0.0008 

seconds and 0.1402 seconds respectively. The total 

running time and the memory usage for the composability 

test are 0.8852 seconds, 6.01 megabytes respectively. 

Unfortunately, there are no similar approaches available to 

our knowledge to evaluate the results against. 



ASM Science Journal, Volume 13, Special Issue 1, 2020 for ICFICE  

 

101 

VII. COMPARATIVE 

RESEARCH 

 

Roberts (Roberts, 1999) specifies a refactoring by defining 

both a precondition and a postcondition. He defines primitive 

analysis functions, which are the base of program analysis, 

and derived analysis functions, which are derived from the 

primitive analysis functions. He uses those functions in 

specifying refactorings. A precondition is described based on 

first order predicate logic, by using primitive analysis 

functions and derived analysis functions. A postcondition 

specifies the interpretation of a primitive analysis function 

that should be changed after applying a refactoring. Roberts’ 

primitive analysis function, derived analysis function, and 

postcondition are similar to our model property, user-defined 

feature, and delta specification, respectively.  

In the study of Roberts, the relationship between primitive 

analysis function and derived analysis function is implicit. But 

in our study, the relationship between model property and 

user-defined feature is explicit. Therefore our composability 

test method, as described in Section 4, can infer which user-

defined features’ interpretation should be changed, when the 

interpretation of a model property is changed.  

And in the study of Roberts, only primitive analysis 

functions become the target of change, because derived 

analysis functions can be updated from the changes of 

primitive analysis functions. The fact that only model 

properties are used in our delta specification, is similar to 

Roberts’ study. In the study of Roberts, entire primitive 

analysis functions become the target to be changed by a 

refactoring. But in our study, the target of change is localized 

on the properties of model elements related to a refactoring, 

because the structure between properties is fixed by a 

JavaEAST meta model. 

The study of Cinnéide (Cinnéide, 2001) is similar to the 

study of Roberts. He specifies a refactoring by defining both a 

precondition and a postcondition. He specifies the 

precondition and postcondition of a refactoring based on first 

order predicate logic, by defining analysis functions. And for 

the operations related to creation, which do not impact on the 

meaning of program, he defines helper functions. The analysis 

functions of Cinnéide are similar to our model properties and 

user-defined features, and the helper functions are similar to 

our creation refactoring. The helper functions of Cinnéide 

are defined as both a precondition and a postcondition, 

but our creation refactorings are hard-coded as the Java 

operations to create model elements. 

In the study of Cinnéide, if a new analysis function is 

added, it should update the postconditions of refactorings 

that impact on the new function. But in our research, even 

if a new user-defined feature is added, there is no impact 

on any delta specification. And in Cinnéide’s study, entire 

analysis functions become the target to be changed by a 

refactoring, because analysis functions are not layered.  

Kniesel and Koch (Kniesel & Koch, 2004) specify a 

refactoring by defining both a precondition and a 

backward transformation description. They define 

conditions that are the base of program analysis based on 

first order predicate logic, and then they use them to 

specify preconditions. A backward transformation 

description specifies the interpretation of a condition that 

should be changed after applying a refactoring. This 

backward transformation description is similar to the delta 

specification of our study.  

If a new condition is added, backward transformation 

descriptions of the already specified refactorings that 

impact on the new condition should be updated. And 

entire conditions become the target to be changed by a 

refactoring, because the conditions are not layered as in 

the study of Cinnéide. 

Li and Thompson (Li & Thompson, 2012) specify a 

refactoring by defining a precondition. The composability 

can not be decided in advance before applying a composite 

refactoring, since there is no a notion of postcondition in 

Li’s study. But our study can decide the composability of a 

composite refactoring in advance, before applying a 

composite refactoring, through the composability test 

using a precondition and a delta specification. 

 

VIII. CONCLUSION 

 

In this paper, we have defined composite refactorings by 

assembling component refactorings. And we also have 

tried to decide composability for the defined composite 

refactorings. To do this, we have proposed a method to 

specify elementary refactorings, through both a 
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precondition and a delta specification. Then, we have 

proposed a method to decide composability for composite 

refactorings defined by RCL. Based on these methods, we have 

developed a prototype tool. And then we have tried to 

define composite refactorings by using the tool, and to 

decide composability for the defined composite 

refactorings through a composability test.  

Using a refactoring composition language, we can define 

new composite refactorings by assembling existing 

component refactorings. Through this, the reusability of 

refactorings can be improved. And we can decide the 

composability of composite refactorings in advance, before 

applying composite refactorings, through the composability 

test. It is also easy to draw delta specifications up and 

maintain them, since we specify elementary refactorings by 

using OCL and the JavaEAST meta model. If elementary 

refactorings were specified to guarantee behavior 

preservation, the behavior preservation of the composite 

refactoring, which has been defined with these elementary 

refactorings, could also be guaranteed by using the 

composability test.  

Currently, the tool developed in our study has been 

designed so as to make the composability test and definition 

of composite refactorings possible. However, the tool is not 

able to transform programs as a result of applying 

refactorings. We plan to automate the transformation of 

programs using the refactoring effects of elementary 

refactorings. 
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