
*Corresponding author’s e-mail: twkim@silla.ac.kr

ASM Sc. J., 13, Special Issue 1, 2020 for ICFICE, 92-103

A Composability Test Method for the
Composite Refactoring Assembled by

Component Refactorings

Kyungmin Kim1, Taegong Kim1, Jaihyun Seu1, Jaewon Oh2 and Taewoong Kim3∗

1School of Computer Engineering, Inje University, Gimhae, Korea

2School of Computer Science and Information Engineering,

The Catholic University of Korea, Bucheon, Korea

3Department of Computer Education, Silla University, Busan, Korea

Recently, much research on defining composite refactorings by composing component refactorings

has been conducted. The main problem of composite refactorings is that we can’t say in advance

whether the composite refactoring is applicable to a program or not. The methods through which

previous researches solve the problem are classified into two approaches. The first one uses an

‘undo’ operation, and the second one uses the joint precondition of the composite refactoring. But

there are problems, in that the first one wastes resources spent on executing and undoing the

composite refactoring, and the second one is useless if the joint precondition can't be computed

because of its derivation complexity. In this paper, we try to decide the composability for the

composite refactoring, even though the joint precondition is not explicitly specified. To do this,

first, we propose a method to specify elementary refactorings. Second, we propose a method to

decide the composability for the composite refactoring defined by the refactoring composition

language. Based on these methods, we develop a prototype tool that can decide composability.

Finally, we verify the effectiveness of this research through case studies, in which we define

composite refactorings and decide the composability.

Keywords: composit refactoring; component refactoring; refactoring composition language;

composability; JavaEAST meta model; OCL

I. INTRODUCTION

Refactoring is actively used in the latest software

development. Refactoring is the transformation that modifies

program structure but keeps program behavior (Fowler,

2018). As the result of refactoring, we can improve the quality

of code, such as extendibility, modularization, reusability,

and maintainability. This improvement causes increase in the

speed of development and decrease in code complexity (Mens

& Tourwé, 2004; Eckel, 2000). Today, to verify the

effectiveness of the study, the application software is actually

implemented in various studies such as researches

(Suryadibrata & Kim, 2017; Kim & Song, 2017; Cao et. al.,

2017). The use of refactoring in such software development

will improve the quality of implementation.

There are popular literatures about refactorings, such as

Fowler (Fowler, 2018) and Kerievsky (Kerievsky, 2004).

These literatures describe a way of applying refactorings

through stepwise procedures. If we look into these

literatures carefully, we can find the cases that some

refactorings are repeatedly used in other refactorings. It

will be very efficient, if we reuse these component

refactorings. Therefore, to increase the reusability of

refactoring, many studies are trying to define composite

refactoring by assembling component refactorings.

The main problem of composite refactorings is that we

can't say, in advance before applying a composite

refactoring, whether the composite refactoring is

applicable to a program or not. If the composite

refactoring is applied even though one of the components

ASM Science Journal, Volume 13, Special Issue 1, 2020 for ICFICE

93

refactorings in the composite refactoring fails, the behavior

preservation of the program will not be guaranteed. There are

many previous researches for addressing the problem, such

as Opdyke (Opdyke, 1992) which introduces the composite

refactoring concept, Roberts (Roberts, 1999), Cinnéide

(Cinnéide, 2001), Kniesel (Kniesel & Koch, 2004), Huang

(Huang et. al., 2011), Saadeh (Saadeh & Kourie, 2009), and

Li (Li & Thompson, 2012). The methods through which the

previous researches solve the problem are classified into two

approaches. The first one uses an ‘undo’ operation. If certain

component refactoring fails during applying a composite

refactoring, we have to roll back the entire composite

refactoring through undoing the effects of component

refactorings applied previously. It is a waste of resources

spent on executing and undoing the composite refactoring.

The second one uses the joint precondition of composite

refactoring. This approach must complete the derivation of

the joint precondition of composite refactoring in advance.

Since the entire composite refactoring is not applied if the

joint precondition of the composite refactoring fails, the

rollback problem would not arise. But the derivation of the

joint precondition is very complex and difficult, since we

must take into account the effects of applied component

refactoring. Moreover, if the joint precondition can't be

computed because of its derivation complexity, the first

approach instead of the second one should be used. In this

paper, the authors try to decide the composability for the

composite refactoring, even though the joint precondition is

not explicitly specified.

The rest of the paper is organized as follows: We introduce a

refactoring composition language that can be used to define

composite refactorings in Section 2. Section 3 proposes a

method to specify elementary refactorings, and Section 4

proposes a method to decide the composability for the

composite refactorings defined by the refactoring

composition language. Based on these methods, we develop a

prototype tool that can decide composability in Section 5, and

Section 6 verifies the effectiveness of this research through

case studies, in which we define composite refactorings by

using the refactoring composition language, and decide the

composability of the composite refactorings. Section 7

provides a comparison of the related works with our research.

Finally, we conclude in Section 8.

II. AN OVERVIEW OF

REFACTORING

COMPOSITION LANGUAGE

This section briefly introduces a refactoring composition

language (RCL) for defining composite refactoring’s.

Because details of RCL have already been described in our

earlier work, Kim (Kim & Kim., 2012), only relevant things

are presented here.

A. Types of Component Refactoring

Composite refactorings are assembled with component

refactorings. There should be various types of component

refactoring to define many composite refactorings. In Kim

(Kim & Kim., 2012), they classify the types of component

refactoring as elementary refactoring, creation refactoring,

and defined refactoring.

For example, as shown in Figure 1, defined refactoring

DR1 is assembled with elementary refactorings ER1 and

ER2, and defined refactoring DR2 is assembled by

elementary refactorings ER1 and ER3. The bigger defined

refactoring DR3 is defined by composing the component

refactorings, such as the already defined refactorings DR1,

DR2 and the creation refactoring CR1. We could improve

the extendibility and reusability of refactoring, if we define

composite refactorings by assembling component

refactorings, like this example.

Figure 1. Examples of composite refactoring

B. A Meta Model of RCL

An abstract syntax of RCL can be defined as a meta model,

based on EMF (Budinsky et. al., 2004). Figure 2 shows a

meta model of RCL. The meta model is made up of the

ASM Science Journal, Volume 13, Special Issue 1, 2020 for ICFICE

94

name of composite refactoring, the types and names of

parameters of composite refactoring, a way to compose

refactoring, and the types of refactoring call.

The sequential composition method applies component

refactorings sequentially. If at least one of the preconditions is

not satisfied during the application of the composite

refactoring, the entire composite refactoring could not be

applied. This composition method is a basic one that is used in

most existing researches. A meta model element that is related

to sequential composition is DefinedRefactoringDeclaration.

DefinedRefactoringDeclaration represents a composite

refactoring to define, and refactoringStatements, a property of

DefinedRefactoringDeclaration, represents component

refactorings that will be composed sequentially.

Meta model elements related to selectional composition are

IfRefactoringStatement, and ChoiceRefactoringStatement.

The IfRefactoringStatement represents a conditional

composition method. If the result of the given condition is

true, it should be able to apply the thenRC part of the

composite refactoring. Otherwise, the elseRC part should be

able to be applied. The ChoiceRefactoringStatement

represents a multiple choice composition method. The

component refactorings in the case part that has the same

value as the given expression, should be able to be applied. If

there is no case part that has the same value as the given

expression, the component refactorings in the default part

should be able to be applied.

A meta model element related to iterative composition is the

Loop Refactoring Statement. It should be able to apply the

component refactorings of the loopbody part repeatedly,

on each element included in the source. The

LoopRefactoringStatement has two subclasses. One is the

SequenceLoopRefactoringStatement for ordered iterative

composition, and the other is the SetLoop_

RefactoringStatement for unordered iterative composition.

If there is an order on elements in the source, it is

necessary to use the SequenceLoopRefactoringStatement.

III. A FORMAL SPECIFICATION

OF ELEMENTARY

REFACTORINGS

A. Program Representation

In our research, we use the JavaEAST meta model (Kim et.

al., 2011) to represent Java source code. The JavaEAST

meta model is one that extends the JavaAST (Java

Abstract Syntax Tree) meta model proposed by MoDisco

(Eclipse Modisco, 2019), including binding information. If

we use this JavaEAST meta model, we can search and

analyze source code efficiently.

Figure 3 (b) is a part of the XMI (W3C, 2019) document

that represents a certain Java program of Figure 3 (a)

based on JavaEAST meta model.

Figure 2. A meta model of RCL

ASM Science Journal, Volume 13, Special Issue 1, 2020 for ICFICE

95

Figure 3. A part of the XMI document that represents a Java

program based on JavaEAST meta model

B. A Method for Elementary Refactoring

Specification

An elementary refactoring has both a precondition and a delta

specification which can be specified by using OCL (OMG, 2014;

Warmer & Kleppe, 2003; Ol'Khovich & Koznov, 2003;

Ziemann & Gogolla, 2003; Benattou et. al., 2002) and the

JavaEAST meta model. A precondition is a condition that

should be satisfied before applying a refactoring. Delta

specification represents how the interpretation of a model

property should be changed after applying a refactoring. If we

use this delta specification, we can have the same effect as we

obtain when we apply a refactoring to a program directly. A

simple precondition can be defined by using model

properties which are defined in a meta model. But for a

complex precondition, we should use user-defined features

which are defined using model properties and another

existing user-defined features.

In this paper, we describe refactoring effects by using

‘@post’ keyword, on the basis of the state before the

application of refactorings. Refactoring effects described in

this way can be easily transformed into delta specification.

We can represent the effect of a refactoring accurately, if

we use delta specification. Basically, delta specification is

specified by using only model properties of the meta model.

Therefore, it has no impact on existing delta specifications

of other refactorings, even if a new user-defined feature is

added.

C. Examples for Elementary Refactoring

Specification

For example, we specify RenameClass elementary

refactoring with the method for elementary refactoring

specification previously proposed. RenameClass is the

elementary refactoring that alters class name, and it has

two parameters.

Figure 4. A precondition and delta specification of

RenameClass(TypeDeclaration td, String tdName)

public class A {
 private int x;

 public int getX() {

 return x;
 }

}

(a) Java sample program

<?xml version="1.0" encoding="ASCII"?>
<Project xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="JavaEAbstractSyntaxtk3"
xsi:schemaLocation="JavaEAbstractSyntaxtk3 JavaEAbstractSyntaxtk3.ecore">

 <compilationUnits container="/">
<types xsi:type="TypeDeclaration" container="//@compilationUnits.0

referenceNames="//@compilationUnits.1/@types.0/@superclassType/@name">
 <modifiers xsi:type="Modifier" container="//@compilationUnits.0/@types.0"

public="true"/>
 <bodyDeclarations xsi:type="FieldDeclaration"

container="//@compilationUnits.0/@types.0">
 <modifiers xsi:type="Modifier"

 container="//@compilationUnits.0/@types.0/@bodyDeclarations.0" private="true"/>
 <fragments container="//@compilationUnits.0/@types.0/@bodyDeclarations.0"

referenceNames="//@compilationUnits.0/@types.0/@bodyDeclarations.1/@body/
@statements.0/@expression//@compilationUnits.0/@types.0/@bodyDeclarations.2/@body/
@statements.0/@expression/@leftHandSide/@name">

 <name container="//@compilationUnits.0/@types.0/@bodyDeclarations.0/@fragments.0"
fullyQualifiedName="x" identifier="x" eclaration="true"/> </fragments>

 <type xsi:type="PrimitiveType" container="//@compilationUnits.0/@types.0/
@bodyDeclarations.0" code="int"/> </bodyDeclarations>

 <bodyDeclarations xsi:type="MethodDeclaration"
 container="//@compilationUnits.0/@types.0">

 <modifiers xsi:type="Modifier"
 container="//@compilationUnits.0/@types.0/@bodyDeclarations.1" public="true"/>

 <body container="//@compilationUnits.0/@types.0/@bodyDeclarations.1">
 <statements xsi:type="ReturnStatement"

container="//@compilationUnits.0/@types.0/@bodyDeclarations.1/@body">
 <expression xsi:type="SimpleName" container="//@compilationUnits.0/@types.0/

@bodyDeclarations.1/@body/@statements.0" fullyQualifiedName="x" identifier="x"
definition="//@compilationUnits.0/@types.0/@bodyDeclarations.0/@fragments.0"/>

</statements> </body>

 <name container="//@compilationUnits.0/@types.0/@bodyDeclarations.1"
fullyQualifiedName="getX" identifier="getX" declaration="true"/>

 <returnType xsi:type="PrimitiveType" container="//@compilationUnits.0/@types.0/
@bodyDeclarations.1" code="int"/> </bodyDeclarations>

 <name container="//@compilationUnits.0/@types.0" fullyQualifiedName="A"
identifier="A" declaration="true"/> </types> </compilationUnits> </Project>

(b) XMI document

ASM Science Journal, Volume 13, Special Issue 1, 2020 for ICFICE

96

Figure 4 is the specification of RenameClass elementary

refactoring. The precondition consists of three conditions.

First, the TypeDeclaration ‘td’, whose name is trying to be

changed, should exist. Second, the TypeDeclaration, whose

name is ‘tdName’, should not exist. Third, the method whose

name is ‘tdName’ should not exist in TypeDeclaration ‘td’. The

delta specification of Figure 4 means that the name of ‘td’, the

names that are referencing ‘td’, and the names of constructors

of ‘td’, should all be changed to the new name ‘tdName’.

IV. A COMPOSABILITY TEST

FOR COMPOSITE

REFACTORING

A. Program Abstraction

‘undo’ operations should be used if a program is modified

directly when a composite refactoring is applied, since it is

necessary to roll back already applied component refactorings

if it fails to compose a certain component refactoring while

applying the composite refactoring. As mentioned in Section 1,

it is a waste of resources spent on executing and undoing the

composite refactoring. A composability test of this paper

solves the rollback problem through changing the abstraction

of the program instead of modifying the program directly.

As shown Figure 5, we abstract programs with model

properties and user-defined features. So an abstraction of a

program will become different, if the interpretation of the

model property changes. And the interpretation of the model

property will be changed after refactorings are applied. We

can see the changed interpretation of the model property

through a delta specification of an elementary refactoring,

since the delta specification represents how the interpretation

of a model property should be changed after applying the

elementary refactoring as mentioned earlier.

Figure 5. Associations among concepts related to program

abstraction and refactoring

The interpretation of a user-defined feature is defined by

using the current interpretations of model properties.

Therefore, the interpretation of a user-defined feature

should become different according to the interpretations

of model properties. There is no description about user-

defined features in the delta specification of an elementary

refactoring. However, we can infer which user-defined

features’ interpretation should be changed by using a

feature dependency graph, when the interpretation of a

model property is changed. The feature dependency graph

represents dependency relationships between model

properties and user-defined features. Based on OCL

metamodel (OMG, 2014), we construct a feature

dependency graph by analyzing feature call relationships

between model properties and user-defined features. If the

definition of a feature is modified, the caller features which

depend on the feature should be redefined using the

modified feature instead of the original feature. In other

words, if the interpretation of a callee feature is changed,

the interpretations of caller features should be changed

accordingly. Figure 6 shows a part of feature dependency

graph.

Figure 6. A part of feature dependency graph

In this way, the abstraction of a program is changed

automatically, by using delta specifications and a feature

dependency graph, during performing the composability

test for a composite refactoring.

For example, let’s see how the abstraction of a program is

changed, when RenameClass(x, “Circle”) elementary

refactoring is applied. If RenameClass(x, “Circle”) is

applied, the interpretation of the model property

‘identifier’ in SimpleName context will be changed by

using delta specifications of the elementary refactoring in

Figure 4 of Section 3.3. Figure 7 (a) shows the changed

interpretation of the model property. Such a change of the

model property interpretation entails the changes of

interpretations of the user-defined features that depend on

ASM Science Journal, Volume 13, Special Issue 1, 2020 for ICFICE

97

the model property. As shown in Figure 6, the user-defined

feature ‘equal’ in SimpleName context directly depends on the

‘identifier’, and the user-defined feature ‘isSameName’ in

MethodDeclaration context indirectly depends on it.

Therefore, the change of the ‘identifier’ interpretation entails

the changes of the interpretations of ‘equal’ and ‘isSameName’.

Figure 7 (b) shows the changed interpretations of the user-

defined features. Of course, the changes of interpretations of

another user-defined features are propagated along the

dependency relationships in a feature dependency graph.

context SimpleName

def : identifier@post : String =

if (self = x.name) or (x.referenceNames->includes(self))

or (x.getConstructorMethodSNs->includes(self))

then 'Circle' else self.identifier endif

context SimpleName

def : equal@post (sn : SimpleName) : Boolean =
if self.definition->notEmpty() and sn.definition->notEmpty()

then self.identifier@post = sn.identifier@post else false endif

context MethodDeclaration

def : isSameName@post (method : MethodDeclaration) : Boolean =
self.name.equal@post (method.name)

Figure 7. A part of redefined features after applying

RenameClass(x, “Circle”) elementary refactoring

To decide whether we could apply another RenameClass(y,

“Rectangle”) elementary refactoring after RenameClass(x,

“Circle”) is applied, we should reinterpret the precondition of

RenameClass(y, “Rectangle”) to fit in the changed abstraction

of the program. Figure 8 shows the reinterpreted precondition

of RenameClass(y, “Rectangle”) which is originated from the

precondition of RenameClass specification in Figure 4. In this

figure, we can notice that the model property ‘identifier’ of

SimpleName context is reinterpreted as new user-defined

feature ‘identifier@post’.

y.exists()

and not(TypeDeclaration.allInstances()

->exists(t|t.name.identifier@post ='Rectangle'))
and not(y.methods()->exists(m|m.name.identifier@post = 'Rectangle'))

Figure 8. The reinterpreted precondition of RenameClass(y,

“Rectangle”)

B. A Composability Test Method

In this section, we propose a composability test method for a

composite refactoring, to decide whether the composite

refactoring is applicable, according to the composition

method. To do this, we serialize programs to XMI

documents based on the JavaEAST meta model. And we

also serialize refactorings to XMI documents based on the

RCL meta model.

To decide the composability of a composite refactoring,

all the nodes should be visited, starting at the root node of

the XMI document corresponding to the composite

refactoring. A node should be handled according to the

proper type of the node, when each node is visited. For

example, if the ElementaryRefactoringCall node is visited,

the precondition corresponding to the node should be

checked after reinterpreting the precondition to fit in the

current abstraction of the program. If that elementary

refactoring is applied in the case that the precondition is

false, the behavior preservation of a program could not be

guaranteed. Therefore, we can decide that the composite

refactoring, including that elementary refactoring, could

not be applied. Like this, if at least one of the outcomes of

visiting nodes is false, we decide that the composite

refactoring, on which the composability test is being

performed, could not be applied. And if all the outcomes of

visiting nodes are true, we decide that the composite

refactoring could be applied.

For brevity, we consider only the DefinedRefactoringCall

and ElementaryRefactoringCall nodes, among the nodes

that are visited when a composability test is performed.

Let’s look at the detailed procedures to be handled in a

composability test.

Figure 9 shows the procedures to be handled, when

visiting the DefinedRefactoringCall node drc. It proceeds

as the following steps.

1) Load DefinedRefactoringDeclaration node drd,

which corresponds to DefinedRefactoringCall node

drc, among DRD XMI documents based on the

RCL meta model.

2) Bind the parameters of drd to the arguments of drc.

3) Load the first RefactoringStatement node of drd.

4) Decide the type of the RefactoringStatement node.

5) Visit the node so as to handle properly according to

the node type.

6) Return false as a final result if the result of visiting

the node is false at step 5) Otherwise, it decides

(a)

(b)

ASM Science Journal, Volume 13, Special Issue 1, 2020 for ICFICE

98

whether there is next RefactoringStatement node.

7) If there is no next RefactoringStatement node, it

returns true as a final result. Otherwise, it repeats

again starting at step 4) after loading next

RefactoringStatement node.

Figure 9. The handling process while visiting

DefinedRefactoringCall node drc

If false is returned as the final result of visiting a

DefinedRefactoringCall node, it means that at least one of the

preconditions of component refactorings is not satisfied

during the application of the composite refactoring. Therefore,

behavior preservation could not be guaranteed, if the

composite refactoring corresponding to the

DefinedRefactoringCall node is applied. On the other hand, if

the composite refactoring is applied when true is returned,

behavior preservation could be guaranteed.

Figure 10 shows the procedures to be handled, when visiting

the ElementaryRefactoringCall node erc. It loads a

precondition corresponding to ElementaryRefactoringCall

node erc, among Precondition XMI documents based on the

‘Precondition Metamodel’. It modifies the arguments of erc to

fit into the current abstraction of the program, and binds

parameters used in the precondition to the arguments of erc.

And it evaluates the precondition, after reinterpreting the

precondition to fit into the current abstraction of the program.

If the result of the evaluation is false, it returns false as a

result. Otherwise, true is returned as a final result, after

changing the abstraction of the program through the delta

specification corresponding to erc, and a feature dependency

graph.

Figure 10. The handling process while visiting

ElementaryRefactoringCall node erc

V. AN IMPLEMENTATION

OF THE TOOL

In this section, we describe a tool that can define a

composite refactoring by using RCL, and check

composability of the composite refactoring. We develop a

prototype tool by using the Eclipse modeling framework

(Budinsky et. al., 2004; Eclipse EMF, 2019) and MDT OCL

Interpreter (Eclipse OCL, 2019). And as quoted in Study

(Youn et. al., 2017), we have placed organized buttons so

that users can navigate the tool more easily so that they

have a clear and consistent conceptual structure of the

layout.

Figure 11 is a screen capture that defines a composite

refactoring by using the tool. If you enter the name and

parameter information of the composite refactoring to

define, and select the desired RefactoringStatement type,

then a dialog box pops up, which helps you draw up the

selected statement type to fit in the syntax. And once all

the information of the corresponding composite

refactoring is drawn up and stored, an XMI document,

which is based on the meta model of RCL.

Figure 12 is a screen capture that performs a

composability test for the composite refactoring defined by

using the tool. PullUpVDF composite refactoring needs an

argument of the VariableDeclarationFragment type. For

example, we assign the target field in TreeViewer

(rectangle part) of Figure 12 as the value of the Value

column of the table by drag-and-drop. And then the

ASM Science Journal, Volume 13, Special Issue 1, 2020 for ICFICE

99

composability test will start, if the ‘check’ button is clicked.

Figure 12. Composability test of PullUpVDF composite

refactoring by the tool

VI. CASE STUDY

In this section, we define IPCwFM composite refactoring, and

then we decide whether or not the composite refactoring is

applicable to an example Java program.

A. Definition

IPCwFM that is introduced as ‘Introduce Polymorphic

Creation with Factory Method’ in Kerievsky (Kerievsky, 2004),

is the refactoring that targets the ‘Factory Method’ design

pattern. This refactoring can be applicable, when sibling

subclasses implement a method similarly, except for an

object creation step. For example, IPCwFM could be

applied to the Java code of Figure 13 (a). This code

introduced in Kerievsky (Kerievsky, 2004) is a part of

‘XML Builder’, which makes it easy to create an XML

document.

Figure 13. Application of IPCwFM composite refactoring

Figure 14 (a) shows the steps of IPCwFM refactoring.

After making an abstract class, it sets up an inheritance

hierarchy between the abstract class and the classes

including an object creation step. It makes methods that

create the same object as the object creation step on each

Figure 11. A definition of PullUpVDF composite refactoring by tool

ASM Science Journal, Volume 13, Special Issue 1, 2020 for ICFICE

100

element of sequence ‘cics’, and adds these methods as

program elements. It changes each object creation to the

object creation method call. And then it pulls up the methods

to superclass, if the bodies of the methods become the same. If

we represent the procedure of IPCwFM by using a concrete

syntax of RCL, it is like Figure 14 (b). We can define the

procedure as a defined refactoring, by using the prototype tool.

Figure 14. A definition of

IPCwFM(Sequence(ClassInstanceCreation) cics)

IPCwFM can be defined by composing a composite

refactoring, which is assembled by one iterative composition,

and another two composite refactorings, sequentially. Table 1

explains about the component refactorings that IPCwFM

consists of.

Table 1. Component refactorings that IPCwFM consists of

Component

refactoring
Explanation

createSetterMethod

(VDF vdf)

creation refactoring to create a new MD for the

setter method that assigns the value of vdf

createGetterMethod

(VDF vdf)

creation refactoring to create a new MD for the

getter method that returns the value of vdf

addMethod

(MD md, TD td)
elementary refactoring that adds md to td

replaceFieldRead

(SimpleName ref,
MD getterM)

composite refactoring that changes ref, which is a

read access of a field, into invocation to the
getterM method that returns the value of the field

replaceFieldWrite

(SimpleName ref,

MD setterM)

composite refactoring that changes ref, which is a

write access of a field, into invocation to the

setterM method that assigns the value of the field

replaceModifierTo
Private(VDF vdf)

elementary refactoring that changes the access
modifier of vdf into private

MD: MethodDeclaration, VDF: VariableDeclarationFragment,
TD: TypeDeclaration

B. Composability Test

Let’s decide whether IPCwFM is applicable to the Java code of

Figure 13 (a). IPCwFM needs a sequence of

ClassInstanceCreation type as an argument. Therefore if the

composability test starts after selecting ‘new

DOMBuilder(“orders”)’ and ‘new XMLBuilder(“order”)’

object creation steps as the argument values, true is

returned as the result. This means that behavior

preservation could be guaranteed, if we apply the IPCwFM

to the example program.

Table 2. Chain of RefactoringCalls occurred during the

composability test for IPCwFM

Name Type Time(sec)

1 abstractClass DRC 0.1958

1.1 createAbstractClass CRC 0.0009

1.2 addClass ERC 0.0217

1.3 addExtendsLinkHasSuperclass DRC 0.1598

1.3.1 createSuperclassType CRC 0.0007

1.3.2 addExtends ERC 0.0213

1.3.3 replaceExtends ERC 0.0498

1.3.4 replaceExtends ERC 0.0491

2 createConstructorMethod CRC 0.0008

3 addMethod ERC 0.0246

4 replaceCICtoMI DRC 0.1376

4.1 replaceCICinRHSofASMTtoMI DRC 0.1103

4.1.1 createStaticMI CRC 0.0008

4.1.2 replaceCICinRHSofASMTtoMI ERC 0.0622

5 createConstructorMethod CRC 0.0007

6 addMethod ERC 0.0278

7 replaceCICtoMI DRC 0.1342

7.1 replaceCICinRHSofASMTtoMI DRC 0.0967

7.1.1 createStaticMI CRC 0.0007

7.1.2 replaceCICinRHSofASMTtoMI ERC 0.0571

8 pullUpMethod DRC 0.2803

8.1 abstractMethodinSuperclass DRC 0.0617

8.1.1 createAbstractMethod CRC 0.0009

8.1.2 addMethod ERC 0.0229

8.2 pullUpVDF DRC 0.0857

8.2.1 pullUpFieldHavingOnlyOneVDF ERC 0.0565

8.3 pullUpMethodNotUsingMember ERC 0.0591

ERC: ElementaryRefactoringCall,

CRC: CreationRefactoringCall, DRC: DefinedRefactoringCall

Table 2 represents the detailed component refactoring

calls occurred during the composability test for IPCwFM

and the running time. The results were obtained on a

Pentium Dual-Core desktop with 4 gigabytes of memory

running Windows 7. As expected, the average time spent

on processing ERCs is less than that of DRCs. The average

time of ERCs, CRCs and DRCs are 0.0411 seconds, 0.0008

seconds and 0.1402 seconds respectively. The total

running time and the memory usage for the composability

test are 0.8852 seconds, 6.01 megabytes respectively.

Unfortunately, there are no similar approaches available to

our knowledge to evaluate the results against.

ASM Science Journal, Volume 13, Special Issue 1, 2020 for ICFICE

101

VII. COMPARATIVE

RESEARCH

Roberts (Roberts, 1999) specifies a refactoring by defining

both a precondition and a postcondition. He defines primitive

analysis functions, which are the base of program analysis,

and derived analysis functions, which are derived from the

primitive analysis functions. He uses those functions in

specifying refactorings. A precondition is described based on

first order predicate logic, by using primitive analysis

functions and derived analysis functions. A postcondition

specifies the interpretation of a primitive analysis function

that should be changed after applying a refactoring. Roberts’

primitive analysis function, derived analysis function, and

postcondition are similar to our model property, user-defined

feature, and delta specification, respectively.

In the study of Roberts, the relationship between primitive

analysis function and derived analysis function is implicit. But

in our study, the relationship between model property and

user-defined feature is explicit. Therefore our composability

test method, as described in Section 4, can infer which user-

defined features’ interpretation should be changed, when the

interpretation of a model property is changed.

And in the study of Roberts, only primitive analysis

functions become the target of change, because derived

analysis functions can be updated from the changes of

primitive analysis functions. The fact that only model

properties are used in our delta specification, is similar to

Roberts’ study. In the study of Roberts, entire primitive

analysis functions become the target to be changed by a

refactoring. But in our study, the target of change is localized

on the properties of model elements related to a refactoring,

because the structure between properties is fixed by a

JavaEAST meta model.

The study of Cinnéide (Cinnéide, 2001) is similar to the

study of Roberts. He specifies a refactoring by defining both a

precondition and a postcondition. He specifies the

precondition and postcondition of a refactoring based on first

order predicate logic, by defining analysis functions. And for

the operations related to creation, which do not impact on the

meaning of program, he defines helper functions. The analysis

functions of Cinnéide are similar to our model properties and

user-defined features, and the helper functions are similar to

our creation refactoring. The helper functions of Cinnéide

are defined as both a precondition and a postcondition,

but our creation refactorings are hard-coded as the Java

operations to create model elements.

In the study of Cinnéide, if a new analysis function is

added, it should update the postconditions of refactorings

that impact on the new function. But in our research, even

if a new user-defined feature is added, there is no impact

on any delta specification. And in Cinnéide’s study, entire

analysis functions become the target to be changed by a

refactoring, because analysis functions are not layered.

Kniesel and Koch (Kniesel & Koch, 2004) specify a

refactoring by defining both a precondition and a

backward transformation description. They define

conditions that are the base of program analysis based on

first order predicate logic, and then they use them to

specify preconditions. A backward transformation

description specifies the interpretation of a condition that

should be changed after applying a refactoring. This

backward transformation description is similar to the delta

specification of our study.

If a new condition is added, backward transformation

descriptions of the already specified refactorings that

impact on the new condition should be updated. And

entire conditions become the target to be changed by a

refactoring, because the conditions are not layered as in

the study of Cinnéide.

Li and Thompson (Li & Thompson, 2012) specify a

refactoring by defining a precondition. The composability

can not be decided in advance before applying a composite

refactoring, since there is no a notion of postcondition in

Li’s study. But our study can decide the composability of a

composite refactoring in advance, before applying a

composite refactoring, through the composability test

using a precondition and a delta specification.

VIII. CONCLUSION

In this paper, we have defined composite refactorings by

assembling component refactorings. And we also have

tried to decide composability for the defined composite

refactorings. To do this, we have proposed a method to

specify elementary refactorings, through both a

ASM Science Journal, Volume 13, Special Issue 1, 2020 for ICFICE

102

precondition and a delta specification. Then, we have

proposed a method to decide composability for composite

refactorings defined by RCL. Based on these methods, we have

developed a prototype tool. And then we have tried to

define composite refactorings by using the tool, and to

decide composability for the defined composite

refactorings through a composability test.

Using a refactoring composition language, we can define

new composite refactorings by assembling existing

component refactorings. Through this, the reusability of

refactorings can be improved. And we can decide the

composability of composite refactorings in advance, before

applying composite refactorings, through the composability

test. It is also easy to draw delta specifications up and

maintain them, since we specify elementary refactorings by

using OCL and the JavaEAST meta model. If elementary

refactorings were specified to guarantee behavior

preservation, the behavior preservation of the composite

refactoring, which has been defined with these elementary

refactorings, could also be guaranteed by using the

composability test.

Currently, the tool developed in our study has been

designed so as to make the composability test and definition

of composite refactorings possible. However, the tool is not

able to transform programs as a result of applying

refactorings. We plan to automate the transformation of

programs using the refactoring effects of elementary

refactorings.

IX. ACKNOWLEDGEMENT

This work was supported by the 2019 Silla University

research grant.

X. REFEREENCES

Benattou, M., Bruel, J.M. & Hameurlain, N. 2002, ‘Generating

test data from OCL specification’, in Proceedings of the

ECOOP’2002 Workshop on Integration and

Transformation of UML Models.

Budinsky, F., Steinberg, D., Ellersick, R., Grose, T.J. & Merks,

E. 2004, Eclipse modeling framework: a developer's guide,

Addison-Wesley Professional.

Cao, K., Kang, I., Choi, H. & Jung, H. 2017, ‘Reagent Cabinet

Management System Using Danger Priority’, Journal of

information and communication convergence engineering,

vol. 15, no. 4, pp. 227-231.

Cinnéide, M.O. 2001, ‘Automated application of design

patterns: a refactoring approach’, PhD thesis, Trinity College

Dublin, Dublin, Ireland.

Eckel, B. 2000, Thinking in Patterns with JAVA Revision

0.5a, MindView, Inc.

Eclipse EMF 2019, The Eclipse EMF website,

<https://www.eclipse.org/modeling/emf/>.

Eclipse Modisco 2019, The Eclipse MoDisco website,

<https://projects.eclipse.org/projects/modeling.mdt.modis

co/>.

Eclipse OCL 2019, The Eclipse OCL website,

<https://projects.eclipse.org/projects/modeling.mdt.ocl>.

Fowler, M. 2018, Refactoring: improving the design of

existing code, Addison-Wesley Professional.

Huang, J., Carminati, F., Betev, L., Luzzi, C., Lu, Y. & Zhou,

D. 2011, ‘Identifying composite refactorings with a

scripting language’, in 2011 IEEE 3rd International

Conference on Communication Software and Networks,

pp. 267-271.

Kerievsky, J. 2004, Refactoring to patterns, Addison-

Wesley Professional.

Kim, K.B. & Song, D.H. 2017, ‘Real Time Road Lane

Detection with RANSAC and HSV Color Transformation’,

Journal of information and communication

convergence engineering, vol. 15, no. 3, pp. 187-192.

Kim, K.M. & Kim, T.G. 2012, ‘A Refactoring Composition

Language for Composite Refactorings’, Journal of KIISE:

Software and Applications, vol. 39, no. 7, pp. 523-536.

Kim, K.M., Jang, P.J. & Kim, T.G. 2011, ‘A Composition

Check of Composite Refactorings Not Having a

Specification of Precondition’, The KIPS Transactions:

PartD, vol. 18, no. 1, pp. 23-34.

Kniesel, G. & Koch, H. 2004, ‘Static composition of

refactorings’, Science of Computer Programming, vol.

52, no. 1-3, pp. 9-51.

Li, H. & Thompson, S. 2012, ‘A domain-specific language

ASM Science Journal, Volume 13, Special Issue 1, 2020 for ICFICE

103

for scripting refactorings in erlang’, in International

Conference on Fundamental Approaches to Software

Engineering, Springer-Verlag Berlin Heidelberg 2012, pp.

501-515.

Mens, T. & Tourwé, T. 2004, ‘A survey of software refactoring’,

IEEE Transactions on software engineering, vol. 30, no. 2,

pp. 126-139.

Ol'Khovich, L. & Koznov, D.V. 2003, ‘OCL-based automated

validation method for UML specifications’, Programming

and Computer Software, vol. 29, no. 6, pp. 323-327.

OMG, 2014, Object Constraint Language Version 2.4.

Opdyke, W.F. 1992, ‘Refactoring object-oriented frameworks’,

PhD thesis, University of Illinois, Chicago, CA.

Roberts, D.B. 1999, ‘Practical analysis for refactoring’, PhD

thesis, University of Illinois, Chicago, CA.

Saadeh, E. & Kourie, D.G. 2009, ‘Composite refactoring using

fine-grained transformations’, in Proceedings of the 2009

Annual Research Conference of the South African Institute

of Computer Scientists and Information Technologists, pp.

22-29.

Suryadibrata, A. & Kim, K.B. 2017, ‘Ganglion Cyst Region

Extraction from Ultrasound Images Using Possibilistic C-

Means Clustering Method’, Journal of information and

communication convergence engineering, vol. 15, no. 1, pp.

49-52.

W3C 2019, The W3C website,

<http://www.w3.org/XML/Schema.html>.

Warmer, JB & Kleppe, AG 2003, The object constraint

language: getting your models ready for MDA, Addison-

Wesley Professional.

Youn, J.H., Seo, Y.H. & Oh, M.S. 2017, ‘A study on UI design

of social networking service messenger by using case

analysis model’, Journal of information and

communication convergence engineering, vol. 15, no. 2, pp.

104-111.

Ziemann, P. & Gogolla, M 2003, ‘Validating ocl specifications

with the use tool: An example based on the bart case study’,

Electronic Notes in Theoretical Computer Science, vol. 80,

pp. 157-169.

