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Android applications’ acceptance rate is growing rapidly, which causes a huge competition among
the developers. To develop acceptable and successful application, user reviews are very important
source of information. Especially for a better release of new version apps, it is necessary to know the
user demand. However, manually inspecting all the app reviews are infeasible due to resource and
time limitations. Only a little solution domain has discovered to categorize user reviews
automatically. However, those works classify the reviews without giving any suggestion regarding
which category is more significant. In this paper, reviews were categorized (6 high and 12 low levels)
and prioritized for effective release by incorporating user demands. This framework uses Naive Bayes
and J48 classification algorithms, and ranked the reviews by cumulative weights under each class.
Where J48 reported F-measure score as 0.82 and 0.72 for low and high level classes respectively
which is better than Naive Bayes model. The cumulative weight confirmed the highest performance,

which concluded that this approach can effectively categorized and prioritized user reviews. Where

the prioritized categories will play the significant role in next version of android app release.
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I. INTRODUCTION

The world is moving towards portable computing system,
where people spend maximum time using various mobile
applications. In the popular mobile operating system, app
stores allow users to express their personal opinion textually
as well as numerically on every application by the form of
review and rating respectively. Whether users desired any
changes in the feature or adding any new one or reporting
bug problems regarding app are always included in their
reviews. So user reviews hold important value in the field of
mobile app industry. On the other hand, ensuring user
acceptance, developers have to incorporate new features
according to their review. To this end, review text and rating
are closely monitored and analyzed simultaneously.
Empirical studies (Galvis et el., 2013; Tian et al., 2015;
Pagano et al., 2013) showed that user reviews in app store is
full of important information, which help developers to take
appropriate decisions regarding features required to be

changed, or bug must be solved on the next version release.
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Where, an app can get numerous reviews daily, which lead a
big review collection gradually. Research study showed that,
popular apps (e.g., Facebook and Twitter) receive hundreds
of reviews daily (Licorish et al., 2015). Manual inspection of
such large volume of review collection is prohibitively time-
consuming. In addition, after review classification it is still
hard to predict the optimal category for the next release
development.

To overcome review analysis problem, several approaches
have been proposed, where Pagano et al. investigated how
and when users provide feedback and its impact on mobile
app user community (Pagano et al., 2013). Panichella et al.
proposed app review classification taxonomy relevant to
software maintenance and evolution (Panichella et al., 2015).
Villarroel et al. proposed a tool to cluster and prioritize
reviews using predicate features (Villarroel et al., 2016).
Recently, Ciurumelea et al. defined taxonomy of high and
low level mobile specific categories which are highly relevant
for developers during the planning of maintenance and

evolution activities (Ciurumelea et. al., 2017). This work
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classified reviews according to specific taxonomy and link
the source code to solve a particular issue.

Most of the techniques classified reviews according to
limited set of classes and clustered them based on textual
similarities. After classification, manual analysis is still
needed to filter out the specific class required to be focused
for next app release. Because, higher weighted review defines
high priority; high weighted review has information to work
on. In contrast, lower rating reviews tend to have
problematic information, feature requests etc. However, all
reviews are not equally important or problematic. Therefore,
measuring review weight under each class will recommend
developers where to focus in the next release. In a nut shell,
simply review classification without giving any ranking
information is not sufficient for effective release plan.

This paper proposed a method to overcome the specific
class ranking issue by analysing user reviews. Here, the
reviews were scraped, pre-processed and classified into
mobile specific categories. The Naive Bayes and J48 machine
learning algorithms have been implemented for review
classification based on textual analysis. As this is a multi-
label classification, binary relevance approach has been used
to train the data. After classify the reviews into specific
classes, individual review weight was calculated under each
category using their associate rating. The cumulative
categorical weight also measured using individual review
weight. The standard dataset (Ciurumelea et. al., 2017) with
7754 reviews were used to train the proposed model, where
dataset was categorized into 6 high and 12 low level classes
for fine grained classification. Reviews were collected from
Google play store for model’s classification testing purpose.
Two open source web browser apps have been selected to
experiment the prioritization technique for better release.

The experimental results of proposed model indicate that
J48 performed better than Naive Bayes for review
classification. The lowest and highest F-measure scores for
low level classes were reported as 0.24 and 0.82 by Naive
Bayes and J48 respectively. Where, the F-measure average
scores for high level classes were reported as 0.53 and 0.72
by Naive Bayes and J48 respectively. On the other hand,
weighted score of performance class (low level) showed
highest value in all three versions of every dataset. The

application performance and resource utilization got highest

priority among high and low level classes for next app release.

This is a revised and expanded version of a published paper
entitled ‘Predicting an Effective Android Application Release

Based on User Reviews and Ratings’ presented at the 7th
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International Conference on Smart Computing &
Communications (ICSCC 2019), Curtin University Miri,
Sarawak, Malaysia 28-30 June 2019 (Mahmud et al., 2019).

The rest of this paper is organized as follows; section II
denotes the related works. Sections III and IV described the
proposed method and result analysis respectively. Finally,
section V concludes this paper with future research direction.

II. RELATED WORKS

Users’ review prioritization is an important feature for
identifying better android application’s release. Because of
significance in practice, several approaches have been
proposed for classifying user reviews automatically. In the
following, relevant research work in context of reviews
classification and prioritization is summarized.

Pagano et al. investigated how and when users provide
feedback and its impact on mobile app user community
(Pagano et al., 2013). The work analysed correlation between
feedback and its impact on the application popularity. Then
topics in the user reviews were classified to explore their co-
occurrence, popularities as well as impacts. Finally, user
feedback integration into requirements and software
infrastructure was shown.

Panichella et al. presented a technique to detect and
classify text in app reviews to facilitate developers in
accomplishing software maintenance and evaluation task
(Panichella et. al., 2015). Here, taxonomy was proposed to
classify reviews into categories relevant to software
maintenance and evaluation. This approach combines
natural language processing, text analysis and sentiment
analysis techniques to classify reviews into defined
categories. The work claimed that using the techniques
collaboratively gives better result than individually for
review classification.

Villarroel et al. presented a review clustering and
prioritizing technique to provide app release planning using
user reviews (Villarroel et al., 2016). Here, the reviews were
categorized into bug report, suggesting for new feature and
other category. Then, the reviews were clustered based on
their similarity to identify groups of related reviews. Finally,
the clustered reviews were prioritized to recommend which
cluster should be given focus on next app release. However,
considering all reviews under a cluster for prioritization is
not feasible as reviews are not equally important or
problematic. In addition, assigning average rating to clusters

is not justified because clusters with higher rated reviews will
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get more priority compared to lower rated. Therefore, weight
of each review calculation using their associated rating is
considered in the proposed method.

Ciurumelea et al. developed a multi-level taxonomy to
classify mobile specific reviews into high- and low-level
classes analyzing 1566 mobile app reviews manually
(Ciurumelea et al., 2017). The research developed a user
request reference to facilitate the developer in finding the
review category and recommend related source code
required to be modified. Therefore, developer can directly
focus on specific category or multiple categories for
modification instead of spoiling time to understanding topic
from unstructured review sets. In addition, the review
taxonomy will contribute to mobile app based research
community. The results reported high precision and recall
for classifying reviews according to defined taxonomy.
However, categorical priority assignment is important to
know which category is most problematic and required to be
fixed for next app release.

Luiz et al. proposed a framework to detect topics which are
negatively impacting the rating of an application and should
be focused for better user experience (Luiz et al. 2018). In
this process, relevant features were extracted automatically
from each review and analyzed sentiment associated with
them. The model consists of topic modeling, sentiment
analysis and summarization interface phases. In topic
modeling, the semantic topics as well as target features were
identified by analyzing textual reviews and most relevant
words of each discovered topic. The positive or negative
sentiment associated with each discovered feature was
detected using sentiment analysis strategy. The discovered
topics and their associated sentiment were visualized
through a summarization interface to the developers.

Harman et al. introduced app store repository mining
strategy to guide developers by analysing relationship
between the technical, business and user perspective
(Harman et al., 2012). Here, the raw data was extracted from
app store and retrieves available attributes by parsing those
data. Finally, the feature information from the textual data
was extracted and computes the technical, business and
customer information metrics. The work also shown the
correlation between rating and app download rank.

Vasa et al. analyzed mobile app user reviews and found that
the length of review is higher when the users give a low rating
(Vasa et al., 2012). This paper has used rating for calculating

the weight of each review to focus priority on specific domain

23

for next release. However, these research did not address
review ranking issue for better android application release.

Khalid et al. studied user reviews to identify and classify
complaints so that developer can better anticipate those
(Khalid et al., 2014). The research reported twelve types of
user complaints, among those, functional error, feature
request and app crashes are most frequent. Where, low rated
reviews contain most of the negative complaints.

Chen et al. proposed a framework to distinguish
informative and non-informative reviews in order to identify
most important reviews (Chen et al., 2014). The non-
informative reviews were filtered out and informative
reviews were grouped based on similarity using topic
modeling technique. The grouped reviews were ranked
measuring their importance with respect to other reviews.
Finally, the results were visualized so that app developer can
easily find the most significant reviews for maintenance
work. The research claims encouraging results achieved by
experiments and case studies. Three review attributes
namely text, rating and time stamp have been considered for
experimentation. However, rating has been focused to assign
priority for categories and reviews.

The analysis of existing strategies showed that different
app reviews methods have been implemented for better
release. There are exists several review classification
methods named as linguistic based, review data mining
based, review rating based, taxonomy of high and low level
category based, review clustering based, etc. However, few
research directions found to analyze reviews for assigning
ranking priority in order to identify the most significant

reviews required to consider for future better app release.

III. METHODOLOGY

Effective android application release predicting framework is
proposed using user reviews. In this technique, reviews were
collected from Google play store and processed to remove
unwanted characters. Then, reviews were classified into high
level and then low multi-labeled categories. Finally,
individual review weight is measured to assign categorical
priority. The whole process is divided into following steps and
depicted in Figure 2.

e  Step 1: Review collection

e  Step 2: Data Pre-processing
e  Step 3: Feature Extraction

e  Step 4: Classification Model Construction
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e  Step 5: Model Training and Testing
The above steps have been elaborately described in the

following sub-sections.

A. Step 1: Review Collection

The reviews have been collected from Google play store using
a developed scraper. The review text has been collected
considering version and release date for a specific app. The
published date field is an important feature which indicates
range of review collection for the app. The date is selected
according to version release date, to compare version to
version user reviews. Whether they have fixed up the
particular problematic domain or not is also checked. The

review scraping process is depicted in Figure 1.

App link &
date

Parsing
HTML page

Collecting
necessary data

Is provided
date >=
review’s date

Storing result
into .csv file

Yes

Figure 1. Flow chart of review scraping

B. Step 2: Data Pre-Processing

The collected reviews were pre-processed to remove
undesired characters. This process includes converting letters
to lower case, removing special characters, removing white
spaces, stemming, stop words removal and tokenization. In
English, lower and uppercase words carry same meaning, and
therefore, words are converted to lower case. Special
characters added extra noise to review dataset, which are
removed using regular expression. Stemming, converts the
words into their base form to reduce vector dimension by
ignoring similar words. Lovins Stemmer algorithm is used for
this purpose. Stop words are the unnecessary words that does
not carry significance in sentence, those words are removed
using nltk corpus. Finally, the reviews were tokenized to split
the sentence into tokens. The processed reviews were

forwarded to feature extraction phase.
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Figure 2: Overview of the proposed method

Figure 2 depicts the overview of the proposed architecture
where, Ci, ri, wri are used to represent classes, reviews and
single review weight respectively. For example, Ci(r1, 7'z, '3, ...,
rn) represent reviews under class C; after classification, where
total 18 classes have been considered. The Ci(wri, Wwre, ... W)
represent weight for each review under class Ci. The
cumulative class weight is presented with the summation
symbol.

C. Step 3: Feature Extraction

App reviews are text data which cannot be processed by
machine learning models, they expect their input to be
numeric. Therefore, textual feature extraction process is
applied to transform reviews into a feature set that is usable
by machine learning classifier. This process involves

conversion of textual data into some numeric representations
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to be understood by machine learning algorithms. Bag of
words approach was applied in this framework to extract

feature from review dataset.

D. Step 4: Classification Model Construction

Naive Bayes and J48 machine learning algorithms have
been implemented in this app review prioritization
framework using bag of words vectorization algorithm.
Both the Naive Bayes and J48 are prominent in natural
language processing domain especially for text
classification, which are applied in this app review
prioritization method.

Naive Bayes Classifier: Naive Bayes is a probabilistic
machine learning algorithm based upon bayes theorem to
predict the sample category (Han et al., 2011). To train a
review R, the classifier calculates for each category, the
probability that the review should be classified under Ci,
where Ci is the ith category. This relation is defined as below
making the use of the conditional probability law.

P(CHP(R|C)

P(Ci|R) = P(R)

D

The assumption of this algorithm is, the features are
independent, that is, the probability of each word in a app
review is independent of the word’s context and its position
in the review. Where, P(R|C;) can be calculated as the product
of each individual word Wj’s probabilities appearing in the
category C; (W, being the jth of [ words in the review).

J48 Classifier: J48 is a popular machine learning
algorithm based upon ID3 developed by Ross Quinlan
(Quinlan et al., 1993), with additional features to address
problems that ID3 algorithm was unable to deal. The
additional features of J48 includes accounting for missing
values, decision trees pruning, continuous attribute value
ranges, derivation of rules, etc. J48 is an open source Java
implementation of the C4.5 algorithm in the WEKA data
mining tool, where J48 class builds a C4.5 decision tree. For
a given set of reviews, this algorithm splits into two subsets
low and high level categories using top-down recursive divide
and conquer approach. In second phase, the procedure is

repeated for each branch as depicted in Figure 3.
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Figure 3. Example of Review Decision Tree

E. Step 5: Model Training and Testing

This method classified reviews into high and low pre-defined
multi-level classes using Naive Bayes and J48. The model
completed a training epoch, when the model has seen the
entire training dataset. The validation dataset was used to
evaluate the learning accuracy of trained model. This process
is repeated for a predetermined number of epochs. Finally,
the classified reviews were prioritized using individual review
scores.

Naive Bayes and J48 models have been trained and tested
to evaluate how effectively the proposed framework can
classify android mobile app reviews into predefined labels.
The reviews were classified into 6 high level and 12 low level
classes. Then, individual and class wise review weight have
been measured using associated rating and review frequency.
Finally, the classes were ranked based on their cumulative

weight.

IV. EXPERIMENT AND
RESULT

The dataset and experimental results of the proposed
technique have been discussed in this section. Comparison
results of Naive Bayes and J48 algorithms for mobile app
review classification also described. The reviews have been
classified into high and low level classes. The considered High
Level Classes (HLC) and Low Level Classes (LLC) are shown

in Table 1.
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Table 1. Higher and Lower Level Classes

Sl. LLC HLC

1. Performance (Pr) Resource (Res)
2. | User Interface (UI) Usage (Us)

3. | App Usability (AU) Error (Er)

4. | Security (Sec) Protection (Pro)
5. | Privacy (Pri) Pricing (pric)

6. | Licensing (Lic) Compatibility (Com)
7. | Price

8. | Hardware (HW)

9. | Android Version (AV)

10. | Memory (Mem)

11. | Device (Dev)

12. | Battery (Bat)

A. Environment Setup

This experimentation has been conducted using Eclipse IDE
in Java. For review scraping selenium WebDriver 3.14.0 and
libraries for Java language 3.141.592, Jsoup Parser 1.11.3 have
been used. WEKA 3.7.104 has been used for review

classification purpose.

B. Dataset

The high- and low-level classes defined in (Ciurumelea et al.,
2017) have been considered as training dataset for proposed
model. The testing dataset has been prepared using scrapped
reviews, which consists of 7754 users’ reviews. Two web
browser applications have been selected for review scrapping
and the reviews were scrapped using release date. The details

are given below in Table 2.

Table 2. Collected Reviews Details

Review Version Release | Collected
Data Date Reviews
Opera | 49.2.2361.134358 | 20/12/2018 | 612

Browser | 49.1.2361.134232 | 14/12/18 838

(Opera, | 49.0.2361.133821 | 7/12/18 999
2019)

Firefox | 64.0.1 21/12/2018 | 1237
Browser | 64.0.1 14/12/2018 | 786
(Firefox, | 63.0.2 8/11/2018 | 3172

2019)
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C. Evaluation Metric

The review classification efficiency has been evaluated using
precision, recall and F-measure matrix to measure the
model’s learning effectiveness. The precision, recall and F-
measure values have been measured for Naive Bayes and J48

considering low and high level classes.

D. Experiment

This review categorization framework is a multi-label
classification task, therefore, for each high-level class or low-
level sub-class separate ARFF file has been created. In multi-
label classification each review can be classified under more
than one label, so each high level class or low level sub-class
was trained separately using Ciurumelea dataset (Ciurumelea
et. al.,, 2017) and then tested with unlabeled (scrapped)
reviews. J48 algorithm has been selected for final
classification task as J48 decision tree algorithm reported
better classification results compare to Nave Bayes. The

classification results of reviews and associated rating score

were saved in a file for further processing in next phase.

E. Weight Measurement

Review weight was calculated both individually and class-
wise to be used for category prioritization. The details
regarding weight measurement are described below.
Individual Review Scoring: After classification,
individual review weight is calculated with associated rating
score using formula (2).
1

W; =N *—
L RL

2)

Here, w = weight of the review, n = total reviews under

specific high level class or low level sub-class, R = rating of
the specific review for which weight is being calculated. Lower
rated reviews are likely to have more information such as bug
problems, new features, error report to improve an app for
next release. So, the lowest rating should be of more weight.
Class wise Review Scoring: Measuring individual
review scores, cumulative weight for each specific high level
class or low level sub-class is calculated so that it can be

prioritized on which specific category developers should put
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their focus on for next version release of the app. This scoring

has been measured using equation (3).

-
P=Zwi*fi
i=1

Where, P = the summation of the total weight of all the

3)

reviews under a class, r = the total number of reviews, and f
= frequency of review corresponding to the ratings. This
cumulative review score is used assigning priority to each
high level class or low level sub-class. The top scored category
will get highest priority and should be focused on in next
release of the app. Weight calculation for review prioritization

is pointed in Algorithm 1.

Algorithm-1: Review Class Prioritization
Input: Scraped data from play store

Output: Prioritized value of classes and sub-classes

1: Begin

2: C, «<read all classes

3: Rev; «read user reviews for respective class
4 Rat; « read ratings 1to 5

51 10, f e {je 0, Reviewyr, < ),

PTiOVitYmtaz < {}

6:  for each class ¢; € C

7 if (i< total (¢))) do

8: n «count (¢;)

9: jeo

10: for r; € Rat; do

11: if (j < total(Rat;)) then

12: f(j) « reivew €1y

13: w(j) «nx (m)

14: Reviewyio(j) < () * w())
15: jejt+1

16: end if

17: end for

18: Prioritysorq (i) « Xizo(Reviewp, ;)
19: i—j+1

20: end if

21: end for

22: End

In Algorithm-1, variables were initialization in line 2 to 5,

where C;, Rev, , Rat;, Review,,, , and Priorityioia

represents list of classes, list of reviews, list of ratings, review
priority values and total priority for each review respectively.
The individual review priority was calculated under each
rating (line: 10-15), where total priority under each review

class was measured in line 18.
F. Result Analysis

The labeled and unlabeled review dataset have been utilized
for training and testing the model respectively. Naive Bayes
and J48 algorithms were executed for review classification.
The algorithms’ reported comparative classification results of

LLC and HLC are reported in 3 and 4 respectively.

Table 3. NB & J48 LLC Classification Results

LLC | Precision Recall F-Measure
NB J48 | NB J48 NB J48
Pr 0.29 | 0.92 | 0.80 | 0.52 | 0.42 | 0.67
Ul 0.52 | 0.88 | 0.86 | 0.70 | 0.65 | 0.78
AU 0.34 | 0.80 | 0.76 | 0.67 | 0.47 | 0.73
Sec 0.34 | 0.86 | 0.81 | 0.70 | 048 | 0.77
Pri 0.17 | 0.94 | 0.57 | 0.41 | 0.26 | 0.57
Lic 0.20 | 0.76 | 0.72 | 0.62 | 0.31 | 0.68
Price | 0.22 | 1.00 | 0.78 | 0.59 | 0.34 | 0.74
HW | o0.15 | 0.89 [ 0.73 | 0.35 | 0.24 | 0.50
AV 0.16 | 0.71 | 0.66 | 0.31 0.26 | 0.43
Mem | 0.19 | 0.95 | 0.79 | 0.78 | 0.30 | 0.85
Dev 0.26 | 0.89 | 0.85 | 0.50 | 0.40 | 0.64
Bat 0.30 | 0.96 | 0.80 | 0.71 0.44 | 0.82
Avg 0.26 | 0.88 | 0.76 | 0.57 | 0.38 | 0.68

The LLC evaluated scores are reported in Table 3. Where,
precision value is always higher for J48 and recall value is
higher for Naive Bayes. However, F-measure is always better
for J48 than Naive Bayes. As stated in Table 3, lowest and
highest F-measure scores are shown as 0.24 and 0.82 by
Naive Bayes and J48 respectively.

According to Table 4, J48 showed better HLC classification
efficiency compare to Naive Bayes algorithm. Average J48
scores are always higher than Naive Bayes except recall. The
F-measure average scores are 0.53 and 0.72 for NB and J48
respectively. Thus, investigated scores in Table4 indicates
J48 is capable of classifying app reviews better than Naive

Bayes model.
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Table 4. NB & J48 HLC Classification Results

HLC | Precision Recall F-Measure
NB J48 | NB J48 NB J48
Res | 0.29 | 0.90 | 0.78 | 0.50 | 0.42 | 0.64
Us 0.58 | 0.87 | 0.86 | 0.72 | 0.70 | 0.79
Er 0.60 | 0.92 | 0.86 | 0.83 | 0.71 | 0.87
Pro | 0.37 | 0.88 | 0.77 | 0.66 | 0.50 | 0.75
Pric | 0.26 | 0.90 | 0.76 | 0.57 | 0.39 | 0.70
Com | 0.33 | 0.80 | 0.80 | 0.45 | 0.47 | 0.57
Avg | 041 | 0.88 | 0.80 | 0.62 | 0.53 | 0.72

Weight Measurement: The weight of each review is
calculated under each class or sub-class using three different
versions of Opera and Firefox browsers app. The measured
weighted results have been shown in Tables 5, 6, 7 and 8 using
three version’s data. The weight of each high level class and
low level sub-class has been measured based on classification
results to identify the most stable and vulnerable apps. The
weights were normalized to keep the value in o to 1 range to
avoid biased ranking.

In Table 5, normalized weight of each LLC for opera
browser app has shown. Analysing the reported results, it is
found that opera browser app has problems with
performance category through the all version. However, UI
category reviews are improved in the third version compare
to previous version, from 72% to 57%. In case of security,
problems are showing up gradually in the later versions than
before. This app is in good position for price, version and
hardware classes.

The Firefox browser app review LLC weight are shown in
Table 6, where performance and UI categories are the most
problem affected. UI category has reduced slightly, from 86%
to 74%. In app usability class, weight has risen from 6.4% to
9% whereas total number of reviews were reduced from 79 to
58. This shows that the reviews in this class are low rated.
Also, this app shows better position in price and android
version classes as they are the categories with lowest weight.

The weighted results under HLC using Opera and Firefox
app reviews are shown in Table 7 and 8 respectively. Where,

Figure 4 and 5 depicted the comparison results.

Table 5. Opera browser's weight under LLC

Version1 | Version 2 | Version 3
LLC|Total | Norm. [Total| Norm. Total Norm.
Rev. | Weight [Rev. [Weight|Rev.|Weight

Pr | 53 1 41 1 54 1

Ul | 26 0.37 33 | 0.72 | 36 | 0.57
AU | 21 0.12 20 | 0.18 | 16 | 0.089
Sec| 3 0.002 | 4 [0.007| 7 |0.024
Pri| 3 0.008 0.0004| 3 |0.004
Lic| 3 0.006 | 2 [0.002| 3 |0.003
Pricel 1 | 0.0002 | 2 |0.006| 3 |0.003
HW| 1 0.001 1 |0.0004| 1 |0.0003
AV | 3 0.004 | O o] 1 |0.0003
Mem| 0.00 | 0.00 2 |0.003| 1 |0.0003
Dev | 0.00 | 0.00 2 |0.005| 1 |0.0003

Bat | 0.00| 0.00 0 | 0.00 | 0 | 0.00

Table 6. Firefox browser's weight under LLC

Version1 | Version 2 | Version 3
LLC |Total | Norm. Norm. | Total |Norm.

Rev. | Weight | Rev. | Weight | Rev. [Weight
Pr | 248 1 84 1 142 1
Ul | 239 | 0.86 69 0.55 | 120 | 0.74
AU | 79 | 0.064 | 28 0.06 58 | 0.09
Pri | 59 0.04 25 0.07 | 50 |0.098
Dev | 33 0.02 0.004 | 16 | 0.02
HW | 27 0.01 3 0.001 | 10 |0.006
Sec | 32 [0.0099| 19 | 0.030 | 30 | 0.03
Mem | 18 0.01 5 | 0.003 0.001
Bat | 14 0.01 5 0.003 0.004
Lic 1 | 0.001 | 5 | 0.003 | 16 |0.010
Price | 10 | 0.001 6 | 0.004 0.003
AV | 3 |0.0001| 4 | 0.003 0.002

Table 7. Opera browser's weight under HLC

Version 1 Version 2 Version 3
HLC | Total | Norm. | Total | Norm. | Total |Norm.
Rev. | Weight | Rev. | Weight | Rev. Weight
Res 53 1 53 0.74 54 1
Us 47 | 0.92 51 1 48 | 0.97
Er 24 | 0.395 21 0.33 20 | 0.27
Pro 0.008 0.007 10 |0.048
Price 0.01 0.018 0.016
Com 0.006 0.005 0.003
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In Table 7, it can be seen that, for the first version of Opera
browser app resources category has the highest weight
defining the app has more problems with resources. In the
second version, weight of resources has reduced slightly to
74%. However, in version three weight of resources again

increased.

mV-1 mV-2 mV-3

1.2

0.8 -
0.6
0.4 -
0.2 -

0O - T T T 1
Res Us Er Pro Price Com

Figure 4: Opera Browser’s weight under HLC

It is showing that the app has problems mainly in resources
and usage class. In pricing class, even though, in the third
version the number of total reviews increased from previous
version, it is shown that weight is still lower 1.8% to 1.6% from
that version. This means that, for pricing category the rating
is better. The Figure 4 showed the comparison among opera
app review classes. A keen relation among versions is visible

and resource value is higher.

Table 8. Firefox browser's weight under HLC

Version 1 Version 2 | Version 3
HLC | Total | Norm. | Total | Norm. | Total |Norm.
Rev. |Weight | Rev. | Weight | Rev. [Weight
Res 255| 0.42 85 0.59 144 | 0.66
Us 310| 0.53 89 0.49 | 166| 0.82
Er 368 1 97 1 154 1
Pro 87 | 0.03 42 | 0.10 76 | 0.13
Price 18 | 0.002 8 | 0.003 23 | 0.01
Com 3 | 0.006 3 | 0.005 3 |0.003

In table 8, the weight measurement of three versions of high
level classes of Firefox browser is shown. This is also
represented in a graph in Figure 5. For Firefox browser app
in Table 8, error and usage category has the most problems.
For version three, usage class has total 166 reviews whereas
version one has total 310 reviews. However, calculated weight
for this version has increased much more than the first

version, from 53% to 82%. This proves that, usage class has

lower rated reviews defining more problems in this category.
This app showed lowest problems in pricing category. In
protection category, however problems increased more in the
third version, from 3% to 13%, though number of reviews is
less than previous version.

It is clear from presented results that, over the versions, the
sub-classes are also maintaining a continuation like the high
level classes. Therefore, it can be a very good way where the
developer can find out the pattern of poor reviews and

eventually can offer a better version release.
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Fig 5: Firefox Browser’s weight under HLC

F. Threats to Validity

This approach works on the real-time reviews of the
corresponding Android apps. Hence the biased or fake review
may negatively effect on the result of predicting effective

release direction.

V. CONCLUSION

This paper presented an automatic review classification and
ranking approach to select a specific category on which
developers or analysts should focus for next version release.
This process has been built on user reviews and rating of
specific date range. The reviews are categorized in high level
(resource, pricing, etc.) and low level (memory, battery,
usability, licensing, etc.) classes. Naive Bayes and J48
machine learning algorithms have been used for review
classification, where J48 was reported the best one for review
classification. Review ratings were used as numeric value to
lead the ranking of reviews under each class. By finding the
weight of each review it is possible to know which review is
more useful feedback information and which is not. Finally,

this model has been trained on 7K+ reviews and two different

29



ASM Science Journal, Volume 13, Special Issue 2, 2020 for ICSCC2019

android applications with three version reviews have been
used for result validation. It has been found that, priority

ranking predicts the better release plan more precisely. The
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