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Android applications’ acceptance rate is growing rapidly, which causes a huge competition among 

the developers. To develop acceptable and successful application, user reviews are very important 

source of information. Especially for a better release of new version apps, it is necessary to know the 

user demand. However, manually inspecting all the app reviews are infeasible due to resource and 

time limitations. Only a little solution domain has discovered to categorize user reviews 

automatically. However, those works classify the reviews without giving any suggestion regarding 

which category is more significant. In this paper, reviews were categorized (6 high and 12 low levels) 

and prioritized for effective release by incorporating user demands. This framework uses Naive Bayes 

and J48 classification algorithms, and ranked the reviews by cumulative weights under each class. 

Where J48 reported F-measure score as 0.82 and 0.72 for low and high level classes respectively 

which is better than Naive Bayes model. The cumulative weight confirmed the highest performance, 

which concluded that this approach can effectively categorized and prioritized user reviews. Where 

the prioritized categories will play the significant role in next version of android app release.  
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I. INTRODUCTION 
 

The world is moving towards portable computing system, 

where people spend maximum time using various mobile 

applications. In the popular mobile operating system, app 

stores allow users to express their personal opinion textually 

as well as numerically on every application by the form of 

review and rating respectively. Whether users desired any 

changes in the feature or adding any new one or reporting 

bug problems regarding app are always included in their 

reviews. So user reviews hold important value in the field of 

mobile app industry. On the other hand, ensuring user 

acceptance, developers have to incorporate new features 

according to their review. To this end, review text and rating 

are closely monitored and analyzed simultaneously. 

Empirical studies (Galvis et el., 2013; Tian et al., 2015; 

Pagano et al., 2013) showed that user reviews in app store is 

full of important information, which help developers to take 

appropriate decisions regarding features required to be 

changed, or bug must be solved on the next version release. 

Where, an app can get numerous reviews daily, which lead a 

big review collection gradually. Research study showed that, 

popular apps (e.g., Facebook and Twitter) receive hundreds 

of reviews daily (Licorish et al., 2015). Manual inspection of 

such large volume of review collection is prohibitively time-

consuming. In addition, after review classification it is still 

hard to predict the optimal category for the next release 

development. 

To overcome review analysis problem, several approaches 

have been proposed, where Pagano et al. investigated how 

and when users provide feedback and its impact on mobile 

app user community (Pagano et al., 2013). Panichella et al. 

proposed app review classification taxonomy relevant to 

software maintenance and evolution (Panichella et al., 2015). 

Villarroel et al. proposed a tool to cluster and prioritize 

reviews using predicate features (Villarroel et al., 2016). 

Recently, Ciurumelea et al. defined taxonomy of high and 

low level mobile specific categories which are highly relevant 

for developers during the planning of maintenance and 

evolution activities (Ciurumelea et. al., 2017). This work 



ASM Science Journal, Volume 13, Special Issue 2, 2020 for  ICSCC2019 

 

 

 

22 

classified reviews according to specific taxonomy and link 

the source code to solve a particular issue. 

Most of the techniques classified reviews according to 

limited set of classes and clustered them based on textual 

similarities. After classification, manual analysis is still 

needed to filter out the specific class required to be focused 

for next app release. Because, higher weighted review defines 

high priority; high weighted review has information to work 

on. In contrast, lower rating reviews tend to have 

problematic information, feature requests etc. However, all 

reviews are not equally important or problematic. Therefore, 

measuring review weight under each class will recommend 

developers where to focus in the next release. In a nut shell, 

simply review classification without giving any ranking 

information is not sufficient for effective release plan. 

This paper proposed a method to overcome the specific 

class ranking issue by analysing user reviews. Here, the 

reviews were scraped, pre-processed and classified into 

mobile specific categories. The Naive Bayes and J48 machine 

learning algorithms have been implemented for review 

classification based on textual analysis. As this is a multi-

label classification, binary relevance approach has been used 

to train the data. After classify the reviews into specific 

classes, individual review weight was calculated under each 

category using their associate rating. The cumulative 

categorical weight also measured using individual review 

weight. The standard dataset (Ciurumelea et. al., 2017) with 

7754 reviews were used to train the proposed model, where 

dataset was categorized into 6 high and 12 low level classes 

for fine grained classification. Reviews were collected from 

Google play store for model’s classification testing purpose. 

Two open source web browser apps have been selected to 

experiment the prioritization technique for better release. 

The experimental results of proposed model indicate that 

J48 performed better than Naive Bayes for review 

classification. The lowest and highest F-measure scores for 

low level classes were reported as 0.24 and 0.82 by Naive 

Bayes and J48 respectively. Where, the F-measure average 

scores for high level classes were reported as 0.53 and 0.72 

by Naive Bayes and J48 respectively. On the other hand, 

weighted score of performance class (low level) showed 

highest value in all three versions of every dataset. The 

application performance and resource utilization got highest 

priority among high and low level classes for next app release. 

This is a revised and expanded version of a published paper 

entitled ‘Predicting an Effective Android Application Release 

Based on User Reviews and Ratings’ presented at the 7th 

International Conference on Smart Computing & 

Communications (ICSCC 2019), Curtin University Miri, 

Sarawak, Malaysia 28-30 June 2019 (Mahmud et al., 2019). 

The rest of this paper is organized as follows; section II 

denotes the related works. Sections III and IV described the 

proposed method and result analysis respectively. Finally, 

section V concludes this paper with future research direction. 

 

II. RELATED WORKS 

 

Users’ review prioritization is an important feature for 

identifying better android application’s release. Because of 

significance in practice, several approaches have been 

proposed for classifying user reviews automatically. In the 

following, relevant research work in context of reviews 

classification and prioritization is summarized. 

Pagano et al. investigated how and when users provide 

feedback and its impact on mobile app user community 

(Pagano et al., 2013). The work analysed correlation between 

feedback and its impact on the application popularity. Then 

topics in the user reviews were classified to explore their co-

occurrence, popularities as well as impacts. Finally, user 

feedback integration into requirements and software 

infrastructure was shown. 

Panichella et al. presented a technique to detect and 

classify text in app reviews to facilitate developers in 

accomplishing software maintenance and evaluation task 

(Panichella et. al., 2015). Here, taxonomy was proposed to 

classify reviews into categories relevant to software 

maintenance and evaluation. This approach combines 

natural language processing, text analysis and sentiment 

analysis techniques to classify reviews into defined 

categories. The work claimed that using the techniques 

collaboratively gives better result than individually for 

review classification. 

Villarroel et al. presented a review clustering and 

prioritizing technique to provide app release planning using 

user reviews (Villarroel et al., 2016). Here, the reviews were 

categorized into bug report, suggesting for new feature and 

other category. Then, the reviews were clustered based on 

their similarity to identify groups of related reviews. Finally, 

the clustered reviews were prioritized to recommend which 

cluster should be given focus on next app release. However, 

considering all reviews under a cluster for prioritization is 

not feasible as reviews are not equally important or 

problematic. In addition, assigning average rating to clusters 

is not justified because clusters with higher rated reviews will 
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get more priority compared to lower rated. Therefore, weight 

of each review calculation using their associated rating is 

considered in the proposed method. 

Ciurumelea et al. developed a multi-level taxonomy to 

classify mobile specific reviews into high- and low-level 

classes analyzing 1566 mobile app reviews manually 

(Ciurumelea et al., 2017). The research developed a user 

request reference to facilitate the developer in finding the 

review category and recommend related source code 

required to be modified. Therefore, developer can directly 

focus on specific category or multiple categories for 

modification instead of spoiling time to understanding topic 

from unstructured review sets. In addition, the review 

taxonomy will contribute to mobile app based research 

community. The results reported high precision and recall 

for classifying reviews according to defined taxonomy. 

However, categorical priority assignment is important to 

know which category is most problematic and required to be 

fixed for next app release. 

Luiz et al. proposed a framework to detect topics which are 

negatively impacting the rating of an application and should 

be focused for better user experience (Luiz et al. 2018). In 

this process, relevant features were extracted automatically 

from each review and analyzed sentiment associated with 

them. The model consists of topic modeling, sentiment 

analysis and summarization interface phases. In topic 

modeling, the semantic topics as well as target features were 

identified by analyzing textual reviews and most relevant 

words of each discovered topic. The positive or negative 

sentiment associated with each discovered feature was 

detected using sentiment analysis strategy. The discovered 

topics and their associated sentiment were visualized 

through a summarization interface to the developers. 

Harman et al. introduced app store repository mining 

strategy to guide developers by analysing relationship 

between the technical, business and user perspective 

(Harman et al., 2012). Here, the raw data was extracted from 

app store and retrieves available attributes by parsing those 

data. Finally, the feature information from the textual data 

was extracted and computes the technical, business and 

customer information metrics.  The work also shown the 

correlation between rating and app download rank. 

Vasa et al. analyzed mobile app user reviews and found that 

the length of review is higher when the users give a low rating 

(Vasa et al., 2012). This paper has used rating for calculating 

the weight of each review to focus priority on specific domain 

for next release. However, these research did not address 

review ranking issue for better android application release.  

Khalid et al. studied user reviews to identify and classify 

complaints so that developer can better anticipate those 

(Khalid et al., 2014). The research reported twelve types of 

user complaints, among those, functional error, feature 

request and app crashes are most frequent. Where, low rated 

reviews contain most of the negative complaints. 

Chen et al. proposed a framework to distinguish 

informative and non-informative reviews in order to identify 

most important reviews (Chen et al., 2014). The non-

informative reviews were filtered out and informative 

reviews were grouped based on similarity using topic 

modeling technique. The grouped reviews were ranked 

measuring their importance with respect to other reviews. 

Finally, the results were visualized so that app developer can 

easily find the most significant reviews for maintenance 

work. The research claims encouraging results achieved by 

experiments and case studies.  Three review attributes 

namely text, rating and time stamp have been considered for 

experimentation. However, rating has been focused to assign 

priority for categories and reviews. 

The analysis of existing strategies showed that different 

app reviews methods have been implemented for better 

release. There are exists several review classification 

methods named as linguistic based, review data mining 

based, review rating based, taxonomy of high and low level 

category based, review clustering based, etc. However, few 

research directions found to analyze reviews for assigning 

ranking priority in order to identify the most significant 

reviews required to consider for future better app release. 

 

III. METHODOLOGY 

 

Effective android application release predicting framework is 

proposed using user reviews. In this technique, reviews were 

collected from Google play store and processed to remove 

unwanted characters. Then, reviews were classified into high 

level and then low multi-labeled categories. Finally, 

individual review weight is measured to assign categorical 

priority. The whole process is divided into following steps and 

depicted in Figure 2. 

• Step 1: Review collection 

• Step 2: Data Pre-processing 

• Step 3: Feature Extraction 

• Step 4: Classification Model Construction 
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• Step 5: Model Training and Testing 

The above steps have been elaborately described in the 

following sub-sections. 

 

A. Step 1: Review Collection 

 

The reviews have been collected from Google play store using 

a developed scraper. The review text has been collected 

considering version and release date for a specific app. The 

published date field is an important feature which indicates 

range of review collection for the app. The date is selected 

according to version release date, to compare version to 

version user reviews. Whether they have fixed up the 

particular problematic domain or not is also checked. The 

review scraping process is depicted in Figure 1. 

 

 

Figure 1. Flow chart of review scraping 

 

B. Step 2: Data Pre-Processing 

 

The collected reviews were pre-processed to remove 

undesired characters. This process includes converting letters 

to lower case, removing special characters, removing white 

spaces, stemming, stop words removal and tokenization. In 

English, lower and uppercase words carry same meaning, and 

therefore, words are converted to lower case. Special 

characters added extra noise to review dataset, which are 

removed using regular expression. Stemming, converts the 

words into their base form to reduce vector dimension by 

ignoring similar words. Lovins Stemmer algorithm is used for 

this purpose. Stop words are the unnecessary words that does 

not carry significance in sentence, those words are removed 

using nltk corpus. Finally, the reviews were tokenized to split 

the sentence into tokens. The processed reviews were 

forwarded to feature extraction phase. 

 

 

Figure 2: Overview of the proposed method 

 

Figure 2 depicts the overview of the proposed architecture 

where, Ci, ri, wri are used to represent classes, reviews and 

single review weight respectively. For example, C1(r1, r2, r3, ..., 

rn) represent reviews under class C1 after classification, where 

total 18 classes have been considered. The C1(wr1, wr2, ... wrn) 

represent weight for each review under class C1. The 

cumulative class weight is presented with the summation 

symbol. 

C. Step 3: Feature Extraction 

 

App reviews are text data which cannot be processed by 

machine learning models, they expect their input to be 

numeric. Therefore, textual feature extraction process is 

applied to transform reviews into a feature set that is usable 

by machine learning classifier. This process involves 

conversion of textual data into some numeric representations 
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to be understood by machine learning algorithms.  Bag of 

words approach was applied in this framework to extract 

feature from review dataset. 

 

D. Step 4: Classification Model Construction 

 

Naive Bayes and J48 machine learning algorithms have 

been implemented in this app review prioritization 

framework using bag of words vectorization algorithm. 

Both the Naive Bayes and J48 are prominent in natural 

language processing domain especially for text 

classification, which are applied in this app review 

prioritization method. 

Naive Bayes Classifier: Naive Bayes is a probabilistic 

machine learning algorithm based upon bayes theorem to 

predict the sample category (Han et al., 2011). To train a 

review R, the classifier calculates for each category, the 

probability that the review should be classified under Ci, 

where Ci is the ith category. This relation is defined as below 

making the use of the conditional probability law. 

𝑃(𝐶𝑖|𝑅) =
𝑃(𝐶𝑖)𝑃(𝑅|𝐶𝑖)

𝑃(𝑅)
                                   (1) 

The assumption of this algorithm is, the features are 

independent, that is, the probability of each word in a app 

review is independent of the word’s context and its position 

in the review. Where, P(R|Ci) can be calculated as the product 

of each individual word Wj’s probabilities appearing in the 

category Ci (Wj being the jth of l words in the review). 

J48 Classifier: J48 is a popular machine learning 

algorithm based upon ID3 developed by Ross Quinlan 

(Quinlan et al., 1993), with additional features to address 

problems that ID3 algorithm was unable to deal. The 

additional features of J48 includes accounting for missing 

values, decision trees pruning, continuous attribute value 

ranges, derivation of rules, etc. J48 is an open source Java 

implementation of the C4.5 algorithm in the WEKA data 

mining tool, where J48 class builds a C4.5 decision tree. For 

a given set of reviews, this algorithm splits into two subsets 

low and high level categories using top-down recursive divide 

and conquer approach. In second phase, the procedure is 

repeated for each branch as depicted in Figure 3. 

 

Figure 3. Example of Review Decision Tree 

 

E. Step 5: Model Training and Testing 

 

This method classified reviews into high and low pre-defined 

multi-level classes using Naive Bayes and J48. The model 

completed a training epoch, when the model has seen the 

entire training dataset. The validation dataset was used to 

evaluate the learning accuracy of trained model. This process 

is repeated for a predetermined number of epochs. Finally, 

the classified reviews were prioritized using individual review 

scores. 

Naive Bayes and J48 models have been trained and tested 

to evaluate how effectively the proposed framework can 

classify android mobile app reviews into predefined labels. 

The reviews were classified into 6 high level and 12 low level 

classes. Then, individual and class wise review weight have 

been measured using associated rating and review frequency. 

Finally, the classes were ranked based on their cumulative 

weight. 

 

IV. EXPERIMENT AND 

RESULT 

 

The dataset and experimental results of the proposed 

technique have been discussed in this section. Comparison 

results of Naive Bayes and J48 algorithms for mobile app 

review classification also described. The reviews have been 

classified into high and low level classes. The considered High 

Level Classes (HLC) and Low Level Classes (LLC) are shown 

in Table 1. 
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Table 1. Higher and Lower Level Classes 

Sl. LLC HLC 

1. Performance (Pr) Resource (Res) 

2. User Interface (UI) Usage (Us) 

3. App Usability (AU) Error (Er) 

4. Security (Sec) Protection (Pro) 

5. Privacy (Pri) Pricing (pric) 

6. Licensing (Lic) Compatibility (Com) 

7. Price  

8. Hardware (HW)  

9. Android Version (AV)  

10. Memory (Mem)  

11. Device (Dev)  

12. Battery (Bat)  

 

A. Environment Setup 

 

This experimentation has been conducted using Eclipse IDE 

in Java. For review scraping selenium WebDriver 3.14.0 and 

libraries for Java language 3.141.592, Jsoup Parser 1.11.3 have 

been used. WEKA 3.7.104 has been used for review 

classification purpose. 

 

B. Dataset 

 

The high- and low-level classes defined in (Ciurumelea et al., 

2017) have been considered as training dataset for proposed 

model. The testing dataset has been prepared using scrapped 

reviews, which consists of 7754 users’ reviews. Two web 

browser applications have been selected for review scrapping 

and the reviews were scrapped using release date. The details 

are given below in Table 2. 

 

Table 2. Collected Reviews Details 

Review 

Data 

Version Release 

Date 

Collected 

Reviews 

Opera 

Browser 

(Opera, 

2019) 

49.2.2361.134358 20/12/2018 612 

49.1.2361.134232 14/12/18 838 

49.0.2361.133821 7/12/18 999 

Firefox 

Browser 

(Firefox, 

2019) 

64.0.1 21/12/2018 1237 

64.0.1 14/12/2018 786 

63.0.2 8/11/2018 3172 

C. Evaluation Metric 

 

The review classification efficiency has been evaluated using 

precision, recall and F-measure matrix to measure the 

model’s learning effectiveness. The precision, recall and F-

measure values have been measured for Naive Bayes and J48 

considering low and high level classes. 

 

D. Experiment 

 

This review categorization framework is a multi-label 

classification task, therefore, for each high-level class or low-

level sub-class separate ARFF file has been created. In multi-

label classification each review can be classified under more 

than one label, so each high level class or low level sub-class 

was trained separately using Ciurumelea dataset (Ciurumelea 

et. al., 2017) and then tested with unlabeled (scrapped) 

reviews. J48 algorithm has been selected for final 

classification task as J48 decision tree algorithm reported 

better classification results compare to Nave Bayes. The 

classification results of reviews and associated rating score 

were saved in a file for further processing in next phase. 

 

E. Weight Measurement 

 

Review weight was calculated both individually and class-

wise to be used for category prioritization. The details 

regarding weight measurement are described below. 

Individual Review Scoring: After classification, 

individual review weight is calculated with associated rating 

score using formula (2). 

𝜔𝑖 = 𝑛 ∗
1

𝑅𝑖
                                                 (2) 

Here, 𝜔  = weight of the review, n = total reviews under 

specific high level class or low level sub-class, R = rating of 

the specific review for which weight is being calculated. Lower 

rated reviews are likely to have more information such as bug 

problems, new features, error report to improve an app for 

next release. So, the lowest rating should be of more weight. 

Class wise Review Scoring: Measuring individual 

review scores, cumulative weight for each specific high level 

class or low level sub-class is calculated so that it can be 

prioritized on which specific category developers should put 
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their focus on for next version release of the app. This scoring 

has been measured using equation (3). 

𝑃 = ∑ 𝜔𝑖 ∗ 𝑓𝑖                                                (3)

𝑟

𝑖=1

 

Where, P = the summation of the total weight of all the 

reviews under a class, r = the total number of reviews, and f 

= frequency of review corresponding to the ratings. This 

cumulative review score is used assigning priority to each 

high level class or low level sub-class. The top scored category 

will get highest priority and should be focused on in next 

release of the app. Weight calculation for review prioritization 

is pointed in Algorithm 1. 

 

Algorithm-1: Review Class Prioritization 

Input: Scraped data from play store 

Output: Prioritized value of classes and sub-classes 

1: Begin 

2: 𝐶𝑙 ←read all classes 

3: 𝑅𝑒𝑣𝑙 ←read user reviews for respective class 

4 𝑅𝑎𝑡𝑙 ← read ratings 1 to 5 

5: 𝑖 ← 0, 𝑓 ← {}, j← 0, 𝑅𝑒𝑣𝑖𝑒𝑤𝑝𝑟𝑖𝑜 ← {}, 

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑡𝑜𝑡𝑎𝑙 ← {} 

6: for each class 𝑐𝑖 ∈ 𝐶𝑙 

7:      if (i< total (𝐶𝑙)) do 

8:            n ←count (𝑐𝑖) 

9:           j ← 0 

10:           for 𝑟𝑖 ∈ 𝑅𝑎𝑡𝑙 do 

11:                if (𝑗 < 𝑡𝑜𝑡𝑎𝑙(𝑅𝑎𝑡𝑙)) then 

12:                     𝑓(𝑗) ← 𝑟𝑒𝑖𝑣𝑒𝑤 ∈ 𝑟𝑖 

13:                     𝑤(𝑗) ← 𝑛 ∗ (
1

𝑟𝑎𝑡𝑖𝑛𝑔𝑣𝑎𝑙𝑢𝑒
) 

14:                     𝑅𝑒𝑣𝑖𝑒𝑤𝑝𝑟𝑖𝑜(𝑗) ← 𝑓(𝑗) ∗ 𝑤(𝑗) 

15:                     𝑗 ← 𝑗 + 1 

16:                end if 

17:           end for 

18:           𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑡𝑜𝑡𝑎𝑙(𝑖) ← ∑ (𝑅𝑒𝑣𝑖𝑒𝑤𝑝𝑟𝑖𝑜
𝑛
𝑖=0 ) 

19:           𝑖 ← 𝑗 + 1 

20:      end if 

21: end for 

22: End 

 
In Algorithm-1, variables were initialization in line 2 to 5, 

where 𝐶𝑙 , 𝑅𝑒𝑣𝑙 , 𝑅𝑎𝑡𝑙 , 𝑅𝑒𝑣𝑖𝑒𝑤𝑝𝑟𝑖𝑜 , and 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑡𝑜𝑡𝑎𝑙 

represents list of classes, list of reviews, list of ratings, review 

priority values and total priority for each review respectively. 

The individual review priority was calculated under each 

rating (line: 10-15), where total priority under each review 

class was measured in line 18. 

 

F. Result Analysis 

 

The labeled and unlabeled review dataset have been utilized 

for training and testing the model respectively. Naive Bayes 

and J48 algorithms were executed for review classification. 

The algorithms’ reported comparative classification results of 

LLC and HLC are reported in 3 and 4 respectively. 

 
Table 3. NB & J48 LLC Classification Results 

LLC Precision Recall F-Measure 

NB J48 NB J48 NB J48 

Pr 0.29 0.92 0.80 0.52 0.42 0.67 

UI 0.52 0.88 0.86 0.70 0.65 0.78 

AU 0.34 0.80 0.76 0.67 0.47 0.73 

Sec 0.34 0.86 0.81 0.70 0.48 0.77 

Pri 0.17 0.94 0.57 0.41 0.26 0.57 

Lic 0.20 0.76 0.72 0.62 0.31 0.68 

Price 0.22 1.00 0.78 0.59 0.34 0.74 

HW 0.15 0.89 0.73 0.35 0.24 0.50 

AV 0.16 0.71 0.66 0.31 0.26 0.43 

Mem 0.19 0.95 0.79 0.78 0.30 0.85 

Dev 0.26 0.89 0.85 0.50 0.40 0.64 

Bat 0.30 0.96 0.80 0.71 0.44 0.82 

Avg 0.26 0.88 0.76 0.57 0.38 0.68 

 
 

The LLC evaluated scores are reported in Table 3. Where, 

precision value is always higher for J48 and recall value is 

higher for Naive Bayes. However, F-measure is always better 

for J48 than Naive Bayes. As stated in Table 3, lowest and 

highest F-measure scores are shown as 0.24 and 0.82 by 

Naive Bayes and J48 respectively. 

According to Table 4, J48 showed better HLC classification 

efficiency compare to Naive Bayes algorithm. Average J48 

scores are always higher than Naive Bayes except recall. The 

F-measure average scores are 0.53 and 0.72 for NB and J48 

respectively. Thus, investigated scores in Table4 indicates 

J48 is capable of classifying app reviews better than Naive 

Bayes model. 
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Table 4. NB & J48 HLC Classification Results 

HLC Precision Recall F-Measure 

NB J48 NB J48 NB J48 

Res 0.29 0.90 0.78 0.50 0.42 0.64 

Us 0.58 0.87 0.86 0.72 0.70 0.79 

Er 0.60 0.92 0.86 0.83 0.71 0.87 

Pro 0.37 0.88 0.77 0.66 0.50 0.75 

Pric 0.26 0.90 0.76 0.57 0.39 0.70 

Com 0.33 0.80 0.80 0.45 0.47 0.57 

Avg 0.41 0.88 0.80 0.62 0.53 0.72 

 
 

Weight Measurement: The weight of each review is 

calculated under each class or sub-class using three different 

versions of Opera and Firefox browsers app. The measured 

weighted results have been shown in Tables 5, 6, 7 and 8 using 

three version’s data. The weight of each high level class and 

low level sub-class has been measured based on classification 

results to identify the most stable and vulnerable apps. The 

weights were normalized to keep the value in o to 1 range to 

avoid biased ranking.  

In Table 5, normalized weight of each LLC for opera 

browser app has shown. Analysing the reported results, it is 

found that opera browser app has problems with 

performance category through the all version. However, UI 

category reviews are improved in the third version compare 

to previous version, from 72% to 57%. In case of security, 

problems are showing up gradually in the later versions than 

before. This app is in good position for price, version and 

hardware classes. 

The Firefox browser app review LLC weight are shown in 

Table 6, where performance and UI categories are the most 

problem affected. UI category has reduced slightly, from 86% 

to 74%. In app usability class, weight has risen from 6.4% to 

9% whereas total number of reviews were reduced from 79 to 

58. This shows that the reviews in this class are low rated. 

Also, this app shows better position in price and android 

version classes as they are the categories with lowest weight. 

The weighted results under HLC using Opera and Firefox 

app reviews are shown in Table 7 and 8 respectively. Where, 

Figure 4 and 5 depicted the comparison results. 

 

 

 

Table 5. Opera browser's weight under LLC 

LLC 
 

Version 1 Version 2 Version 3 
Total 
Rev. 

Norm. 
Weight 

Total 
Rev. 

Norm. 
Weight 

Total 
Rev. 

Norm. 
Weight 

Pr 53 1 41 1 54 1 

UI 26 0.37 33 0.72 36 0.57 

AU 21 0.12 20 0.18 16 0.089 

Sec 3 0.002 4 0.007 7 0.024 

Pri 3 0.008 1 0.0004 3 0.004 

Lic 3 0.006 2 0.002 3 0.003 

Price 1 0.0002 2 0.006 3 0.003 

HW 1 0.001 1 0.0004 1 0.0003 

AV 3 0.004 0 0 1 0.0003 

Mem 0.00 0.00 2 0.003 1 0.0003 

Dev 0.00 0.00 2 0.005 1 0.0003 

Bat 0.00 0.00 0 0.00 0 0.00 
 

 
Table 6. Firefox browser's weight under LLC 

LLC 
 

Version 1 Version 2 Version 3 
Total 
Rev. 

Norm. 
Weight Rev. 

Norm. 
Weight 

Total 
Rev. 

Norm. 
Weight 

Pr 248 1 84 1 142 1 

UI 239 0.86 69 0.55 120 0.74 

AU 79 0.064 28 0.06 58 0.09 

Pri 59 0.04 25 0.07 50 0.098 

Dev 33 0.02 5 0.004 16 0.02 

HW 27 0.01 3 0.001 10 0.006 

Sec 32 0.0099 19 0.030 30 0.03 

Mem 18 0.01 5 0.003 4 0.001 

Bat 14 0.01 5 0.003 9 0.004 

Lic 11 0.001 5 0.003 16 0.010 

Price 10 0.001 6 0.004 7 0.003 

AV 3 0.0001 4 0.003 5 0.002 

 

 
Table 7. Opera browser's weight under HLC 

HLC 
 

Version 1 Version 2 Version 3 
Total 
Rev. 

Norm. 
Weight 

Total 
Rev. 

Norm. 
Weight 

Total 
Rev. 

Norm. 
Weight 

Res 53 1 53 0.74 54 1 

Us 47 0.92 51 1 48 0.97 

Er 24 0.395 21 0.33 20 0.27 

Pro 5 0.008 5 0.007 10 0.048 

Price 4 0.01 4 0.018 7 0.016 

Com 3 0.006 3 0.005 3 0.003 
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In Table 7, it can be seen that, for the first version of Opera 

browser app resources category has the highest weight 

defining the app has more problems with resources. In the 

second version, weight of resources has reduced slightly to 

74%. However, in version three weight of resources again 

increased.  

 

Figure 4: Opera Browser’s weight under HLC 

 
It is showing that the app has problems mainly in resources 

and usage class. In pricing class, even though, in the third 

version the number of total reviews increased from previous 

version, it is shown that weight is still lower 1.8% to 1.6% from 

that version. This means that, for pricing category the rating 

is better. The Figure 4 showed the comparison among opera 

app review classes. A keen relation among versions is visible 

and resource value is higher. 

 
Table 8. Firefox browser's weight under HLC 

HLC 
 

Version 1 Version 2 Version 3 
Total 
Rev. 

Norm. 
Weight 

Total 
Rev. 

Norm. 
Weight 

Total 
Rev. 

Norm. 
Weight 

Res 255 0.42 85 0.59 144 0.66 

Us 310 0.53 89 0.49 166 0.82 

Er 368 1 97 1 154 1 

Pro 87 0.03 42 0.10 76 0.13 

Price 18 0.002 8 0.003 23 0.01 

Com 3 0.006 3 0.005 3 0.003 

 

In table 8, the weight measurement of three versions of high 

level classes of Firefox browser is shown. This is also 

represented in a graph in Figure 5. For Firefox browser app 

in Table 8, error and usage category has the most problems. 

For version three, usage class has total 166 reviews whereas 

version one has total 310 reviews. However, calculated weight 

for this version has increased much more than the first 

version, from 53% to 82%. This proves that, usage class has 

lower rated reviews defining more problems in this category. 

This app showed lowest problems in pricing category. In 

protection category, however problems increased more in the 

third version, from 3% to 13%, though number of reviews is 

less than previous version. 

It is clear from presented results that, over the versions, the 

sub-classes are also maintaining a continuation like the high 

level classes. Therefore, it can be a very good way where the 

developer can find out the pattern of poor reviews and 

eventually can offer a better version release. 

 

 

Fig 5: Firefox Browser’s weight under HLC 

 

F. Threats to Validity 

 

This approach works on the real-time reviews of the 

corresponding Android apps. Hence the biased or fake review 

may negatively effect on the result of predicting effective 

release direction. 

 

V. CONCLUSION 

 

This paper presented an automatic review classification and 

ranking approach to select a specific category on which 

developers or analysts should focus for next version release. 

This process has been built on user reviews and rating of 

specific date range. The reviews are categorized in high level 

(resource, pricing, etc.) and low level (memory, battery, 

usability, licensing, etc.) classes. Naive Bayes and J48 

machine learning algorithms have been used for review 

classification, where J48 was reported the best one for review 

classification. Review ratings were used as numeric value to 

lead the ranking of reviews under each class. By finding the 

weight of each review it is possible to know which review is 

more useful feedback information and which is not. Finally, 

this model has been trained on 7K+ reviews and two different 
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android applications with three version reviews have been 

used for result validation. It has been found that, priority 

ranking predicts the better release plan more precisely. The 

automated code segment localization for incorporating user 

review feedback in next version application release will be a 

future research direction of this paper.
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