
*Corresponding author’s e-mail: mukul.arahman@gmail.com

ASM Sc. J., 13, Special Issue 2, 2020 for ICSCC2019, 21-30

Prioritize Android App Reviews for Effective
Version Release

Md Abdur Rahman1*, Oishi Mahmud2, Nishat Tasnim Niloy2, and Md Saeed Siddik2

1Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, Bangladesh

 2,3,4Institute of Information Technology, University of Dhaka, Dhaka, Bangladesh

Android applications’ acceptance rate is growing rapidly, which causes a huge competition among

the developers. To develop acceptable and successful application, user reviews are very important

source of information. Especially for a better release of new version apps, it is necessary to know the

user demand. However, manually inspecting all the app reviews are infeasible due to resource and

time limitations. Only a little solution domain has discovered to categorize user reviews

automatically. However, those works classify the reviews without giving any suggestion regarding

which category is more significant. In this paper, reviews were categorized (6 high and 12 low levels)

and prioritized for effective release by incorporating user demands. This framework uses Naive Bayes

and J48 classification algorithms, and ranked the reviews by cumulative weights under each class.

Where J48 reported F-measure score as 0.82 and 0.72 for low and high level classes respectively

which is better than Naive Bayes model. The cumulative weight confirmed the highest performance,

which concluded that this approach can effectively categorized and prioritized user reviews. Where

the prioritized categories will play the significant role in next version of android app release.

Keywords: android app release; NLP; machine learning; review prioritization

I. INTRODUCTION

The world is moving towards portable computing system,

where people spend maximum time using various mobile

applications. In the popular mobile operating system, app

stores allow users to express their personal opinion textually

as well as numerically on every application by the form of

review and rating respectively. Whether users desired any

changes in the feature or adding any new one or reporting

bug problems regarding app are always included in their

reviews. So user reviews hold important value in the field of

mobile app industry. On the other hand, ensuring user

acceptance, developers have to incorporate new features

according to their review. To this end, review text and rating

are closely monitored and analyzed simultaneously.

Empirical studies (Galvis et el., 2013; Tian et al., 2015;

Pagano et al., 2013) showed that user reviews in app store is

full of important information, which help developers to take

appropriate decisions regarding features required to be

changed, or bug must be solved on the next version release.

Where, an app can get numerous reviews daily, which lead a

big review collection gradually. Research study showed that,

popular apps (e.g., Facebook and Twitter) receive hundreds

of reviews daily (Licorish et al., 2015). Manual inspection of

such large volume of review collection is prohibitively time-

consuming. In addition, after review classification it is still

hard to predict the optimal category for the next release

development.

To overcome review analysis problem, several approaches

have been proposed, where Pagano et al. investigated how

and when users provide feedback and its impact on mobile

app user community (Pagano et al., 2013). Panichella et al.

proposed app review classification taxonomy relevant to

software maintenance and evolution (Panichella et al., 2015).

Villarroel et al. proposed a tool to cluster and prioritize

reviews using predicate features (Villarroel et al., 2016).

Recently, Ciurumelea et al. defined taxonomy of high and

low level mobile specific categories which are highly relevant

for developers during the planning of maintenance and

evolution activities (Ciurumelea et. al., 2017). This work

ASM Science Journal, Volume 13, Special Issue 2, 2020 for ICSCC2019

22

classified reviews according to specific taxonomy and link

the source code to solve a particular issue.

Most of the techniques classified reviews according to

limited set of classes and clustered them based on textual

similarities. After classification, manual analysis is still

needed to filter out the specific class required to be focused

for next app release. Because, higher weighted review defines

high priority; high weighted review has information to work

on. In contrast, lower rating reviews tend to have

problematic information, feature requests etc. However, all

reviews are not equally important or problematic. Therefore,

measuring review weight under each class will recommend

developers where to focus in the next release. In a nut shell,

simply review classification without giving any ranking

information is not sufficient for effective release plan.

This paper proposed a method to overcome the specific

class ranking issue by analysing user reviews. Here, the

reviews were scraped, pre-processed and classified into

mobile specific categories. The Naive Bayes and J48 machine

learning algorithms have been implemented for review

classification based on textual analysis. As this is a multi-

label classification, binary relevance approach has been used

to train the data. After classify the reviews into specific

classes, individual review weight was calculated under each

category using their associate rating. The cumulative

categorical weight also measured using individual review

weight. The standard dataset (Ciurumelea et. al., 2017) with

7754 reviews were used to train the proposed model, where

dataset was categorized into 6 high and 12 low level classes

for fine grained classification. Reviews were collected from

Google play store for model’s classification testing purpose.

Two open source web browser apps have been selected to

experiment the prioritization technique for better release.

The experimental results of proposed model indicate that

J48 performed better than Naive Bayes for review

classification. The lowest and highest F-measure scores for

low level classes were reported as 0.24 and 0.82 by Naive

Bayes and J48 respectively. Where, the F-measure average

scores for high level classes were reported as 0.53 and 0.72

by Naive Bayes and J48 respectively. On the other hand,

weighted score of performance class (low level) showed

highest value in all three versions of every dataset. The

application performance and resource utilization got highest

priority among high and low level classes for next app release.

This is a revised and expanded version of a published paper

entitled ‘Predicting an Effective Android Application Release

Based on User Reviews and Ratings’ presented at the 7th

International Conference on Smart Computing &

Communications (ICSCC 2019), Curtin University Miri,

Sarawak, Malaysia 28-30 June 2019 (Mahmud et al., 2019).

The rest of this paper is organized as follows; section II

denotes the related works. Sections III and IV described the

proposed method and result analysis respectively. Finally,

section V concludes this paper with future research direction.

II. RELATED WORKS

Users’ review prioritization is an important feature for

identifying better android application’s release. Because of

significance in practice, several approaches have been

proposed for classifying user reviews automatically. In the

following, relevant research work in context of reviews

classification and prioritization is summarized.

Pagano et al. investigated how and when users provide

feedback and its impact on mobile app user community

(Pagano et al., 2013). The work analysed correlation between

feedback and its impact on the application popularity. Then

topics in the user reviews were classified to explore their co-

occurrence, popularities as well as impacts. Finally, user

feedback integration into requirements and software

infrastructure was shown.

Panichella et al. presented a technique to detect and

classify text in app reviews to facilitate developers in

accomplishing software maintenance and evaluation task

(Panichella et. al., 2015). Here, taxonomy was proposed to

classify reviews into categories relevant to software

maintenance and evaluation. This approach combines

natural language processing, text analysis and sentiment

analysis techniques to classify reviews into defined

categories. The work claimed that using the techniques

collaboratively gives better result than individually for

review classification.

Villarroel et al. presented a review clustering and

prioritizing technique to provide app release planning using

user reviews (Villarroel et al., 2016). Here, the reviews were

categorized into bug report, suggesting for new feature and

other category. Then, the reviews were clustered based on

their similarity to identify groups of related reviews. Finally,

the clustered reviews were prioritized to recommend which

cluster should be given focus on next app release. However,

considering all reviews under a cluster for prioritization is

not feasible as reviews are not equally important or

problematic. In addition, assigning average rating to clusters

is not justified because clusters with higher rated reviews will

ASM Science Journal, Volume 13, Special Issue 2, 2020 for ICSCC2019

23

get more priority compared to lower rated. Therefore, weight

of each review calculation using their associated rating is

considered in the proposed method.

Ciurumelea et al. developed a multi-level taxonomy to

classify mobile specific reviews into high- and low-level

classes analyzing 1566 mobile app reviews manually

(Ciurumelea et al., 2017). The research developed a user

request reference to facilitate the developer in finding the

review category and recommend related source code

required to be modified. Therefore, developer can directly

focus on specific category or multiple categories for

modification instead of spoiling time to understanding topic

from unstructured review sets. In addition, the review

taxonomy will contribute to mobile app based research

community. The results reported high precision and recall

for classifying reviews according to defined taxonomy.

However, categorical priority assignment is important to

know which category is most problematic and required to be

fixed for next app release.

Luiz et al. proposed a framework to detect topics which are

negatively impacting the rating of an application and should

be focused for better user experience (Luiz et al. 2018). In

this process, relevant features were extracted automatically

from each review and analyzed sentiment associated with

them. The model consists of topic modeling, sentiment

analysis and summarization interface phases. In topic

modeling, the semantic topics as well as target features were

identified by analyzing textual reviews and most relevant

words of each discovered topic. The positive or negative

sentiment associated with each discovered feature was

detected using sentiment analysis strategy. The discovered

topics and their associated sentiment were visualized

through a summarization interface to the developers.

Harman et al. introduced app store repository mining

strategy to guide developers by analysing relationship

between the technical, business and user perspective

(Harman et al., 2012). Here, the raw data was extracted from

app store and retrieves available attributes by parsing those

data. Finally, the feature information from the textual data

was extracted and computes the technical, business and

customer information metrics. The work also shown the

correlation between rating and app download rank.

Vasa et al. analyzed mobile app user reviews and found that

the length of review is higher when the users give a low rating

(Vasa et al., 2012). This paper has used rating for calculating

the weight of each review to focus priority on specific domain

for next release. However, these research did not address

review ranking issue for better android application release.

Khalid et al. studied user reviews to identify and classify

complaints so that developer can better anticipate those

(Khalid et al., 2014). The research reported twelve types of

user complaints, among those, functional error, feature

request and app crashes are most frequent. Where, low rated

reviews contain most of the negative complaints.

Chen et al. proposed a framework to distinguish

informative and non-informative reviews in order to identify

most important reviews (Chen et al., 2014). The non-

informative reviews were filtered out and informative

reviews were grouped based on similarity using topic

modeling technique. The grouped reviews were ranked

measuring their importance with respect to other reviews.

Finally, the results were visualized so that app developer can

easily find the most significant reviews for maintenance

work. The research claims encouraging results achieved by

experiments and case studies. Three review attributes

namely text, rating and time stamp have been considered for

experimentation. However, rating has been focused to assign

priority for categories and reviews.

The analysis of existing strategies showed that different

app reviews methods have been implemented for better

release. There are exists several review classification

methods named as linguistic based, review data mining

based, review rating based, taxonomy of high and low level

category based, review clustering based, etc. However, few

research directions found to analyze reviews for assigning

ranking priority in order to identify the most significant

reviews required to consider for future better app release.

III. METHODOLOGY

Effective android application release predicting framework is

proposed using user reviews. In this technique, reviews were

collected from Google play store and processed to remove

unwanted characters. Then, reviews were classified into high

level and then low multi-labeled categories. Finally,

individual review weight is measured to assign categorical

priority. The whole process is divided into following steps and

depicted in Figure 2.

• Step 1: Review collection

• Step 2: Data Pre-processing

• Step 3: Feature Extraction

• Step 4: Classification Model Construction

ASM Science Journal, Volume 13, Special Issue 2, 2020 for ICSCC2019

24

• Step 5: Model Training and Testing

The above steps have been elaborately described in the

following sub-sections.

A. Step 1: Review Collection

The reviews have been collected from Google play store using

a developed scraper. The review text has been collected

considering version and release date for a specific app. The

published date field is an important feature which indicates

range of review collection for the app. The date is selected

according to version release date, to compare version to

version user reviews. Whether they have fixed up the

particular problematic domain or not is also checked. The

review scraping process is depicted in Figure 1.

Figure 1. Flow chart of review scraping

B. Step 2: Data Pre-Processing

The collected reviews were pre-processed to remove

undesired characters. This process includes converting letters

to lower case, removing special characters, removing white

spaces, stemming, stop words removal and tokenization. In

English, lower and uppercase words carry same meaning, and

therefore, words are converted to lower case. Special

characters added extra noise to review dataset, which are

removed using regular expression. Stemming, converts the

words into their base form to reduce vector dimension by

ignoring similar words. Lovins Stemmer algorithm is used for

this purpose. Stop words are the unnecessary words that does

not carry significance in sentence, those words are removed

using nltk corpus. Finally, the reviews were tokenized to split

the sentence into tokens. The processed reviews were

forwarded to feature extraction phase.

Figure 2: Overview of the proposed method

Figure 2 depicts the overview of the proposed architecture

where, Ci, ri, wri are used to represent classes, reviews and

single review weight respectively. For example, C1(r1, r2, r3, ...,

rn) represent reviews under class C1 after classification, where

total 18 classes have been considered. The C1(wr1, wr2, ... wrn)

represent weight for each review under class C1. The

cumulative class weight is presented with the summation

symbol.

C. Step 3: Feature Extraction

App reviews are text data which cannot be processed by

machine learning models, they expect their input to be

numeric. Therefore, textual feature extraction process is

applied to transform reviews into a feature set that is usable

by machine learning classifier. This process involves

conversion of textual data into some numeric representations

ASM Science Journal, Volume 13, Special Issue 2, 2020 for ICSCC2019

25

to be understood by machine learning algorithms. Bag of

words approach was applied in this framework to extract

feature from review dataset.

D. Step 4: Classification Model Construction

Naive Bayes and J48 machine learning algorithms have

been implemented in this app review prioritization

framework using bag of words vectorization algorithm.

Both the Naive Bayes and J48 are prominent in natural

language processing domain especially for text

classification, which are applied in this app review

prioritization method.

Naive Bayes Classifier: Naive Bayes is a probabilistic

machine learning algorithm based upon bayes theorem to

predict the sample category (Han et al., 2011). To train a

review R, the classifier calculates for each category, the

probability that the review should be classified under Ci,

where Ci is the ith category. This relation is defined as below

making the use of the conditional probability law.

𝑃(𝐶𝑖|𝑅) =
𝑃(𝐶𝑖)𝑃(𝑅|𝐶𝑖)

𝑃(𝑅)
 (1)

The assumption of this algorithm is, the features are

independent, that is, the probability of each word in a app

review is independent of the word’s context and its position

in the review. Where, P(R|Ci) can be calculated as the product

of each individual word Wj’s probabilities appearing in the

category Ci (Wj being the jth of l words in the review).

J48 Classifier: J48 is a popular machine learning

algorithm based upon ID3 developed by Ross Quinlan

(Quinlan et al., 1993), with additional features to address

problems that ID3 algorithm was unable to deal. The

additional features of J48 includes accounting for missing

values, decision trees pruning, continuous attribute value

ranges, derivation of rules, etc. J48 is an open source Java

implementation of the C4.5 algorithm in the WEKA data

mining tool, where J48 class builds a C4.5 decision tree. For

a given set of reviews, this algorithm splits into two subsets

low and high level categories using top-down recursive divide

and conquer approach. In second phase, the procedure is

repeated for each branch as depicted in Figure 3.

Figure 3. Example of Review Decision Tree

E. Step 5: Model Training and Testing

This method classified reviews into high and low pre-defined

multi-level classes using Naive Bayes and J48. The model

completed a training epoch, when the model has seen the

entire training dataset. The validation dataset was used to

evaluate the learning accuracy of trained model. This process

is repeated for a predetermined number of epochs. Finally,

the classified reviews were prioritized using individual review

scores.

Naive Bayes and J48 models have been trained and tested

to evaluate how effectively the proposed framework can

classify android mobile app reviews into predefined labels.

The reviews were classified into 6 high level and 12 low level

classes. Then, individual and class wise review weight have

been measured using associated rating and review frequency.

Finally, the classes were ranked based on their cumulative

weight.

IV. EXPERIMENT AND

RESULT

The dataset and experimental results of the proposed

technique have been discussed in this section. Comparison

results of Naive Bayes and J48 algorithms for mobile app

review classification also described. The reviews have been

classified into high and low level classes. The considered High

Level Classes (HLC) and Low Level Classes (LLC) are shown

in Table 1.

ASM Science Journal, Volume 13, Special Issue 2, 2020 for ICSCC2019

26

Table 1. Higher and Lower Level Classes

Sl. LLC HLC

1. Performance (Pr) Resource (Res)

2. User Interface (UI) Usage (Us)

3. App Usability (AU) Error (Er)

4. Security (Sec) Protection (Pro)

5. Privacy (Pri) Pricing (pric)

6. Licensing (Lic) Compatibility (Com)

7. Price

8. Hardware (HW)

9. Android Version (AV)

10. Memory (Mem)

11. Device (Dev)

12. Battery (Bat)

A. Environment Setup

This experimentation has been conducted using Eclipse IDE

in Java. For review scraping selenium WebDriver 3.14.0 and

libraries for Java language 3.141.592, Jsoup Parser 1.11.3 have

been used. WEKA 3.7.104 has been used for review

classification purpose.

B. Dataset

The high- and low-level classes defined in (Ciurumelea et al.,

2017) have been considered as training dataset for proposed

model. The testing dataset has been prepared using scrapped

reviews, which consists of 7754 users’ reviews. Two web

browser applications have been selected for review scrapping

and the reviews were scrapped using release date. The details

are given below in Table 2.

Table 2. Collected Reviews Details

Review

Data

Version Release

Date

Collected

Reviews

Opera

Browser

(Opera,

2019)

49.2.2361.134358 20/12/2018 612

49.1.2361.134232 14/12/18 838

49.0.2361.133821 7/12/18 999

Firefox

Browser

(Firefox,

2019)

64.0.1 21/12/2018 1237

64.0.1 14/12/2018 786

63.0.2 8/11/2018 3172

C. Evaluation Metric

The review classification efficiency has been evaluated using

precision, recall and F-measure matrix to measure the

model’s learning effectiveness. The precision, recall and F-

measure values have been measured for Naive Bayes and J48

considering low and high level classes.

D. Experiment

This review categorization framework is a multi-label

classification task, therefore, for each high-level class or low-

level sub-class separate ARFF file has been created. In multi-

label classification each review can be classified under more

than one label, so each high level class or low level sub-class

was trained separately using Ciurumelea dataset (Ciurumelea

et. al., 2017) and then tested with unlabeled (scrapped)

reviews. J48 algorithm has been selected for final

classification task as J48 decision tree algorithm reported

better classification results compare to Nave Bayes. The

classification results of reviews and associated rating score

were saved in a file for further processing in next phase.

E. Weight Measurement

Review weight was calculated both individually and class-

wise to be used for category prioritization. The details

regarding weight measurement are described below.

Individual Review Scoring: After classification,

individual review weight is calculated with associated rating

score using formula (2).

𝜔𝑖 = 𝑛 ∗
1

𝑅𝑖
 (2)

Here, 𝜔 = weight of the review, n = total reviews under

specific high level class or low level sub-class, R = rating of

the specific review for which weight is being calculated. Lower

rated reviews are likely to have more information such as bug

problems, new features, error report to improve an app for

next release. So, the lowest rating should be of more weight.

Class wise Review Scoring: Measuring individual

review scores, cumulative weight for each specific high level

class or low level sub-class is calculated so that it can be

prioritized on which specific category developers should put

ASM Science Journal, Volume 13, Special Issue 2, 2020 for ICSCC2019

27

their focus on for next version release of the app. This scoring

has been measured using equation (3).

𝑃 = ∑ 𝜔𝑖 ∗ 𝑓𝑖 (3)

𝑟

𝑖=1

Where, P = the summation of the total weight of all the

reviews under a class, r = the total number of reviews, and f

= frequency of review corresponding to the ratings. This

cumulative review score is used assigning priority to each

high level class or low level sub-class. The top scored category

will get highest priority and should be focused on in next

release of the app. Weight calculation for review prioritization

is pointed in Algorithm 1.

Algorithm-1: Review Class Prioritization

Input: Scraped data from play store

Output: Prioritized value of classes and sub-classes

1: Begin

2: 𝐶𝑙 ←read all classes

3: 𝑅𝑒𝑣𝑙 ←read user reviews for respective class

4 𝑅𝑎𝑡𝑙 ← read ratings 1 to 5

5: 𝑖 ← 0, 𝑓 ← {}, j← 0, 𝑅𝑒𝑣𝑖𝑒𝑤𝑝𝑟𝑖𝑜 ← {},

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑡𝑜𝑡𝑎𝑙 ← {}

6: for each class 𝑐𝑖 ∈ 𝐶𝑙

7: if (i< total (𝐶𝑙)) do

8: n ←count (𝑐𝑖)

9: j ← 0

10: for 𝑟𝑖 ∈ 𝑅𝑎𝑡𝑙 do

11: if (𝑗 < 𝑡𝑜𝑡𝑎𝑙(𝑅𝑎𝑡𝑙)) then

12: 𝑓(𝑗) ← 𝑟𝑒𝑖𝑣𝑒𝑤 ∈ 𝑟𝑖

13: 𝑤(𝑗) ← 𝑛 ∗ (
1

𝑟𝑎𝑡𝑖𝑛𝑔𝑣𝑎𝑙𝑢𝑒
)

14: 𝑅𝑒𝑣𝑖𝑒𝑤𝑝𝑟𝑖𝑜(𝑗) ← 𝑓(𝑗) ∗ 𝑤(𝑗)

15: 𝑗 ← 𝑗 + 1

16: end if

17: end for

18: 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑡𝑜𝑡𝑎𝑙(𝑖) ← ∑ (𝑅𝑒𝑣𝑖𝑒𝑤𝑝𝑟𝑖𝑜
𝑛
𝑖=0)

19: 𝑖 ← 𝑗 + 1

20: end if

21: end for

22: End

In Algorithm-1, variables were initialization in line 2 to 5,

where 𝐶𝑙 , 𝑅𝑒𝑣𝑙 , 𝑅𝑎𝑡𝑙 , 𝑅𝑒𝑣𝑖𝑒𝑤𝑝𝑟𝑖𝑜 , and 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑡𝑜𝑡𝑎𝑙

represents list of classes, list of reviews, list of ratings, review

priority values and total priority for each review respectively.

The individual review priority was calculated under each

rating (line: 10-15), where total priority under each review

class was measured in line 18.

F. Result Analysis

The labeled and unlabeled review dataset have been utilized

for training and testing the model respectively. Naive Bayes

and J48 algorithms were executed for review classification.

The algorithms’ reported comparative classification results of

LLC and HLC are reported in 3 and 4 respectively.

Table 3. NB & J48 LLC Classification Results

LLC Precision Recall F-Measure

NB J48 NB J48 NB J48

Pr 0.29 0.92 0.80 0.52 0.42 0.67

UI 0.52 0.88 0.86 0.70 0.65 0.78

AU 0.34 0.80 0.76 0.67 0.47 0.73

Sec 0.34 0.86 0.81 0.70 0.48 0.77

Pri 0.17 0.94 0.57 0.41 0.26 0.57

Lic 0.20 0.76 0.72 0.62 0.31 0.68

Price 0.22 1.00 0.78 0.59 0.34 0.74

HW 0.15 0.89 0.73 0.35 0.24 0.50

AV 0.16 0.71 0.66 0.31 0.26 0.43

Mem 0.19 0.95 0.79 0.78 0.30 0.85

Dev 0.26 0.89 0.85 0.50 0.40 0.64

Bat 0.30 0.96 0.80 0.71 0.44 0.82

Avg 0.26 0.88 0.76 0.57 0.38 0.68

The LLC evaluated scores are reported in Table 3. Where,

precision value is always higher for J48 and recall value is

higher for Naive Bayes. However, F-measure is always better

for J48 than Naive Bayes. As stated in Table 3, lowest and

highest F-measure scores are shown as 0.24 and 0.82 by

Naive Bayes and J48 respectively.

According to Table 4, J48 showed better HLC classification

efficiency compare to Naive Bayes algorithm. Average J48

scores are always higher than Naive Bayes except recall. The

F-measure average scores are 0.53 and 0.72 for NB and J48

respectively. Thus, investigated scores in Table4 indicates

J48 is capable of classifying app reviews better than Naive

Bayes model.

ASM Science Journal, Volume 13, Special Issue 2, 2020 for ICSCC2019

28

Table 4. NB & J48 HLC Classification Results

HLC Precision Recall F-Measure

NB J48 NB J48 NB J48

Res 0.29 0.90 0.78 0.50 0.42 0.64

Us 0.58 0.87 0.86 0.72 0.70 0.79

Er 0.60 0.92 0.86 0.83 0.71 0.87

Pro 0.37 0.88 0.77 0.66 0.50 0.75

Pric 0.26 0.90 0.76 0.57 0.39 0.70

Com 0.33 0.80 0.80 0.45 0.47 0.57

Avg 0.41 0.88 0.80 0.62 0.53 0.72

Weight Measurement: The weight of each review is

calculated under each class or sub-class using three different

versions of Opera and Firefox browsers app. The measured

weighted results have been shown in Tables 5, 6, 7 and 8 using

three version’s data. The weight of each high level class and

low level sub-class has been measured based on classification

results to identify the most stable and vulnerable apps. The

weights were normalized to keep the value in o to 1 range to

avoid biased ranking.

In Table 5, normalized weight of each LLC for opera

browser app has shown. Analysing the reported results, it is

found that opera browser app has problems with

performance category through the all version. However, UI

category reviews are improved in the third version compare

to previous version, from 72% to 57%. In case of security,

problems are showing up gradually in the later versions than

before. This app is in good position for price, version and

hardware classes.

The Firefox browser app review LLC weight are shown in

Table 6, where performance and UI categories are the most

problem affected. UI category has reduced slightly, from 86%

to 74%. In app usability class, weight has risen from 6.4% to

9% whereas total number of reviews were reduced from 79 to

58. This shows that the reviews in this class are low rated.

Also, this app shows better position in price and android

version classes as they are the categories with lowest weight.

The weighted results under HLC using Opera and Firefox

app reviews are shown in Table 7 and 8 respectively. Where,

Figure 4 and 5 depicted the comparison results.

Table 5. Opera browser's weight under LLC

LLC

Version 1 Version 2 Version 3
Total
Rev.

Norm.
Weight

Total
Rev.

Norm.
Weight

Total
Rev.

Norm.
Weight

Pr 53 1 41 1 54 1

UI 26 0.37 33 0.72 36 0.57

AU 21 0.12 20 0.18 16 0.089

Sec 3 0.002 4 0.007 7 0.024

Pri 3 0.008 1 0.0004 3 0.004

Lic 3 0.006 2 0.002 3 0.003

Price 1 0.0002 2 0.006 3 0.003

HW 1 0.001 1 0.0004 1 0.0003

AV 3 0.004 0 0 1 0.0003

Mem 0.00 0.00 2 0.003 1 0.0003

Dev 0.00 0.00 2 0.005 1 0.0003

Bat 0.00 0.00 0 0.00 0 0.00

Table 6. Firefox browser's weight under LLC

LLC

Version 1 Version 2 Version 3
Total
Rev.

Norm.
Weight Rev.

Norm.
Weight

Total
Rev.

Norm.
Weight

Pr 248 1 84 1 142 1

UI 239 0.86 69 0.55 120 0.74

AU 79 0.064 28 0.06 58 0.09

Pri 59 0.04 25 0.07 50 0.098

Dev 33 0.02 5 0.004 16 0.02

HW 27 0.01 3 0.001 10 0.006

Sec 32 0.0099 19 0.030 30 0.03

Mem 18 0.01 5 0.003 4 0.001

Bat 14 0.01 5 0.003 9 0.004

Lic 11 0.001 5 0.003 16 0.010

Price 10 0.001 6 0.004 7 0.003

AV 3 0.0001 4 0.003 5 0.002

Table 7. Opera browser's weight under HLC

HLC

Version 1 Version 2 Version 3
Total
Rev.

Norm.
Weight

Total
Rev.

Norm.
Weight

Total
Rev.

Norm.
Weight

Res 53 1 53 0.74 54 1

Us 47 0.92 51 1 48 0.97

Er 24 0.395 21 0.33 20 0.27

Pro 5 0.008 5 0.007 10 0.048

Price 4 0.01 4 0.018 7 0.016

Com 3 0.006 3 0.005 3 0.003

ASM Science Journal, Volume 13, Special Issue 2, 2020 for ICSCC2019

29

In Table 7, it can be seen that, for the first version of Opera

browser app resources category has the highest weight

defining the app has more problems with resources. In the

second version, weight of resources has reduced slightly to

74%. However, in version three weight of resources again

increased.

Figure 4: Opera Browser’s weight under HLC

It is showing that the app has problems mainly in resources

and usage class. In pricing class, even though, in the third

version the number of total reviews increased from previous

version, it is shown that weight is still lower 1.8% to 1.6% from

that version. This means that, for pricing category the rating

is better. The Figure 4 showed the comparison among opera

app review classes. A keen relation among versions is visible

and resource value is higher.

Table 8. Firefox browser's weight under HLC

HLC

Version 1 Version 2 Version 3
Total
Rev.

Norm.
Weight

Total
Rev.

Norm.
Weight

Total
Rev.

Norm.
Weight

Res 255 0.42 85 0.59 144 0.66

Us 310 0.53 89 0.49 166 0.82

Er 368 1 97 1 154 1

Pro 87 0.03 42 0.10 76 0.13

Price 18 0.002 8 0.003 23 0.01

Com 3 0.006 3 0.005 3 0.003

In table 8, the weight measurement of three versions of high

level classes of Firefox browser is shown. This is also

represented in a graph in Figure 5. For Firefox browser app

in Table 8, error and usage category has the most problems.

For version three, usage class has total 166 reviews whereas

version one has total 310 reviews. However, calculated weight

for this version has increased much more than the first

version, from 53% to 82%. This proves that, usage class has

lower rated reviews defining more problems in this category.

This app showed lowest problems in pricing category. In

protection category, however problems increased more in the

third version, from 3% to 13%, though number of reviews is

less than previous version.

It is clear from presented results that, over the versions, the

sub-classes are also maintaining a continuation like the high

level classes. Therefore, it can be a very good way where the

developer can find out the pattern of poor reviews and

eventually can offer a better version release.

Fig 5: Firefox Browser’s weight under HLC

F. Threats to Validity

This approach works on the real-time reviews of the

corresponding Android apps. Hence the biased or fake review

may negatively effect on the result of predicting effective

release direction.

V. CONCLUSION

This paper presented an automatic review classification and

ranking approach to select a specific category on which

developers or analysts should focus for next version release.

This process has been built on user reviews and rating of

specific date range. The reviews are categorized in high level

(resource, pricing, etc.) and low level (memory, battery,

usability, licensing, etc.) classes. Naive Bayes and J48

machine learning algorithms have been used for review

classification, where J48 was reported the best one for review

classification. Review ratings were used as numeric value to

lead the ranking of reviews under each class. By finding the

weight of each review it is possible to know which review is

more useful feedback information and which is not. Finally,

this model has been trained on 7K+ reviews and two different

0

0.2

0.4

0.6

0.8

1

1.2

Res Us Er Pro Price Com

V-1 V-2 V-3

0

0.2

0.4

0.6

0.8

1

1.2

Res Us Er Pro Price Com

V-1 V-2 V-3

ASM Science Journal, Volume 13, Special Issue 2, 2020 for ICSCC2019

30

android applications with three version reviews have been

used for result validation. It has been found that, priority

ranking predicts the better release plan more precisely. The

automated code segment localization for incorporating user

review feedback in next version application release will be a

future research direction of this paper.

VI. REFERENCES

Chen, N., Lin, J., Hoi, S.C., Xiao, X. and Zhang, B. 2014, ‘AR-

miner: mining informative reviews for developers from

mobile app marketplace’, in Proceedings of the 36th

International Conference on Software Engineering, pp.

767-778.

Ciurumelea, A., Schaufelbühl, A., Panichella, S. and Gall, H.C.

2017, ‘Analyzing reviews and code of mobile apps for better

release planning’, in 2017 IEEE 24th International

Conference on Software Analysis, Evolution and

Reengineering (SANER), pp. 91-102.

Firefox Browser, Last Accessed: October, 2019 URL:

https://play.google.com/store/apps/details?id=org.mozill

a.firefox

Galvis Carreño, L.V. and Winbladh, K. 2013, ‘Analysis of user

comments: an approach for software requirements

evolution’, in Proceedings of the 2013 International Conf.

on Software Engineering, pp. 582-591.

Harman, M., Jia, Y. and Zhang, Y. 2012, ‘App store mining

and analysis: MSR for app stores’, in Proceedings of the 9th

IEEE Working Conference on Mining Soft. Repositories,

pp. 108-111.

J. Han and M. Kamber 2011, Data Mining Concepts and

Techniques, Academic Press, ISBN 9780123814807.

J.R.Quinlan 1993, C4.5: Programs for machine learning,

Morgan Kaufman Publishers.

Khalid, H., Shihab, E., Nagappan, M. and Hassan, A.E. 2014,

‘What do mobile app users complain about?’, IEEE

Software, vol. 32, no. 3, pp. 70-77.

Licorish, S.A., Tahir, A., Bosu, M.F. and MacDonell, S.G. 2015,

‘On Satisfying the Android OS Community: User Feedback

Still Central to Developers' Portfolios’, in 2015 24th

Australasian Software Engineering Conf., pp. 78-87.

Luiz, W., Viegas, F., Alencar, R., Mourão, F., Salles, T.,

Carvalho, D., Gonçalves, M.A. and Rocha, L. 2018, ‘A

feature-oriented sentiment rating for mobile app reviews’,

in Proceedings of the 2018 World Wide Web Conference,

International World Wide Web Conferences Steering

Committee, pp. 1909-1918.

Mahmud, O., Niloy, N.T., Rahman, M.A., Siddik, M.S. 2019,

‘Predicting an Effective Android Application Release Based

on User Reviews and Ratings’, in International Conference

on Smart Computing & Communications (ICSCC 2019).

Opera Browser: Last Accessed: October, 2019, URL:

https://play.google.com/store/apps/details?id=com.opera

.browser

Pagano, D. and Maalej, W. 2013, ‘User feedback in the

appstore: An empirical study’, in 2013 21st Int.

requirements engineering conference (RE), pp. 125-134.

Panichella, S., Di Sorbo, A., Guzman, E., Visaggio, C.A.,

Canfora, G. and Gall, H.C. 2015, ‘How can i improve my app?

classifying user reviews for software maintenance and

evolution’, in 2015 IEEE international conference on

software maintenance and evolution (ICSME), pp. 281-

290).

Tian, Y., Nagappan, M., Lo, D. and Hassan, A.E. 2015, ‘What

are the characteristics of high-rated apps? a case study on

free android applications’, in 2015 IEEE International Conf.

on Software Maintenance and Evolution (ICSME), pp.

301-310).

Vasa, R., Hoon, L., Mouzakis, K. and Noguchi, A. 2012, ‘A

preliminary analysis of mobile app user reviews’,

in Proceedings of the 24th Australian Computer-Human

Interaction Conference, pp. 241-244.

Villarroel, L., Bavota, G., Russo, B., Oliveto, R. and Di Penta,

M. 2016, ‘Release planning of mobile apps based on user

reviews’, in 2016 IEEE/ACM 38th International Conf. on

Software Engineering (ICSE), pp. 14-24.

