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Automated building crack identification is highly required in the field of civil and construction to 

increase the working efficiency of building surveyors. The current image processing techniques are 

difficult to capture visual representation of cracks in a complex background due to the irregular crack 

patterns and size. Hence, deep learning neural network using Mask Region-Convolutional Neural 

Network (Mask R-CNN) is proposed in this paper to identify cracks in a complex background. Mask 

R-CNN can detect the wall cracks with precise instance segmentation and high classification 

accuracy. In the experiment, Mask R-CNN can achieve mAP50 of 50.0% for crack identification. Mask 

R-CNN is compared with the state-of-the-art object detection method, You Only Look Once version 

3 (YOLOv3), which achieves only mAP50 of 28.7%. Subsequently, Sobel filters are added in the Mask 

R-CNN process to enhance the performance of crack identification. The effect of Sobel filter improves 

the mask of Mask R-CNN by archieving mAP50 of 63.3% with its guiding effect along the edges. 

Keywords: crack identification; mask region-convolutional neural network (Mask R-CNN); you 

only look once version 3 (YOLOv3); sobel filter 

 
 
 

I. INTRODUCTION 

 
Building structures safety and reliability are important in the 

cities with high-rise buildings due to the gradual structural 

deterioration. The appearance of cracks on buildings could 

further increase the rate of deterioration and reduce the 

lifespan of structural integrity under the uncrontrolled 

environmental circumstances (Suresh et al., 2004). Three 

types of common cracking distress can be categorized, i.e. 

longitudinal, transverse and alligator cracks (Saar and 

Talvik, 2010, Wang et al., 2004). The location and extent of 

the cracks are important to be known in order to determine 

the damaging condition 0f a building. Local stiffness of 

building structures may be drastically reduced due to the 

cracks appearance that causes the material discontinuities 

(Aboudi, 1987, Budiansky and O'Connell, 1976). Serious 

cracks may contribute to the structure failure if the 

structures are not maintained on regular basis. Therefore, an 

early crack identification is required to allow precautionary 

measurement to avoid critical damage and failure to be 

occurred (Dhital and Lee, 2012). 

Crack identification refers to a process to detect and locate 

cracks on structures using either manual visual inspection or 

computerized auto-detection. In conventional approach, 

building structural surveys are inspected manually by 

professional surveyors to collect data through visually 

observation of the cracks on site. However, manual building 

survey is time consuming especially in the visual inspection 

of mega structures (Prasanna et al., 2016). During surveying, 

the outline of the cracks are prepared manually by 

specialists, and the cracks condition are noted on a paper. As 

this is completely dependent on the specialist’s knowledge 

and experience, it is hard to assess the building structure 

deterioration objectively using visual inspection (Fujita and 

Hamamoto, 2011).  

Due to the current advancement of technology and 

algorithms, automated building crack identification has 

recently received great attention in the field of civil and 

construction to replace the conventional manual surveying 

method (Broberg, 2013). The accuracy in automated cracks 

identification is a challenging task due to the irregular cracks 

pattern, size and complexity. The conventional image 
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processing techniques based on image pixels often faced the 

difficutly in thresholding value determination and filter size 

selection (McCann et al., 2017). Hence, this issue has led to 

the difficulty of constructing a good internal visual 

representations of cracks (Jain et al., 2014).  

 

 

Figure 1. Framework of the enhanced Mask R-CNN with 

Sobel filter for building crack detection 

With the consideration of pose, scale, conformation, 

clutter and illumination, these image processing techniques 

encounter massive challenges to correctly identify cracks 

(LeCun et al., 2010). Deep learning neural network is 

recently adopted to overcome the limitation of the 

conventional image processing techniques due to its non-

linearity input-output mapping relationship and self-

adaption learning characteristics (Haykin and Network, 

2004). However, the effectiveness of deep learning neural 

network is highly dependent on the amount of quantity or 

quality of the training data that is fed in to the network (Ding 

et al., 2017). In most of real world applications, training data 

is often costly due to the difficulty of data collection (Pan and 

Yang, 2010). In addition, data labeling is another great labor 

efforts for deep learning neural networks training (Zitnick 

and Dollár, 2014). Thus, it is common to deal with limited 

resources condition to train an effective deep learning 

model. 

In this paper, Mask Regional-Convolutional Neural 

Network (Mask R-CNN) is applied to perform crack 

identification and instance segmentation. To further 

improve the performance of Mask R-CNN, the Edge 

Agreement Head (Zimmermann and Siems, 2019) is 

participated with Sobel filter in modifying the output of the 

mask branch to guide the training process. Sobel filter could 

detect the significant edges and cracks direction, and 

subsequently offer an auxiliary task for Mask R-CNN to 

segment the cracks instances.  

 
(a) 

 
(b) 

Figure 2. (a) Ground-truth Mask and (b)Predicted Mask 

with oversegmented region 

With the modified Edge Agreement Head, the proposed 

Mask R-CNN is able to learn faster and hence decrease the 

desired amount of training data to achieve better results 

provided by the guiding effect of Sobel filter. The segmented 

output mask of the enhanced Mask R-CNN is compared with 

the ground truth mask to measure the accuracy.  

II. ENHANCED MASK R-CNN WITH 

SOBEL FILTERING HEAD 

 

A. Mask R-CNN 

 

Mask R-CNN (He et al., 2017) has the same general 

architecture with the Faster R-CNN (Ren et al., 2017) except 

that the region of interest pooling module of Faster R-CNN is 

replaced with the region of interest align module. An 

additional branch known as Regional Proposal Network 

(RPN) is connected toward region of interest (RoI) align for 

generating mask as illustrated in Figure 1. Mask R-CNN is a 

two stages framework for instance segmentation. In first 

stage, the region that contains object with high probability 

Figure 3. Edge Agreement Head: Extended mask branch 
architecture of Mask R-CNN. After the mask output with 
28×28×80 dimensional, mask will assigned to the correct 
class. Then, it will now pass through a 3×3×2 Sobel filter 

and the same applied to the ground truth mask. Both 

output was then compare and calculate with 𝐿2 norm loss 

function which is then results to edge loss 𝐿𝐸𝑑𝑔𝑒 

(Zimmermann and Siems, 2019) 
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will be selected as RoI align. Subsequently, the region of 

interest will filtered by RPN nd fed into three parallel 

branches of the network, i.e. edge agreement head along the 

mask predictor branch with sobel filtering, bounding box 

offset regressor, and softmax classifier. 

 

B. Edge Agreement Head with Sobel 

Filtering 

 

In the observation towards instance segmentation of Mask R-

CNN, the masking does not produce accurate predicted 

output as compared with the real object boundary. The 

output of predicted mask may be over segmented or missing 

segmentation or both existed as the worst case scenario as 

illustrated in Figure 2 as compared to the ground truth mask. 

As observed from the predicted output, it may have some part 

missing of segmentation and some other part was over 

segmented which indicated the worst case scenario. To boost 

the performance to avoid the mistakes such over segmented 

or missing of segmentation, Sobel operator was then applied 

for edge detection and it is effective for crack detection (Talab 

et al., 2016, Jain et al., 2014). 

The core idea of improvement is based on auxiliary task 

added to existing mask branch architecture as illustrated in 

Figure 3. input for the architecture is from the predicted mask 

and ground-truth mask. To note that the predicted mask was 

selected with the mask corresponding to correct class. Both 

input are then perform convolution with 3×3×2 Sobel kernel. 

The filtered output is then compared and calculate with L2 

norm loss function which is then results to edge loss LEdge. L2 

norm loss function also defined as loss between the edges of 

ground-truth mask and predicted mask in our experiment. 

Therefore, the total loss function of Mask R-CNN is updated 

as follows: 

                       LMRCNN = LClass+LBBox+LMask+LEdge                 (1) 

III. EXPERIMENTAL SETUP 

 

Crack data was recorded from the surrounding of Middle East 

Technical University Campus Buildings (Özgenel and Sorguc, 

2018) and the dataset was published at the Mendeley Library, 

which was named as “Concrete Crack Images for 

Classification”. The dataset contains multiple images with 

and without cracks. The sample images are illustrated in 

Figure 4. In the experiments, three classes, i.e. longitudinal, 

transverse and crocodile crack contains 250 images 

respectively. Within these 250 images per class, 200 images 

was used for training and 50 images was used for validation. 

In total, there were 600 training images and 150 validation 

images for three classes. There will also have 10 images 

chosen from the dataset additionaly to each class for testing 

purpose. 

Mean average precision (mAP) is the measurement metric 

in the experiment, which is similar to PASCAL Visual Object 

Classes (VOC) 2007 challenge (Everingham et al., 2010) . 

This measurement with one intersection over union 

threshold will be considered and have mean value over three 

object classes which longitudinal crack, transverse crack, and 

crocodile crack  

(a) 

     
 

     
(b) 

     
 

     
(c) 

     
 

     
Figure 4: Mendeley Library Dataset for (a) Crocodile cracks, 

(b) Longitudinal cracks, (c) Transverse cracks 

with an additional background dummy class. Mean average 

precision is calculated using the Eq. (2) as follows:         

 

          Mean Average Precision = 
∑ Pavg(q)

Q
q=1

Q
              (2) 

 

where Q is the number of queries in the set and Pavg(q) is the 

average precision (AP) for a given query, q in percentage. The 

intersection over union is defined as follows: 
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        Intersection over union =
Overlapping Region

Combined Region
           (3) 

 

Moreover, there are mAP defined by Common Objects in 

Context (COCO) challenge used in this experiment which 

calculated across different object scales such as APs, APM, APL. 

APs is AP for small objects that coves area less than 322; APM 

is AP for medium objects that covers area greater than 322 

but less than 962 and APL is AP for large objects that covers 

area greater than 962 . Pre-trained Common Objects in 

Context (COCO) (Lin et al., 2014) weights were used in this 

experiment to initialize the weights on ResNet feature 

extractor. For others network such as region proposal 

network, the weights were initialized using Xavier uniform 

initializer (Glorot and Bengio, 2010). 

The base configuration of Mask R-CNN was initiated using 

the setup in Table 1. There were four output classes in this 

context, which was crocodile crack, longitudinal crack, 

transverse crack, and the micessalaneous background. The 

backbone used in this paper is ResNet-50. The training steps 

per epoch is set to 100 to visuallize the total loss and mask 

loss. The batch size was set to 2 as the largest size of our 

system can handle and learning rate to 0.001 which to avoid 

the weights explosion that might cause the unstable learning 

(Goodfellow et al., 2016). The optimization set as Stochastic 

Gradient Descent (SGD) with momentum of 0.9 and weight 

decay of 0.0001. 

 

Table 1. Configurations of Mask R-CNN for Building Cracks 

Identification 

Parameter Configuration 
BACKBONE ResNet-50 
BATCH SIZE 2 
OPTIMIZER SGD 
LEARNING RATE 0.001 
LEARNING MOMENTUM 0.9 
WEIGHT DECAY 0.0001 
TRAINING STEPS 100 
RPN ANCHOR SCALES (64, 128, 256,512, 1024) 
RPN TRAIN ANCHORS 
PER IMAGE 

320 

TRAIN ROIS PER IMAGES 200 
 

Another important parameter in Mask R-CNN is the 

regional proposal network anchor scales. The cracks images 

in the dataset contains the image dimension of 1024 as 

illustrated in Figure 4. The anchor scale is set from the 

increase of minimum value 32 to 64 to the maximum value of 

512 to 1024. Figure 5 demonstrates the RoI before refinement 

using 32 to 512 RPN anchor scales. To avoid the slow down of 

training process, the RPN anchor is set to be 320 and the 

number of RoI is set to be 200 per image in the experiment. 

 

 

Figure 5. Example in process of detection indicated anchor 

scale was insufficient to provide anchor boxes for shrouding 

crack in image 

IV. RESULT AND DISCUSSION 

 

A. Mask R-CNN vs YOLOv3 

 

Mask R-CNN and YOLOv3 were compared in the 

experiemntfor for crack identification. YOLOv3 is the state-

of-the-art framework of object detection which is able to 

detect object using single shot multiple detector. The single-

shot detector requires only a single pass in the neural network 

and predicts all bounding boxes with one access without 

specifically going through two times of region proposals 

network as illustrated in Figure 6. However, YOLOv3 can 

achieve mAP50 of 28.7% where was much lower than Mask R-

CNN, which achieved mAP50 of 50.0% as shown in Table 2.  

 

Table 2. Experimental results with comparison in 𝑚𝐴𝑃50 

Method backbone mAP50 

Mask R-CNN ResNet-50-FPN 50.0 

YOLOv3 DarkNet-53 28.7 
 

 
(a) 
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(b) 

 
(c) 

Figure 6. Process in region proposal network: (a)Bounding 

box generation process, (b) regions of interest refinement 

process, (c) detection with non-max suppression process 

A detailed investigation was compared in Yao et al. (2019) 

using the Average Precision (AP) measurement metrice over 

small, medium and large object areas between the YOLOv3 

(Redmon and Farhadi, 2018) and Mask R-CNN (He et al., 

2017). The small AP scale is set as the area size below 322; AP 

for mediurm objects is within 322 and 962; and AP for large 

object with area more than 962, as defined in the COCO 

evaluation metrics (Lin et al., 2014). The performance of 

Mask R-CNN acehived APs = 15.5% , APM = 38.1 %, APL =

52.4% while the YOLOv3 received the result of APs = 18.3%, 

APM = 35.4%, APL = 41.9%. As in comparision between both 

performance, the YOLOv3 performed worse result in the 

large object segmention with APL = 41.9%  as compared to 

Mask R-CNN with APL = 52.4%.  This result indicates that 

Mask R-CNN has consistent performance across all scales of 

object size. As a result, our experiment phenomena can be 

explained as YOLOv3 segemented worse boundary of large 

object as it has much lower values in APL  as compared to 

Mask R-CNN. In addition, the crack dataset used in the 

experiment were full scale crack images. As recorded in the 

experiment by Murao et al. (2019), they concluded that YOLO 

framework performed badly in crack identification with the 

precision ratio of 27.95% in the worst case and 41.63% in the 

best case. In our experiment, the cracks samples detected 

using YOLOv3 were demonstrated in Figure 7. YOLOv3 was 

sensitive to tiny changes in an image, and therefore, the 

segmentation results was worse in the crack identification. As 

illustratated in Figure 8, Mask R-CNN performed better 

segmentation results in all three types of cracks. However, 

there are some misclassfication in Mask R-CNN to segment 

crack correctly in the experiment. 

 

(a) 

     

 

     

(b) 

     

 

     

(c) 

     

 

     

Figure 7. YOLOv3 detection results (a) Crocodile cracks, (b) 

Longitudinal cracks, (c) Transverse cracks 

 

B. Mask R-CNN vs Enhanced Mask R-CNN 

 

Fang et al. (2019) demonstrated the Mask R-CNN models 

performance comparision with FCN8s, SegNet, PSPNet, U 

Net, and Dilate ResNet for crack detetction. Mask R-CNN 

performance was however not very prominent between 

models with precision of 35.20%. This is due to the crack pixel 

and background pixel do not have clear boundary in the 

picture. In Zimmermann and Siems (2019), it also stated that 

masking provided by Mask R-CNN often do not segment the 

real object boundaries accordingly. However, in instance 

segmentation for crack detection, it is especially critical to 

extract the boundary between the crack and the background 

to achieve an accurate result. Therefore, to improve the 

performance of Mask R-CNN, an enchanced Edge Agreement 

Head was added to evaluate the performance of Mask R-CNN. 

Additional mask edge loss was added on to the total loss of 

Mask R-CNN as an indicator for the auxiliary loss for Edge 

Agreement Head. Figure 9 showed the total loss of Mask R-

CNN before and after applying Edge Agreement Head. 

However, the added mask edge loss has contributed the total 

loss increment. 
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(a) 

     

 

     

(b) 

     

 

     

(c) 

     

 

     

Figure 8. Mask R-CNN detection results of (a) Crocodile 

cracks, (b) Longitudinal cracks, (c) Transverse cracks 

 

Figure 9. Total loss per epoch for Mask R-CNN before Edge 

Agreement Head was applied (orange) and Mask R-CNN 

after Edge Agreement Head was applied (blue) 

Instead of investigating the total loss of network, individual 

loss in Mask R-CNN such as mask loss is ploted in Figure 10 

for comparision. The enchanced Mask-RCNN presented the 

functionality to guide the learning process with the lower 

mask loss. The Edge Agreement Head with Sobel Filtering 

decreased the mask loss as compared to the original Mask R-

CNN. The model with added Sobel filter as the Edge 

Agreement Head achieved the mAP50  of 63.3%, which was 

much higher than the original model with mAP50 of 50.0%. 

The samples of test results using the enhanced Mask R-CNN 

is illustrated in Figure 11. 

With increasing of value of mAP50 , it meant that the 

percentage of correct positive predicted crack over the test 

images was increased as well as among all positive cases. 

According to Caruana (1993), Edge Agreement Head is able 

to enhance task generalization by leveraging the domain-

specific information extracted in the training signals of 

related tasks. 

 

 

Figure 10. Mask loss per epoch at training for Mask R-CNN 

before (orange) and after the Edge Agreement Head was 

applied (blue) 

   (a)  

     
     

     
   (b)  

     
     

     
   (c)  

     
     

     
Figure 11. Mask R-CNN after the Edge Agreement Head was 

applied results in test data-set of crack detection of (a) 

Crocodile cracks, (b) Longitudinal cracks, (c) Transverse 

cracks 
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Figure 12. Sample outcome chosen from test data-set of 

crack detection between (a)before and (b) after Sobel 

Filtering Head had applied. (Arrow indicate the area 

affected by over segmentation and circle indiate the area 

affected by missing segmentation) 

As sample model from Figure 12, two main improvement as 

expected such as reducing over segmentation and avoid 

missing part from the mask had gave a better results in 

instance segmentation. Table 3 tabulated the result of Mask 

R-CNN before and after Edge Agreement Head using Soble 

filter. With the good result toward mAP50, the Mask R-CNN 

model was further applied on some real world situation as 

illustrated in Figure 13. However, the outcomes were still 

have a gap towards satisfied results as real world situation 

image consisted of some other object as a noise for crack 

detection but somehow the crack in images was at least 

detected for a big portion. 

 

Table 3. Summary of Mask R-CNN before and after 

enhancement at 120 epochs 

Mask R-CNN Original 
Edge Agreement Head 

with Sobel Filtering 

mAP50 50.0 63.3 

Total Loss 0.7796 1.2140 

Mask Loss 0.2619 0.2603 

Mask Edge Loss - 0.4369 
 

 
(a) 

 
(b) 

 
(c) 

Figure 13. Crack identifications in the real world scenarios 

such as (a) Cracks at the sewage pipes, (b) Cracks on 

external structures, (c) Craks on the wall 

V. CONCLUSION 

 

Enhanced Mask R-CNN with the Edge Agreement Head using 

Sobel Filter is proposed in this paper to identify building 

cracks. First, building surveying images are inserted into the 

Mask-RCNN for region extraction. Subsequent, an accurate 

instance segementation was implemented to retrieve the 

cracks edge. The Edge Agreement Head performed with sobel 

filter is to retrieve the closer cracks on the wall. The 

performance of enhanced Mask R-CNN can achieve up to 

63.3% of mAP. As compared to the original Mask R-CNN, the 

enhanced version of Mask R-CNN has increased mAP of 13.3% 

from 50.0% to 63.3% in building crack identification. In the 

future work, to increase the mAP and accuracy of enhanced 

Mask R-CNN, more training smaples images shall be 

captured and inserted in the experiment training phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Missing 
Segmentation 

Over 
Segmentation 

Improved 
Missing 

Segmentation 

Improved 
Missing 

Segmentation 



ASM Science Journal, Volume 13, Special Issue 2, 2020 for  ICSCC2019 
 
 

 

81 

VI. REFERENCES 

 
Aboudi, J. 1987. Stiffness reduction of cracked solids. 

Engineering Fracture Mechanics, 26, 637-650. 

Broberg, P. 2013. Surface crack detection in welds using 

thermography. NDT & E International, 57, 69-73. 

Budiansky, B. & O'connell, R. J. 1976. Elastic moduli of a 

cracked solid. International Journal of Solids and 

Structures, 12, 81-97. 

Caruana, R. 1993. Multitask learning: a knowledge-based 

source of inductive bias. Proceedings of the Tenth 

International Conference on International Conference on 

Machine Learning. Amherst, MA, USA: Morgan Kaufmann 

Publishers Inc. 

Dhital, D. & Lee, J. R. 2012. A Fully Non-Contact Ultrasonic 

Propagation Imaging System for Closed Surface Crack 

Evaluation. Experimental Mechanics, 52, 1111-1122. 

Ding, J., Li, X. & Gudivada, V. N. Augmentation and 

evaluation of training data for deep learning. 2017 IEEE 

International Conference on Big Data (Big Data), 11-14 Dec. 

2017 2017. 2603-2611. 

Everingham, M., Van gool, L., Williams, C. K. I., Winn, J. & 

Zisserman, A. 2010. The Pascal Visual Object Classes (VOC) 

Challenge. International Journal of Computer Vision, 88, 

303-338. 

Fang, F., Li, L., Rice, M. & Lim, J. Towards Real-Time Crack 

Detection Using a Deep Neural Network With a Bayesian 

Fusion Algorithm. 2019 IEEE International Conference on 

Image Processing (ICIP), 22-25 Sept. 2019 2019. 2976-

2980. 

Fujita, Y. & Hamamoto, Y. 2011. A robust automatic crack 

detection method from noisy concrete surfaces. Machine 

Vision and Applications, 22, 245-254. 

Glorot, X. & Bengio, Y. 2010. Understanding the difficulty of 

training deep feedforward neural networks. Journal of 

Machine Learning Research - Proceedings Track, 9, 249-

256. 

Goodfellow, I., Bengio, Y. & Courville, A. 2016. Deep 

Learning, MIT Press. 

Haykin, S. & Network, N. 2004. A comprehensive foundation. 

Neural networks, 2, 41. 

He, K., Gkioxari, G., Dollár, P. & Girshick, R. Mask R-CNN. 

2017 IEEE International Conference on Computer Vision 

(ICCV), 22-29 Oct. 2017 2017. 2980-2988. 

Jain, A., Gupta, M., Tazi, S. N. & Deepika. Comparison of edge 

detectors. 2014 International Conference on Medical 

Imaging, m-Health and Emerging Communication Systems 

(MedCom), 7-8 Nov. 2014 2014. 289-294. 

Lecun, Y., Kavukcuoglu, K. & Farabet, C. Convolutional 

networks and applications in vision. Proceedings of 2010 

IEEE International Symposium on Circuits and Systems, 

30 May-2 June 2010 2010. 253-256. 

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., 

Ramanan, D., Dollár, P. & Zitnick, C. L. Microsoft COCO: 

Common Objects in Context. In: FLEET, D., PAJDLA, T., 

SCHIELE, B. & TUYTELAARS, T., eds. Computer Vision – 

ECCV 2014, 2014// 2014 Cham. Springer International 

Publishing, 740-755. 

Mccann, M. T., Jin, K. H. & Unser, M. 2017. Convolutional 

Neural Networks for Inverse Problems in Imaging: A 

Review. IEEE Signal Processing Magazine, 34, 85-95. 

Murao, S., Nomura, Y., Furuta, H. & Kim, C.-W. 2019. 

Concrete Crack Detection Using UAV and Deep Learning. 

13th International Conference on Applications of Statistics 

and Probability in Civil Engineering, ICASP13. Seoul, 

South Korea. 

Özgenel, Ç. & Sorguc, A. 2018. Performance Comparison of 

Pretrained Convolutional Neural Networks on Crack 

Detection in Buildings. 

Pan, S. J. & Yang, Q. 2010. A Survey on Transfer Learning. 

IEEE Transactions on Knowledge and Data Engineering, 

22, 1345-1359. 

Prasanna, P., Dana, K. J., Gucunski, N., Basily, B. B., La, H. 

M., Lim, R. S. & Parvardeh, H. 2016. Automated Crack 

Detection on Concrete Bridges. IEEE Transactions on 

Automation Science and Engineering, 13, 591-599. 

Redmon, J. & Farhadi, A. 2018. YOLOv3: An Incremental 

Improvement. 

Ren, S., He, K., Girshick, R. & Sun, J. 2017. Faster R-CNN: 

Towards Real-Time Object Detection with Region Proposal 

Networks. IEEE Trans. Pattern Anal. Mach. Intell., 39, 

1137-1149. 

Saar, T. & Talvik, O. Automatic Asphalt pavement crack 

detection and classification using Neural Networks. 2010 

12th Biennial Baltic Electronics Conference, 4-6 Oct. 2010 

2010. 345-348. 

Suresh, S., S N, O., Ganguli, R. & Mani, V. 2004. 

Identification of crack location and depth in a cantilever 

beam using a modular neural network approach. Smart 

Materials and Structures, 13. 

Talab, A. M. A., Huang, Z., XI, F. & Haiming, L. 2016. 

Detection crack in image using Otsu method and multiple 



ASM Science Journal, Volume 13, Special Issue 2, 2020 for  ICSCC2019 
 
 

 

82 

filtering in image processing techniques. Optik, 127, 1030-

1033. 

Wang, K. C., Elliott, R. P., Meadors, A. & Evans, M. 

Application and Validation of An Automated Cracking 

Survey System. Proceedings of the 6th International 

Conference on Managing Pavements, 2004. 1-19. 

Yao, J., Yu, Z., Yu, J. and Tao, D., 2019. Single Pixel 

Reconstruction for One-stage Instance 

Segmentation. arXiv preprint arXiv:1904.07426. 

Zimmermann, R. S. & Siems, J. N. 2019. Faster training of 

Mask R-CNN by focusing on instance boundaries. 

Computer Vision and Image Understanding, 188, 102795. 

Zitnick, C. L. & Dollár, P. Edge Boxes: Locating Object 

Proposals from Edges. In: FLEET, D., PAJDLA, T., 

SCHIELE, B. & TUYTELAARS, T., eds. Computer Vision – 

ECCV 2014, 2014// 2014 Cham. Springer International 

Publishing, 391-405. 


