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The relationship of bivariate data ordinarily measured using correlation coefficient. The most commonly
used correlation coefficient is the Pearson correlation coefficient. This coefficient is well-known as the
best coefficient for interval or ratio bivariate data with a linear relationship. Even though this coefficient
is good under the mentioned condition, it also becomes very sensitive to a small departure from linearity.
Usually, this is because of the existence of an outlier. For that reason, this paper provides new robust
correlation coefficients which combine the elements of nonparametric technique from the Hodges
Lehmann estimator and the parametric technique based on the Pearson correlation coefficient. This
paper also introduces different scale estimators such as median and median absolute deviation (MADx)
and denoted by ruremed) and rurmapn) respectively. The performance of the proposed correlation
coefficients is measured by the coefficient values and these values are also being compared to the Pearson
correlation coefficient and several existing robust correlation coefficients. The results show that the
Pearson correlation coefficient (r) with no doubt is very good under perfect data condition, but with only
10% outliers, it not only give poor correlation value but turns the direction of the relationship to negative.
While the rarimes) and rurpsapn) offer the highest coefficient values and these values are robust to the
existence of outliers by up to 30%. With very good performance under all data conditions yet simple in
the calculation, the rargmed) and raLmapn is considered a good alternative to the r when need to deal with
outliers.
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I. INTRODUCTION

The correlation coefficient is a known coefficient to measure
a relationship between two variables. Pearson correlation
coefficient is one of the most commonly used correlation
coefficients especially when the variables having a linear
relationship, but it becomes poor when the relationship
deviates from linearity. This shortcoming is usually handled
by using nonparametric correlation coefficients such as
Spearmen or Kendal Tau correlation coefficient. These
correlation coefficients have not influenced by the presence
of the outlier due to the uses of rank in their calculation.
However, rank is not the best option to avoid the effect of the

outlier because it does not use the original data. As stated by
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Xu et al., (2016) using rank instead of the original data might
lead to the losing of useful information.

The Pearson correlation coefficient unable to handle the
outlier due to the use of the mean as its location estimator.
Mean is known to be very sensitive to the outlier with 0%
This drawback the

robust correlation coefficient as

breakdown point. encourages
development of a
alternatives to the Pearson correlation coefficient in handling
the outlier. The robust correlation coefficient can be a better
option compared to the nonparametric because it lessens the
influence of the outlier but remains to use the original data.
To date, the robust correlation coefficient base on median
developed by Sheylyakov et. al, (2012) provided a more
reliable measurement of the coefficient. Median is known to

have the maximum breakdown point which is 50%. However,
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the more robust estimator not always be the best estimator.
The efficiency of the estimator also plays an important role in
The

more robust the estimator will reduce the efficiency of the

order to provide better properties to the coefficient.

estimator (Geyer, 2003).

Hence, in choosing a suitable estimator for developing any
coefficient measure, the efficiency also needs to be
considered. Besides the mean and median, Hodges Lehman
(HL) estimator is a worth estimator to study on. The
investigation on the efficiency of the HL estimator revealed
that this estimator is more efficient compared to mean and
median under most conditions of t-distribution family. It also
has an intermediate breakdown point with 30%.

Based on the good properties of the HL estimator,
therefore, the objective of this paper is to develop a robust
correlation coefficient using the HL estimator which believe
will improve the performance of the correlation coefficient in
measuring the relationship of two variables. The evaluation
of the developed robust correlation coefficient is assessed
based on the simulation study and to check the validity, real

data analysis is conducted.

1I1. MATERIAL AND METHODS

The development of the robust correlation coefficient
using the HL estimator in this study is based on work by
Sheylyakov et. al, (2012). Their robust correlation
coefficient utilizes median absolute deviation (MAD) as
location and scale estimator to obtain a median
correlation coefficient and MAD correlation coefficient

as defined in equation 1 and 2.

(med?[u|— med?|v|)

free = (med?|u| + med?|v])
(1
- _ (MAD? (u) - MAD*(v) -
(MAD?(u) + MAD?(V))
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J2MAD(x)  v2MAD(y) ®)
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The calculation of this coefficient is based on a robust scale

estimator namely median absolute deviation (MAD). The
formula for MAD estimator is shown in equation 5.

MAD = med|X; — medX|

(%)

The MAD was promoted by Hampel (1974) with maximum
breakdown point which is 50% and bounded influence
function. These properties increase the ability of the
correlation coefficient in handling outlier. Based on work by
Sheylyakov et. al., (2012), the MAD provides more robust
result under contaminated data especially when the sample
size is small. They also found that the MAD can be an efficient
scale estimator and suitable to be used in measuring
dispersion (in equation 3 and 4). Thus, in the development of
a robust correlation coefficient using the HL estimator, the
MAD is remained as scale estimator as in equation 3 and 4.

The HL estimator was first introduced by Hodges and
Lehmann (1963) where it found to be a consistent and
median-unbiased estimator of the population mean under
symmetric distribution. This estimator also estimates the
“pseudo-median” that is closely related to population median
(Boos, 1982) under non-normal distribution. Equation 6

describes the calculation of the HL estimator.

Xit+X;
2
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(6)

So, in this study, the robust correlation coefficient using the

0 = median {
HL estimator is derived as:

(mecf - (ol
(med|u|)2 + (med|v|)2

FHL(med) =

7)

with considering the median to measure the dispersion.
While for MAD as the measurement of dispersion, the

coefficient is denoted as:

2

Eu))2 - (MAD(V);Z ©

u))’ +(MAD(v)

(MAD
(MAD

HL(MAD) =

For both equation (77) and (8) implied the same formula for
u and v where the HL and MAD as its location and scale
estimator respectively.

_ X=HL(x) _y-HL(y)

"= Jaman(x)  V2mAD(y)

9)
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_ X=HL(x)  y-HL(y)
J2MAD(X) V2MAD(y)

(10)

Besides the MAD as a scale estimator, this study also
investigated the performance of the correlation coefficient
when employed another robust scale estimator that is the
MADn. The MADn is the MAD that multiply by a constant
value b=1.4826 that made the MAD more consistent
especially under asymmetric distribution. Therefore the

raLMapn) is indicated as:

(MADn?*u—MADN?v)

THL(MADN) = (yapnzusmMaDnv)
(11)
with u and v are denoted as
x—med(x) y-—med(y)
u= +
J2MAD:(x)  v2MAD(y) (12)
and
o X—med(x) y-—med(y)
J2 MADL(X) 2 MAD(y) (13)

To evaluate the performance of the proposed robust
correlation coefficients, a simulation data is used to get the
coefficient values. This simulated data was set at prior to has
perfect correlation where p = 1. Therefore, the nearest
correlation value to 1 is considered the best. The perfect data
condition is simulated using the linear equation of y; = 2.0 +
1.0x; + u; where x;~Normal(5,1) and u;~Normal(0,0.04).
To see the effect of the outlier, three percentages of
contaminated data also included in the simulation study that
are 10%, 30% and 50%. The contaminated data is performed
by y;~Normal(2,0.04) and x;~Uniform(5,10). For the
sample sizes, this study investigates the performance of the

proposed correlation coefficient values under small sample

III. RESULTS AND DISCUSSION

The performance of the proposed correlation coefficient
which based on the coefficient values is as depicted in Table
1. The correlation coefficient values of the proposed methods
also being compared with the other existing robust
correlation coefficients such as the Pearson correlation
coefficient (), the correlation coefficient based on median
which recommended by Sheylyakov et. al., (2012) denoted by
rmed and rmap. The proposed Hodges Lehmann correlation
coefficients are denoted as ruzmed), rHL(MAD) and raL®apn) that
employed the scale estimator median, MAD and MADn
respectively.

Based on Table 1, under perfect data condition with 0%
contamination, all correlation coefficient values perform well
with the value that is almost 1. The Pearson correlation
coefficient () is the best as it known. However, the r is very
not robust where the values are all demolition when there is
at least 10% contamination in the data. It does not only fail to
measure the degree of relationship but mistakenly change the
direction of the relationship to negative.

When there is a data contamination for at least 10%, the
other robust correlation coefficients offer better
measurement of relationship. Under 10% contamination, the
ruLapn) has the best measurement with the nearest to 1 for
small sample size. For a larger sample size, the rmap and
rurLap) perform best.

The ruap and rurmap) also found to be the best correlation
coefficient for a bigger percentage of contamination which up

to 30%.

Table 1. The correlation coefficient values using simulated data

Data giaz;n?lll_:? r Mmea Mugar MM fred ML paar FHL (14 D,

25 0.9990 0.9975 00984 0.0978 00984 0.0084

Perfect Data 100 0.9990 0.9991 0.9993 0.9992 0.0993 0.9993
400 0.9992 0.9987 0.9987 0.9986 0.9987 0.9987

) 25 01385 09723 09974 08715 0.0974 0.9981
e = 100 -0.2763 0.9368 0.9972 0.8724 0.9972 0.9962
ata {10%) 400 -01712 0.9318 0.9966 0.8621 0.9966 0.9941

) 25 0E885 00267 0.8623 06511 0.8623 07309
contaminated 100 -0.5289 0.1214 0.9097  -0.4140  0.9097 0.8446
ata (30%) 400 -0.4846  0.2375 0.9313  -04200  0.9313 0.8345

: 5 07320  -07278 03701 07607 03701 02373
ggg?g}'l':ffeu 100 -0.6102  -0.6769  -0.5342  -0.7148  -0.5342 -0.5561
= 400 -0.5892  -0.6444  -0.6078  -0.6070  -0.6078  -0.5776

with n=25, a moderate sample with n=100 and large sample

with n= 400.
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Table 2. The number of people with no working experience and the number of unemployment based
on states in Malaysia for the year 2014

Number of
unemployed
Number of people with Number of (with added
no working experience unemployed outlier)
Johor 224 191 91
Kedah 240 168 188
Kelantan 270 230 230
Melaka a1 68 66
Negen Sembilan 126 100 100
Pahang 150 111 111
Perak 203 159 159
Perlis 38 34 34
Pulau Pinang 77 57 57
Selangor 227 164 164
Terengganu 139 115 115
- Kuala Lumpur &0 60 60
- Labuan 23 4 4
- Putrajaya 5] 10 10

Source of data: Statistics Department of Malaysia

From all the values of the coefficients, it is noticeable that
the value of the ruap and raraap) are all exactly the same. It
is something interesting to study where the usage of different
scale estimator might influence the robustness of the
correlation coefficient. This can be seen in the change of the
coefficient values of the proposed HL correlation coefficient
based on the MADn as it scales estimator.

To validate the proposed HL correlation coefficient, this
study also proceeds with the analysis of using real data. For
this reason, a data set of the number of people with no
working experience and the number of unemployment based
on states in Malaysia for the year 2014 is used. The original
data is as depicted in Table 2.

Based on Table 2, a scatter plot as depicted in Figure 1
reviews how the relationship between the number of people
with no working experience and the number of unemployed
based on states in Malaysia for the year 2014.

From Figure 1, it can be seen that most of the plots are on

the straight line which can be considered as a strong linear

relationship.
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Figure 1

However, if the outlier exists, one value will deviate from
the straight line. For example, data from Johor was modified
to give the effect of outlier (from 191 to 91) as bolded in Table
2,

Table 3 displays the compared correlation coefficient values
for this data. In Table 3, all coefficient values give highly
correlation measurement with all are above 0.9. However, the
rphas the smallest value which projected that how it starts to
be influenced by the outlier. Whereas, the other robust
correlation coefficients have more than 0.95. the rmed, rvap,
rurmap) and raraapn have exactly the same value with
0.97833. This indicates that the proposed methods (the HL

correlation coefficients) valid to be used for real data.

Table 3. Correlation coefficient values

Correlation coefficient Coefficient value
Tp 0.93770
T'med 0.97833
'MAD 0.97833
T'HL(MED) 0.95330
THL(MAD) 0.97833
THL(MADR) 0.97833
1V. CONCLUSION

In measuring the degree of relationship, the Pearson
correlation coefficient is always the number one choice
especially when the variables are known to have a linear
relationship. When it comes to non-linear or if there is an
outlier in the data set, the reliability of this coefficient totally
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diminished by even a minimal number of the outlier.

The development of robust correlation coefficients offered
a solution to this problem where the usage of the median in
the correlation coefficient able to handle the occurrence to
the outlier (Sheylyakov et al (2012)). With the highest
breakdown point, the median is considered very robust but
not always can be considered as the best estimator. When it
takes into account the efficiency, the HL estimator seems to
be more efficient (Geyer, 2003). Based on this point, the HL
correlation coefficient provided another option to the
Pearson correlation coefficient when it comes to the existence

of the outlier. The study revealed that the performance of the
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