
_________ 
*Corresponding author’s e-mail: yzulina@um.edu.my 

ASM Sc. J., 13, 2020            

https://doi.org/10.32802/asmscj.2020.sm26(1.15)  

 

Nonparametric Estimation for a Slope of a 
Replicated Linear Functional Relationship 

Model 
 

Azuraini Mohd Arif1, Yong Zulina Zubairi2* and Abdul Ghapor Hussin3 

 

1Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia 

2Centre for Foundation Studies in Science, University of Malaya, 50603 Kuala Lumpur, Malaysia 

3Faculty of Defence Science and Technology, National Defence University of Malaysia,  

57000 Kuala Lumpur, Malaysia 

 

In this paper, we propose a nonparametric method to estimate the slope of a replicated linear functional 

relationship model. The nonparametric method is a robust method in nature and does not affect when 

the observations have outliers. Additionally, the nonparametric method does not require the normality 

assumption. Using simulation studies, we compared the performance of the proposed nonparametric 

method with the traditional method using maximum likelihood estimation. It is found that without any 

outlier, the maximum likelihood estimation works well but when outliers exist in the data, our proposed 

nonparametric method gives a small mean square error, thus suggesting a better estimate. 
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I. INTRODUCTION 

 

Errors-in-variable model (EIVM) can be explained by the 

equation 𝑌 = 𝛼 + 𝛽𝑋. In linear regression, the dependent 

variable 𝑋 is assumed to be fixed and measured without error. 

However, in the errors-in-variable model, both 𝑋 and 𝑌 

variables are measured with error. In real situations, many 

experiments that involves relationships between two random 

variables that cannot be recorded correctly because there 

exists error (Gençay and Gradojevic, 2011; Patefield, 1985) 

thus, the errors-in-variable model is applicable rather than 

the linear regression model.  The EIVM in this paper will 

emphasis on replicated Linear Functional Relationship 

Model (LFRM) where variable 𝑋 is fixed and measured with 

error (Hassan et. al., 2010; Ghapor et. al., 2015).  

Hussin (1997) termed the model as replicated LFRM for 

multiple x and y observations at each level of i. In replicated 

LFRM, it is often found that corresponding to a particular 

pair (𝑋𝑖 , 𝑌𝑖)  there may be replicated observations of 𝑋𝑖 and 𝑌𝑖  

occurring in p groups.  As mentioned by Hussin (1997) and 

Barnett (1970), a linear relationship between 𝑋𝑖  and 𝑌𝑖  are 

given by: 

 

𝑥𝑖𝑗 = 𝑋𝑖 + 𝛿𝑖𝑗  and 𝑦𝑖𝑘 = 𝑌𝑖 + 𝜀𝑖𝑘 

 

where𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖   (1) 

 

for𝑖 = 1,2, ⋯ , 𝑝 , 𝑗 = 1,2, ⋯ , 𝑚𝑖 and 𝑘 = 1,2, ⋯ , 𝑛𝑖 

 

We also assume that the observations on  𝑋𝑖 and 𝑌𝑖  have 

been measured with errors 𝛿𝑖𝑗  and 𝜀𝑖𝑘where𝛿𝑖𝑗~𝑁(0, 𝜎2) 

and𝜀𝑖𝑘~𝑁(0, 𝜏2).Numerous alternative methods of 

estimation have been suggested by many authors that 

required normality assumption which can lead to erroneous 

problems if outliers present in the data (Kendall and Stuart, 

1979; Fuller, 1987). The robust method can be considered in 
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estimating the parameter which does not require the 

normality assumption and also can diminish the effect of 

outliers (Ghapor et. al., 2015).  Although some authors like 

Ghapor et. al., (2015) and Al-Nasser and Ebrahem (2005) 

using the nonparametric method, their research is limited to 

unreplicated LFRM. Thus, the proposed nonparametric 

method will be focused on replicated LFRM. In this paper, we 

proposed a new parametric estimation of the slope parameter 

based on the nonparametric method which was proposed by 

Ghapor et. al., (2015). 

The aim of this paper is to introduce the robust technique 

which is the trimmed mean to the replicated linear functional 

relationship model and also to compare this technique with 

the maximum likelihood estimation in estimating the slope 

parameter.  

 

II. MATERIALS AND METHODS 

A. Maximum Likelihood Estimation Method 

 

Maximum Likelihood Estimation is the common method 

used in estimating the parameters. Replicated LFRM can be 

used when there is no information about the ratio of two 

variances in unreplicated LFRM or replication can be made 

on the observations (Hussin et. al., 2005; Barnett, 1970).  

In this case, the log-likelihood function can be expressed as: 

log 𝐿 (𝛼, 𝛽, 𝜎2, 𝜏2, 𝑋1, … , 𝑋𝑝) =    

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 −
1

2
(∑ 𝑚𝑖 log 𝜎2 + ∑ 𝑛𝑖 log 𝜏2)  −    

1

2
{∑ ∑

(𝑥𝑖𝑗−𝑋𝑖)
2

𝜎2 +

∑ ∑
(𝑦𝑖𝑘−𝛼−𝛽𝑋𝑖)2

𝜏2
}(2) 

 

There are (𝑝 + 4) parameters to be estimated and may be 

obtained by differentiating the log likelihood function as 

given in equation (2) with respect to 𝛼̂, 𝛽̂, 𝜎̂2, 𝜏̂2 and 

𝑋̂𝑖respectively and equating to zero (Barnett, 1970).  Thus, we 

can obtain the parameters in the order given by: 

 

𝑋̂𝑖 =
1

∆̂𝑖
{

𝑚𝑖𝑥̅𝑖.

𝜎̂2 +
𝑛𝑖𝛽̂

𝜏̂2
(𝑦̅𝑖. − 𝛼̂)}   followed by  

 

𝜎̂2 =
∑ ∑(𝑥𝑖𝑗−𝑋̂𝑖)

2

∑ 𝑚𝑖
, 𝜏̂2 =

∑ ∑(𝑦𝑖𝑘−𝛼̂−𝛽̂𝑋̂𝑖)
2

∑ 𝑛𝑖
,  

 

𝛼̂ =
∑ 𝑛𝑖(𝑦̅𝑖.−𝛽̂𝑋̂𝑖)

∑ 𝑛𝑖
and𝛽̂𝑀𝐿𝐸 =

∑ 𝑛𝑖𝑋̂𝑖(𝑦̅𝑖.−𝛼̂)

∑ 𝑛𝑖𝑋̂𝑖
2 .                (3) 

 

where𝑥̅𝑖. =
∑ 𝑥𝑖𝑗

𝑚𝑖
, 𝑦̅𝑖. =

∑ 𝑦𝑖𝑘

𝑛𝑖
, and ∆̂𝑖=

𝑚𝑖

𝜎̂2 +
𝑛𝑖𝛽̂2

𝜏̂2 . 

 

The estimates of 𝛼̂, 𝛽̂𝑀𝐿𝐸 , 𝜎̂2, 𝜏̂2 and 𝑋̂𝑖can be solved iteratively 

given initial values from the linear regression model. Our 

primary interest in this research is the estimated slope, 𝛽̂𝑀𝐿𝐸. 

 

B. The Nonparametric Method (The Proposed 

Method) 

The method we propose for estimating the slope parameter is 

by considering the nonparametric method proposed by 

Ghapor et. al., (2015). Normality assumption can be ignored 

in this method. In this paper, we will follow the steps as 

suggested by Ghapor (2015) but in Step 5, we changed the 

calculation of the slope by using trimmed mean. Hence, we 

used the trimmed mean to measure the slope of the model 

instead of the usual mean or median in order to reduce the 

effect of outlier present in the data. By trimming a certain 

amount of percentage around 10 to 20 percent, the influence 

of outlying observations is negated and still give a reasonable 

estimate of the slope (Wilcox, 2012; Welsh, 1987). As 

mentioned by Wilcox (2012), a good choice for trimmed mean 

is 20% to acquire a relatively small standard error among 

commonly occurring situations.  

As stated by Ghapor (2015), the steps are listed down in 

detail: 

Step 1: The observations are first arranged in ascending 

order, based on 𝑥  value namely   

𝑥(1) ≤ 𝑥(2) ≤ ⋯ ≤ 𝑥(𝑛).  

 The associated values of 𝑦which may not be in 

ascending order are taken namely, 

 𝑦[1] ≤ 𝑦[2] ≤ ⋯ ≤ 𝑦[𝑛].  

 The new pairs will be (𝑥(𝑖), 𝑦[𝑗])  . 

Step 2: All the data are divided into 𝑝 −subsamples. These 

subsamples contain 𝑚  elements such that 𝑝 × 𝑚 = 𝑁 

where 𝑚𝑖 is the maximum divisor of 𝑁 such that 𝑝 ≤ 𝑚 .  The 

advantage we abstracting the number of paired slopes that 

need to be calculated (Al-Nasser and Ebrahem, 2005). 

Step 3: Find all the possible slopes. 

{𝑏𝑥(𝑘)𝑖𝑗 =
𝑦[𝑗] − 𝑦[𝑖]

𝑥(𝑗) − 𝑥(𝑖)
;  𝑖 = 1,2, … , 𝑗 − 1; 𝑗 = 2,3, … , 𝑚 } ; 𝑘

= 1,2, … , 𝑝 

Step 4: Repeat Steps 1 to 3 by interchanging 𝑦and 𝑥 to get 

possible paired of 𝑏𝑦(𝑘)𝑖𝑗  

{𝑏𝑦(𝑘)𝑖𝑗 =
𝑦(𝑗) − 𝑦(𝑖)

𝑥[𝑗] − 𝑥[𝑖]
;   𝑖 = 1,2, … , 𝑗 − 1; 𝑗 = 2,3, … , 𝑚 } ; 

𝑘 = 1,2, … , 𝑝 
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Step 5: Combine all the slopes from Step 4 

Step 6: Find the trimmed mean of the slopes. 

𝛽̂𝑡𝑟𝑖𝑚 = 𝑡𝑟𝑖𝑚𝑚𝑒𝑑 𝑚𝑒𝑎𝑛{𝑏𝑥(𝑘)𝑖𝑗 , 𝑏𝑦(𝑘)𝑖𝑗} 

This gives us the new estimated slope ofthe  parameter,  𝛽̂𝑡𝑟𝑖𝑚. 

 

C. Simulation Study 

 

The performance of the proposed method with the maximum 

likelihood estimation for the replicated linear functional 

relationship model was carried out using a simulation study 

in R software. The observations are then simulated using our 

model as described earlier. Without loss of generality, the 

true value is fixed at 𝛼 = 1 and 𝛽 = 1. We simulate 10000 

trials for 𝑁 = 20, 80 and 100. Additionally, the performance 

of the slope parameter in replicated linear functional 

relationship model when the observation has no outlier, 

5%, 10% and 15% outliers respectively are also considered. 

By using this relationship,  

 

𝑦𝐶 = 1 + 𝑋𝐶 + 𝜀𝐶  with 𝜀𝐶~𝑁(0, 25) 

 

We contaminate data points as suggested by Al-Nasser and 

Ebrahem (2005). For the proposed estimator the required 

values of 𝑝 and 𝑚 for each sample size are given in Table 1. 

 

Table 1. Values of p and m 

Sample Size, 𝑁 𝑝 𝑚 

20 4 5 

80 8 10 

100 10 10 

 

 

III. RESULTS AND DISCUSSIONS 

 

Table 2 shows the estimated bias for the slope of the 

replicated linear functional relationship model. In general, as 

the sample size increase from 20 to 100, the estimated bias is 

decreasing for both maximum likelihood estimation method 

and the proposed nonparametric method. The same can be 

said as we introduce outliers in our data from 5% to 15% 

outliers, the estimated bias decreases as the number of 

observations increase. Nevertheless, the proposed method 

gives smaller estimated bias value than the maximum 

likelihood estimation method when the observations have 

outliers and none. 

Table 3 shows the mean square error of the slope for both 

methods. When the data have no outlier, the mean square 

error (MSE) for both methods give almost the same value for 

each sample size.  At each level of contamination from 5% to 

15% outliers, the proposed nonparametric method shows 

consistently smaller values of mean square error than the 

maximum likelihood estimation. 

To illustrate the practicality of the method, we use data 

from a study that measures the accuracy of some widely used 

body-composition techniques for children between the ages 4 

and 10 years by two different techniques, namely skinfold 

thickness (ST) and bioelectrical resistance (BR)(Goran et. al., 

1996). As measurement error can occur in both variables for 

this experiment, we note that we can describe the relationship 

by replicated LFRM as given in equation (1). The data consists 

of 96 observations and we assume that the error terms follow 

a normal distribution. As mentioned by Kim (2000) and 

Imon & Hadi (2008), some original y values were substituted 

by outliers namely at 5%, 10%, and 15% level to form different 

conditions in investigating the slope effect by two different 

methods. The estimated slopes by two different methods 

were shown in Table 4. From Table 4, both methods showed 

a somewhat similar value of the slope estimates when there is 

no outlier. However, when outliers increased from 5% to 15 

%, the estimates of the slope using the maximum likelihood 

method become huge compared to the proposed 

nonparametric method. 

This shows that the proposed nonparametric method can 

be used in estimating the slope of the replicated linear 

functional relationship model in the presence of outliers. 

Additionally, we can possibly use replicated linear functional 

relationship model to estimate the parameter of interest 

when there is a lack of information on the ratio of two 

variances in the unreplicated linear functional relationship 

model. This problem does not arise in replicated LFRM as the 

number of parameters is fixed and only the degree of 

replication increases with an increasing number of 

observations. 

 

 

 

Table 2. The Estimated Bias of the slope 

Outlier Method N=20 N=80 N=100 

No 

outlier 

𝛽̂𝑀𝐿𝐸  9.434 

E-04 

9.521 

E-04 

9.158 

E-04 

𝛽̂𝑡𝑟𝑖𝑚 4.369 1.721 4.613 
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E-03 E-03 E-04 

5% 

outliers 

𝛽̂𝑀𝐿𝐸  5.975 

E-01 

3.791 

E-01 

3.767 

E-01 

𝛽̂𝑡𝑟𝑖𝑚 2.359 

E-02 

9.458 

E-03 

3.377 

E-03 

10% 

outliers 

𝛽̂𝑀𝐿𝐸  7.966 

E-01 

8.309 

E-04 

7.688 

E-04 

𝛽̂𝑡𝑟𝑖𝑚 1.431 

E-01 

1.137 

E-03 

5.012 

E-03 

15% 

outliers 

𝛽̂𝑀𝐿𝐸  5.909 

E-01 

3.790 

E-01 

3.767 

E-01 

𝛽̂𝑡𝑟𝑖𝑚 2.687 

E-01 

9.484 

E-02 

5.511 

E-02 

 

Table 3. The Mean Square Error of the slope 

Outlier Method N=20 N=80 N=100 

No 

outlier 

𝛽̂𝑀𝐿𝐸 1.307 

E-04 

3.121 

E-05 

2.499 

E-05 

𝛽̂𝑡𝑟𝑖𝑚 1.652 

E-04 

3.481 

E-05 

2.505 

E-05 

5% 

outliers 

𝛽̂𝑀𝐿𝐸 3.573 

E-01 

1.437 

E-01 

1.419 

E-01 

𝛽̂𝑡𝑟𝑖𝑚 1.015 

E-03 

1.232 

E-04 

3.745 

E-05 

10% 

outliers 

𝛽̂𝑀𝐿𝐸 6.348 

E-01 

8.170 

E-05 

6.627 

E-05 

𝛽̂𝑡𝑟𝑖𝑚 2.769 

E-02 

4.031 

E-05 

5.319 

E-05 

15% 

outliers 

𝛽̂𝑀𝐿𝐸 3.495 

E-01 

6.209 

E-01 

1.420 

E-01 

𝛽̂𝑡𝑟𝑖𝑚 9.043 

E-02 

9.717 

E-03 

3.341 

E-03 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Slopes Estimates Using Goran et al. Data (1996) 

Contamination Method Slope 

No outlier 𝛽̂𝑀𝐿𝐸   0.982 

𝛽̂𝑡𝑟𝑖𝑚 0.974 

5% outliers 𝛽̂𝑀𝐿𝐸  2.998 

𝛽̂𝑡𝑟𝑖𝑚 1.014 

10% outliers 𝛽̂𝑀𝐿𝐸  4.486 

𝛽̂𝑡𝑟𝑖𝑚 1.023 

15% outliers 𝛽̂𝑀𝐿𝐸  5.321 

𝛽̂𝑡𝑟𝑖𝑚 1.002 

 

 

IV. SUMMARY 

 

In conclusion, by looking at the estimated bias and mean 

square error of the slope, we can conclude that the proposed 

nonparametric method is superior to the maximum 

likelihood estimation. This can be seen from the simulation 

studies when the percentage of outliers increase, the mean 

square error of the maximum likelihood estimation becomes 

huge and breaks down easily as compared to the proposed 

nonparametric method.  
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