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Functional relationship model is used to study the data that are subjected to errors. In this 

paper, we consider the linear functional relationship model with bivariate circular data where 

the pair of errors is with unequal concentration parameters. The parameter estimation of the 

model for circular data is different from linear data due to its wrapped around nature. We 

propose some improvements on the parameter estimation where some iterative procedures are 

considered. The concentration parameters are estimated based on the Bessel function. Also, 

we derive the corresponding covariance matrix of the model based on the Fisher Information 

matrix. Monte Carlo simulation studies were performed to study the suitability of the 

estimation method. It is found that the biasness of the estimates is small. Practical application 

of the method is illustrated by using real data set.  
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I. INTRODUCTION 

 

A circular observation may be regarded as a point on a circle 

of unit radius. Each circular data is usually measured in 

degrees or in radians (Mardia & Jupp, 2000). Due the 

wrapped around nature of angles, formal analysis cannot be 

done to circular data with usual statistical technique which 

is applied on linear data. 

The early root of circular data analysis dates back at least 

as far as the mid-18th Century where discussion on the 

development of circular regression models began with Gould 

(1969), who predicted the mean direction of a circular 

response variable from a vector of linear covariates. 

Reverend John Mitchell FRS (1767) has analysed the angular 

separations between stars and made the hypothesis that the 

directions of the stars were uniformly distributed (Fisher, 

1993). Other examples of circular data can be found in 

various scientific fields such as earth sciences, meteorology, 

biology, physics and medicine (Pandolfo et al., 2018). 

The Von Mises distribution is said to be the most useful 

distribution for circular data (Mardia and Jupp, 2000) 

where Fisher (1987) noted that the Von Mises distribution is 

a symmetric unimodal distribution and characterised by a 

mean direction   and concentration parameter . The 

probability density function of the distribution is: 
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where )(0 I  is the modified Bessel function of the first 

kind and order zero, which can be defined by:  
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where   is the mean direction and   is the concentration 

parameter. 

In literature, circular variables may be studied using 

circular regression models when the error term is only 

considered for the x variable; for example, in predicting 

direction of ground movement during an earth quake by 

Rivest (1997) and in medical imaging by Jones and 

Silverman (1989) (Down &  Mardia, 2002). As for the types 

of model, some examples of circular regression models are 

Jammalamadaka and Sarma model (1993), Down and 

Mardia model (2002), complex linear regression model for 

circular variables (Hussin et. al., 2010) and circular-circular 

regression model by Kato et al., (2008). In this paper, we 

consider the case when both x and y circular variables have 

error terms in linear functional relationship model. 

Section II describes further about the linear functional 

relationship model for circular variables with unequal error 

concentration parameter, the maximum likelihood 

estimation of the parameters in the model, the derivation of 

the covariance matrix based on the Fisher information 

matrix and simulation study. Section III describes the 

results of the simulation studies, respectively. The 

applicability of the proposed method is described in Section 

IV. A concluding remark is given in Section V. 

 

II. MATERIALS AND METHODS 

 

A. The Linear Functional Relationship Model for 

Circular Variables 

 

The concentration parameter  influences the Von Mises 

distribution ),( VM  inversely as 
2 influences the 

normal distribution ),( 2N (Caires and Wyatt, 2003). 

If in normal distribution, the variance 
2 quantifies the 

dispersion (Fisher, 1993). However, in Von Mises 

distribution, the dispersion is quantified by a concentration 

parameter . 

Functional relationship model is used to compare circular 

data subjected to errors. It is a type of error-in-variables 

model (EIVM) that considers error terms. There are some 

other models in EIVM which are structural relationship 

model and ultrastructural relationship model (Hassan et 

al., 2010). Equation (3) describes the Caires and Wyatt 

linear functional relationship model (LFRM) for circular 

variables. 

 

)2(mod  XY +=  (3) 

  

In this model, both X and Y variables are subject to 

random errors i and i , respectively. Parameter 

estimation and the covariance matrix are derived for this 

model.  

In this paper, the parameters of the LFRM, iX , the 

rotation parameter   and the concentration parameter for 

  , which is  , are estimated by using the method of 

maximum likelihood. Meanwhile the concentration 

parameter for , which is  , is estimated by using the ratio 

of 



 = . Thus, . = The log likelihood equation of 

the von Mises distribution for the LFRM is as given by: 
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(4) 

 
 

B. The Maximum Likelihood Estimation of 

Parameters 

 

The maximum likelihood estimation of the parameters 

involved in this model is discussed in the following sub-

sections. 

 

1. Maximum Likelihood Estimation of iX  

 

In this paper, we propose an improved estimate of iX  

where iterative procedure is considered on the incidental 

parameter. From the maximum likelihood estimation, we 

will be able to estimate the value of iX where 

iii xX += . From the log likelihood function in (4), we 
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find its first derivative with respect to iX  and set it equals 

to zero. 
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We solve iX  iteratively by some initial guess. Suppose 

0
ˆ

iX  is an initial estimate of iX̂ . Then 

 

( )  000
ˆˆˆˆˆ

iiiiiiiii XxXXXxXx +−=−+−=−  

where .ˆˆ
0 iii XX −=  

 

We may also have  
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Hence, the partial derivative equation above becomes: 
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When i  is small, then  1cos i and .sin ii  It 

is worthwhile to note that the estimation is obtained 

iteratively where the ratio of the error concentration takes 

into account of the difference of the estimate at each 

iterative step. Hence the equation becomes: 
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1iX is an improvement of  ˆ
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2. Maximum Likelihood Estimation of a 

 

To find the parameter estimate of the rotation parameter 

 , we find the first derivatives of the log likelihood 

function with respect to   and and set it equals to zero to 

find . Then we get: 
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2. Maximum Likelihood Estimation of  and   

 

The log likelihood equation of the von Mises distribution for 

the LFRM is as given by equation (4). To find the estimate 

of the concentration parameter  , we look for the first 

derivative of log likelihood function with respect to and 

set it equals to zero. It is given by 
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where )(0 I  is the modified Bessel function of the first 

kind and order zero and  is the concentration parameter. 
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)( and )( 10  II are the asymptotic power series for the 

Bessel functions. 

 

 

Simplifying the equation (12) using (13), it is then 

becomes: 
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Equation (24) is then simplified to become a cubic 

expression of  

0)
1

1()
1

1(8)1(8
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However, the solution of   in (15) cannot be obtained 

directly. To overcome this, one can obtain the numerical 

approximation using readily built-in function such as 

polyroot function. It gives a real root and another two values 

are complex roots. The real root was chosen to be ̂ . Caires 

and Wyatt (2003) noted that in circular case, the estimation 

of a concentration parameter needs to be corrected by 

dividing it by 2. Therefore, the estimate of the concentration 

parameter of i becomes 
2

ˆ~ 
 = . As for the concentration 

parameter for i which is  , is estimated by using the ratio 

of 



 = . Thus, .~~  =  

 

C. The Derivation of the Covariance Matrix 

 

We derive the covariance matrix of this model by using the 

Fisher Information matrix. The expected values of the 

negative term of second derivatives of the log likelihood 

function of L are obtained. The Fisher information matrix, F 

for  ˆ and ~ ,ˆ,...,ˆ ˆ
2,1 nXXX is given by: 
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D. Simulation Study 

 

A Monte Carlo simulation study is done for unreplicated 

LFRM and the ratio of concentration parameters of the 

errors is 



 = . The parameters are estimated by using the 

proposed method. The number of simulations, s is set to be 

5000 for each simulation. Without loss of generality, the 

values of X have been generated from the Von Mises 

distribution of VM (2, 3) and the true value of   = 0.7854. 

The values of the ratio of concentration parameters of the 

error considered in this study are = 0.6667, 0.5, 1.5, 2 and 

5 where the pairs of values for the corresponding are as 

stated as in Table 1. 

 

Table 1. Values of   and  for the each  
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For each value of , the sample size n = 50, 100 and 150 

are considered for the simulation.  The bias measures used 

for the rotation parameter ̂ are mean, circular distance 

and mean resultant. The bias measures for 

theconcentration parameters are mean, estimate bias and 

estimated root mean square error. The followings are the 

measures. 
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III. RESULTS AND DISCUSSION 

 

Table 2 to Table 4 show the results of the simulation study. 

From Table 2, as the value of n increases, we can say that 

the circular mean of ̂  becomes closer to its true value. The 

value of circular distance of ̂ becomes closer to zero as n 

increases meanwhile the mean resultant length of ̂

becomes closer to 1 when n increases. These indicate that 

the estimation is good. 

Table 2. Biasness of ̂  (True value = 
4


 = 0.7854) 

 
n Circular Mean Circular Distance Mean Resultant Length 

 =0.6667 50 0.7843 0.0011 0.9978 

 =12 100 0.7863 0.0009 0.9989 

 =8 150 0.7855 0.0001 0.9993 

 =0.5 50 0.7857 0.0003 0.9977 

 =14 100 0.7858 0.0004 0.9989 

 =7 150 0.7850 0.0004 0.9993 

 =1.5 50 0.7850 0.0004 0.9983 

 =10 100 0.7860 0.0006 0.9991 

 =15 150 0.7853 0.0001 0.9994 

 =2 50 0.7863 0.0009 0.9984 

 =10 100 0.7848 0.0006 0.9992 

 =20 150 0.7855 0.0001 0.9995 
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 =5 50 0.7845 0.0009 0.9987 

 =10 100 0.7857 0.0003 0.9994 

 =50 150 0.7853 0.0001 0.9996 

 

Table 3. Biasness of ~  
 

n Mean  Estimate bias ERMSE 

 =0.6667 50 12.3667 0.3667 2.6027 

 =12 100 11.9584 -0.0416 1.6838 

 =8 150 11.8761 -0.1239 1.3812 

 =0.5 50 14.4337 0.4337 3.0057 

 =14 100 13.9463 -0.0537 2.0223 

 =7 150 13.7981 -0.2019 1.6077 

 =1.5 50 10.3988 0.3988 2.2289 

 =10 100 10.0764 0.0764 1.4655 

 =15 150 9.9715 -0.0285 1.1913 

 =2 50 10.4645 0.4645 2.2960 

 =10 100 10.0751 0.0751 1.4718 

 =20 150 9.9708 -0.0292 1.1933 

 =5 50 10.3931 0.3931 2.3280 

 =10 100 9.9946 -0.0054 1.6767 

 =50 150 9.8825 -0.1175 1.4587 

     

Table 3 and Table 4 show the biasness of ~ and~ . 

Their means become closer to the true value as n 

increases. The values of estimate bias are relatively 

small and the ERMSE decreases as n decreases, thus 

suggesting that the parameter estimate is efficient.  

 

Table 4: Biasness of ~  
 

n Mean Estimate bias ERMSE 

 =0.6667 50 8.2444 0.2444 1.7351 

 =12 100 7.9723 -0.0277 1.1225 

 =8 150 7.9174 -0.0826 0.9208 

 =0.5 50 7.2169 0.2169 1.5028 

 =14 100 6.9731 -0.0269 1.0111 

 =7 150 6.8990 -0.1010 0.8038 

 =1.5 50 15.5982 0.5982 3.3433 

 =10 100 15.1145 0.1145 2.1982 

 =15 150 14.9572 -0.0428 1.7870 

 =2 50 20.9290 0.9290 4.5919 

 =10 100 20.1503 0.1503 2.9436 

 =20 150 19.9416 -0.0584 2.3866 
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 =5 50 51.9654 1.9654 11.6398 

 =10 100 49.9729 -0.0271 8.3837 

 =50 150 49.4124 -0.5876 7.2933 

    

 

 

IV. APPLICATION TO REAL WIND 

DIRECTION DATA 

 

It is known that wind parameters have important influences 

on thermal rating. Thus, the knowledge of wind direction on a 

specific location contributes to accurate estimation of real 

power transmission capacity (Heckenbergerova et. al., 2015). 

The method above is illustrated by real wind direction data 

from Humberside Coast, UK, developed by UK Rutherford 

and Appleton Laboratories, with the sample size of 100. 

Variable x is the data measured by the techniques of HF radar 

system. It uses pulse radar and operates at frequency of 24.2-

27 MHz. Meanwhile the variable y is measured by using the 

technique of anchored wave buoy. 

Also, the Akaike Information Criterion (AIC) and Bayesian 

Akaike Information Criterion (BIC) are used to identify the 

optimum model in a class of competing models. The best 

approximating model is the one with minimum AIC and BIC 

in the class of competing models (Mutua, 1994). The formula 

of AIC is: 

AIC = − 2 ln (maximized likelihood for model) +2 (number of 

fitted parameter). Meanwhile the formula for BIC is: 

(n)ln  parameter) fitted of (no.

  model)for  likelihood (maximised ln2

+

−=BIC
 

 

In the application of the proposed method to the real data 

set, it is shown that the model with  = 0.5 and 2 has the 

smallest value of AIC and BIC. The estimation of the 

concentration parameters of X and Y, which are ~  and ~ , 

respectively, may be reversible since Caires and Wyatt (2003) 

have argued that in connection with the desired symmetry of 

the functional relationship model, the quantity chosen to be X 

or Y are independent. This indicates that the best model for 

the data set is: 

)2 (mod +0.04844= XY . 

 

Table 5. Mean and variance for parameter estimates of real data with AIC and BIC values 

 ̂ (variance) ~  (variance) ~ (variance) AIC BIC 

0.5 0.04844(0.18593) 26.9355(0.00818) 13.4677(0.00205) -112.204 -104.388 

1.0 0.04826(0.32849) 17.904(0.00515) 17.904(0.00515) -99.837 -92.0215 

3/2 0.04833(0.51442) 14.9360(0.00316) 22.4040(0.00711) -104.132 -96.3161 

2.0 0.04844(0.74373) 13.4678(0.00205) 26.9355(0.00818) -112.204 -104.388 

      

V. CONCLUSION 

 

In this paper, we extend the idea when the variables x and y 

related by linear functional relationship model with unequal 

error concentrations. We derived the parameter estimates of 

the model where numerical approximation is used to find the 

cubic roots of the concentration parameters, from the Bessel 

function. Additionally, the covariance matrix of the 

parameters is derived based on Fisher information matrix 

and the estimation of X was further improved using iterative 

procedure. The performance of the method is studied 

through a Monte Carlo simulation, and it is found that the 

biasness of the estimates is small, thus implying the 

feasibility of the method of estimation. The applicability of 

the method is illustrated by using a real data set in which to 

choose the best value for the ratio of concentration 

parameters, Akaike Information Criterion and Bayesian 

Information Criterion are considered. 
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