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Nonlinear least squares (NLS) method along with Newton-Raphson (NR) iterative procedure is the best 

method to estimate parameters for bilinear model. However, the existence of outliers will affect the estimated 

value of the parameter and its validity can be doubtful. This statement was proven by conducting simulation 

analysis for the bilinear model, especially on bilinear (1,0,1,1) model without and with the existence of additive 

outlier (AO), innovational outlier (IO), temporary change (TC) and level change (LC) in the data. The 

performance of the NLS method is measured in terms of bias. Numerical results show that, in general, the 

NLS method performs better in estimating the parameters without the existence of AO, IO, TC or LC in the 

data. 
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I. INTRODUCTION 

 

Time series model can be divided to linear and nonlinear 

models. Linear models are more popular due to its simplicity. 

However, not all linear models are suitable for a time series 

data. As alternative, the nonlinear models may be more 

suitable. The simplest among the nonlinear models is bilinear 

model as it shows the most natural way to move from linear to 

nonlinear model (Ramakrishnan & Morgenthaler, 2010). 

Parameter estimation is important phase in time series 

modeling since the estimate will be further incorporated into 

the subsequent phases. There are various types of methods to 

estimate time series parameters especially in bilinear model, 

among others is the nonlinear least squares (NLS) method. The 

main advantage of NLS method over other techniques is the 

flexibility in fitting various forms of functions and the efficient 

use of data even with relatively small data sets. Meanwhile, to 

calculate the estimated parameters, the NLS procedure needs 

to use iterative optimization to obtain a better estimate. In the 

meantime, before starting iterative procedure, an initial value 

of an unknown parameter is required for the software to run the 

optimization process. Thus, NR iterative procedure is used to 

generate these initial values Therefore, the implementation of 

NR iterative procedure along with NLS method is much needed.  

In general, there are four types of outliers known as additional 

outlier (AO), innovational outlier (IO), temporary change (TC) 

and level change (LC).AO is the type of outliers that affects a 

single observation at time point dt =  (Abuzaid, Mohamed & 

Hussin, 2014). Meanwhile, IO is characterized by a single 

strange observation at time point dt =  but in addition it also 

affects subsequent observations with the effect gradually dying 

out (Abuzaid et. al., 2014). The third type of outlier is called as 

LC because its behaviour is to change the level or mean of the 

observed series. This type of outlier provides a sudden and 

permanent change to the observed series at the time point 

dt =  and continues until the end of the observed period,

dt  .  

Meanwhile, TC is a change which the effect is reduced 

exponentially. TC affects a series at a certain time, and its effect 

is weakened exponentially according to a dampening factor (𝛿). 
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In this study we take 7.0=  as recommended by Chen and Liu 

(1993). 

The existence of outliers in the data will affect the estimated 

parameters, which consequently will jeopardize the validity of 

the model. Therefore, detecting and correcting outlier effects is 

an important task in the construction of a good predictor 

model. Hence, this paper will show the effect of outlier in 

nonlinear, specifically in building bilinear model. This study 

focusses on AO, IO, TC and LC in bilinear (1,0,1,1) model since 

this model is the simplest form of bilinear models. The 

investigation covers the performance of NLS method with NR 

iterative procedure in estimating the coefficients of bilinear 

(1,0,1,1) model without and with the existence of outlier in the 

data. Through simulation study, the performance of the NLS 

method will be measured in terms of bias using simulated data 

of several study specifications. 

 

I. LITERATURE REVIEW 

 

A. Bilinear Model 

 

The general formulation of bilinear ( )srqp ,,,  model is 

represented by: 
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where tY and te  each represents the observations and residuals 

at time t , where ,...3,2,1=t . The te ’s are assumed to follow 

normal distribution with mean zero and variance 
2 . 

Meanwhile, ji ca ,  and klb  are the coefficients of the model.  

Based on (1), the first two components represent the 

autoregressive moving average (ARMA) linear model with 

order p and q, while the third component, which represents 

nonlinearity, helps to explain the nonlinearity characteristic of 

the data being modelled with order r and s. In this paper, the 

bilinear (1,0,1,1) model is considered and given by: 

 

ttttt eeYbYaY ++= −−− 111   (2) 

where a and b are the coefficients, while tY  is outlier-free 

observation and te  is outlier-free residual, such that 

,...3,2,1=t  . Meanwhile, the bilinear (1,0,1,1) model with 

existence of outlier is represented by: 
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ttttt eeYbYaY ++= −−−   (3) 

where
*

tY is the contaminated observations and 
*
te  represents 

the contaminated residuals. The 
*

tY  and 
*
te  exist when there 

is outlier in the data at certain time point t , where 

nt ,...,3,2,1= .  

 

B. AO Effects on Original Observations 

and Residuals 

 

When there is no outlier existing in the data at time point t, the 

observations ( )tY  is known as the original observations.  If AO 

exists in the data, the symbol *
,AOtY is used to signify of the 

existence of the outlier and is known as “AO effect on 

observation”. The effect of this outlier exists only at time point 

dt = with  as magnitude of outlier effect from bilinear 

(1,0,1,1) model. For time point dt  , clearly tAOt YY =*
,  and the 

full formulation of AO effects on tY  is given by: 
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where nt ,...,3,2,1=  and nd ,...,3,2,1=  

From (4), it is indicated that the effect of AO on tY occurs only 

at one time point while the rest of the time points are 

unaffected. 

Meanwhile, the original residual ( )te are obtained when 

there is no outlier existing in the data at time point t. The “AO 

effect on residual” is denoted by *
,AOte .At time point dt  , the

tAOt ee =*
, . While, at time point dt  and 0k , the 

formulation for *
,AOkde + is: 
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a and b are constant values. Based on (5), several residuals 

for time point dt   should be affected.  

 

C. IO Effects on Original Observations and 

Residuals 

 

The IO effects on observations at time point dt  is given by 

tIOt YY =*
,  while the IO effects on tY for dt   is represent by: 
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Based on (6), the existence of IO in bilinear (1,0,1,1) model 

effects tY not only at one time point but also at some of the 

subsequent tY . 

 The symbol *
,IOte is used when there is IO effect on the 

residual in bilinear (1,0,1,1) model. At time point dt  , The

tIOt ee =*
,

while at time point dt   and 0h , the equation for 

*
,IOhde + is given by: 
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This equation indicates that the existence of IO not only 

changes the residual at dt =  but also changes some of the 

subsequent residuals. 

 

 

D. TC Effects on Original Observations 

and Residuals 

 

For TC effects on observations at time point dt  is given by 

ttct YY =*
, . Meanwhile, the equation of TC effects on tY for time 

point dt  and 0k  is given by: 

 

 k
kdtckd YY += ++

*
,

   (8) 

where is dampening factor for TC effects.  

The symbol 
*
,tcte denotes the residual which is affected by TC 

in bilinear (1,0,1,1) model. At time point dt  , ttct ee =*
, .  

While, at time point dt  and 0k , the equation of TC effects 

is given by: 
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a and b are constant numbers. Based on (9), it can be seen 

that with the existence of TC, more than one observation and 

residuals are effected.  

 

E. LC Effects on Original Observations 

and Residuals 

 

The LC effect on observations at time point dt  is tlct YY =*
, , 

while, at time point dt   is given by += tlct YY *
, . The full 

formulation of AO effects on tY  is given by: 
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t
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,   (10) 

The symbol 
*
,lcte is used for LC effect on residual in bilinear 

(1,0,1,1) model. At time point dt  , tlct ee =*
, . While at time 

point dt  and 0k , the formulation for *
,lckde + is:  
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a and b are constant numbers. Based on (11), several 

residuals for time point dt   should be affected. Various 

methods of estimating the parameters of bilinear models are 

available. In this paper, the NLS method along with NR 

iterative procedure is used to estimate a and b. 

 

 

II.METHODOLOGY 

 

A. Nonlinear Least Squares (NLS) Method 

 

The popular classical method of estimating parameters in the 

past for the bilinear model is known as nonlinear least squares 

(NLS) method. Some of the earliest researchers who worked on 

this method are Goldfeld and Quandt (1972). Meanwhile, 

Granger and Andersen (1978a) and Liu (1985), have studied 

and applied this method to bilinear ( )1,1,0,1  and ( )1,1,1,2  models 

on actual data. The general procedure of NLS method has been 

presented for BL (p,0,r,s) model by Priestley (1991). The NLS 

estimation method for bilinear (1,0,1,1) model is described as 

follows. 

Let 
'

21 ),( ba ===  denotes the complete set of 

parameters for bilinear (1,0,1,1) model. The objective of the 

method is to minimize the equation of: 
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Where te is from equation (2). Then, the process of 

minimization is accomplished through Newton-Raphson 

(NR)iterative procedure which is given by: 
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where
(i)θ  represents the vector of parameter estimate for i-th 

iteration, while the vector of gradient denoted by G and Hessian 

matrix denoted by H. The formulations of G vector and H 
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Based on (14) and (15), then the partial derivatives of equation 

(12) are given by: 
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Based on (2) and (14), the following partial derivatives can be 

obtained as shown below: 
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For simplicity, the most common choice, if no prior 

information is available, is to choose the following conditions: 

0
21
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e , for all t = 1 and 2. 

From (13), the iterative procedure can now be implemented. 

The iteration is stopped when the following conditions are met, 

Naaa ,...,, 21
 and 

Nbbb ,...,, 21
 which are constructed for each 

parameter a and b until − −1N
i

N
i  , for 

)',(,2,1 bai ==   and  is tolerance. In this study, we follow 

the same approach by Priestley (1991) in determining the initial 
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value where   was chosen to be 
310−

. The initial value 

selection is one of the most important elements to consider in 

the iteration procedure. According to Priestley (1991), in 

determining the initial value, he presented the given procedure: 

“If bilinear ( )1,1,0,p  model is to be fitted, then the 

parameter estimates of AR ( )p  model form initial estimates of  

paa ,...,1  while the initial estimate of  11b  is taken to be zero. 

For bilinear ( )1,2,0,p  and bilinear ( )2,1,0,p  models, the 

estimates with the initial values of  21b  and 12b  respectively 

taken to be zero. For bilinear ( )2,2,0,p  model, the parameter 

estimates of bilinear ( )1,2,0,p  model or bilinear ( )2,1,0,p  

model are used as the initial values and the initial value for   

22b  is taken to be zero. The process then continues.” 

In the next section, we will discuss the complete steps in 

obtaining estimates of the parameters using the NLS method as 

well as the simulation studies as done by Priestley (1991). 

 

B. Parameter Estimation Step 

 

To start the iteration, the NR procedure requires initial values 

for the parameters. The process of getting the estimated 

parameters of bilinear (1,0,1,1) model are shown below. The 

first step explains how to obtain the initial value, while the 

second and third steps are the parameter estimation 

procedures.  

1. From equation (2) and (3) of t  data set (with and 

without outlier), where nt ,...,2,1= , then AR ( )1 model 

is used to estimate a . The formulation of the AR ( )1

model is ttt eYY ++= −110  , where =te the term of 

error at time point t with mean equal to zero and 

constant variance equal to 
2
e , and 0 is constant term.  

2. Let the initial values for each a  and b be 
*a  and 0  in the 

NR iteration procedure to estimate the bilinear (1,0,1,1) 

model parameters. Then, the parameter estimation 

procedure is complemented by the NLS method along 

with the implementation of the NR iteration procedure 

as described previously. 

3. Finally, the estimates of a  and b  are obtained and 

symbolized by â  and b̂ .  

 

III. SIMULATION AND RESULTS 

 

A simulation study was carried out to observe the performance 

of the procedure using S-Plus package. To assess and evaluate 

the performance of the procedure, the combination of the 

following factors is considered: 

a) Generate five underlying bilinear (1,0,1,1) models for 

different combinations of known coefficients values (a,b).   

b) Obtain the estimates of a  and b using the 

aforementioned parameter estimation procedure (based 

on previous subsection). 

c) Use number of simulations ( )100=s and length 100=n . 

d) Calculate bias by letting  ba,=  where i  represents the 

estimation of a  and b ( )si ,...,1= ,and given mean  is 


=

=

s

i

i

1

 .Bias for the paramaters is ( ) − . 

 

We investigate the performance of parameter estimation 

procedure for bilinear (1,0,1,1) model based on bias. Tables 1 

and 2show the results for bilinear (1,0,1,1) model without and 

with the existence of outlier. The first column of each table 

displays the different combinations of coefficients of the 

bilinear models (a,b). The combination of different coefficients 

is used to see how the combined effect of the estimates. For 

example, the combined coefficient (0.1,0.2) results is a smaller 

bias value compared to the coefficient of combinations 

(0.4,0.2). This shows the greater the combined value of the 

coefficient used the greater the bias value. 

The estimates and biases are given in the subsequent row 

according to coefficients of each model. For example, in Table 

1, the second column lists the estimators for a and b, i.e â and 

b̂  respectively, while the fourth column shows the bias for the 

estimators, and the different approaches namely as NLS 

without outlier and NLS with outlier (AO,IO, LC and TC)are 

shown based on the given columns of tables. 

Based on the bias values of the estimates in the tables, it is 

clearly shown that the NLS method without outlier is the best 
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approach based on the smallest bias values obtained as 

compared to the others. Bias values among the NLS method 

with AO, IO, TC and LC do not differ much from each other. 

Based on the models with different combination coefficients, 

we observe that by increasing the value of coefficient, the bias 

value increase for the NLS method without outlier and 

drastically increase for the NLS method with outlier.

 

Table 1. Parameter estimation for bilinear (1,0,1,1) model without and with AO and IO 

Coefficient Estimation NLS without 

outlier 

Bias NLS with 

AO 

Bias NLS with 

IO 

Bias 

(0.1,0.2) â  0.088 0.012 0.062 0.038 -0.054 0.154 

b̂  
0.202 0.002 0.068 0.132 0.025 0.175 

(0.1,0.3) â  0.089 0.011 0.072 0.028 58.726 58.626 

b̂  
0.299 0.001 0.100 0.200 0.086 0.214 

(0.2,0.2) â  0.189 0.011 0.177 0.023 -14.802 15.002 

b̂  
0.199 0.001 -0.086 0.286 -0.037 0.237 

(0.3,0.2) â  0.284 0.016 -4.648 4.948 -14.802 15.102 

b̂  
0.192 0.008 0.124 0.076 -0.037 0.237 

(0.4,0.2) â  0.373 0.027 -6.911 7.311 25.599 25.199 

b̂  
0.187 0.013 0.085 0.115 -0.016 0.216 

 

Table 2. Parameter estimation for bilinear (1,0,1,1) model without and with LC and TC 

Coefficient Estimation NLS without 

outlier 

Bias NLS with 

LC 

Bias NLS with 

TC 

Bias 

(0.1,0.2) â  0.088 0.012 -11.058 11.597 5.527 5.427 

b̂  
0.202 0.002 0.094 0.106 0.122 0.078 

(0.1,0.3) â  0.089 0.011 2.039 1.939 2.636 2.536 

b̂  
0.299 0.001 0.104 0.196 0.114 0.186 

(0.2,0.2) â  0.189 0.011 23.741 23.541 -3.325 3.525 

b̂  
0.199 0.001 0.097 0.103 0.145 0.055 

(0.3,0.2) â  0.284 0.016 -10.044 10.344 -12.738 13.038 

b̂  
0.192 0.008 0.034 0.166 0.052 0.148 

(0.4,0.2) â  0.373 0.027 -38.868 39.268 -65.898 66.298 

b̂  
0.187 0.013 0.097 0.103 -0.138 0.338 
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IV. CONCLUSION 

 

In this paper, we discuss the method of parameters estimation 

known as nonlinear least square (NLS) method along with 

Newton-Raphson (NR) iterative procedure. The simulated 

values of parameter estimation are presented. The finding 

reveals that the NLS method without outlier performs well in 

estimating the coefficients of bilinear (1,0,1,1) model. In 

contrast, with the existence of outliers, AO, IO, TC and LC, the 

estimation of the coefficients of bilinear (1,0,1,1) model are 

adversely affected especially when the value of coefficients 

increases. 
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