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We propose the generalizations of Burr Type X distribution with two parameters by using the methods 

of Beta-G, Gamma-G and Weibull-G families of distributions. We discuss maximum likelihood 

estimation of the model’s parameters. The performances of the parameter’s estimates are assessed via 

simulation studies under different sets of conditions. In the applications to real data sets, three sets of 

data are used whereby from the results we can deduce that these models can be used quite effectively in 

analysing lifetime data. 
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I. INTRODUCTION 

 

Statistical distributions are constantly and extensively used 

to describe and predict real world phenomena in broad 

spectrum of areas such as engineering, medicine, biology, 

demography, environment, economics and many others. 

However, there is a need for an extended form of these 

distributions such as in survival analysis whereby the hazard 

function might be of various forms. Due to this over the past 

decades many studies have been put forward to develop such 

distributions that are more flexible and useful. Attempts have 

also been made in defining new families of probability 

distributions by extending well-known families of 

distributions such as the generation of the broad family of 

univariate distributions from the Weibull distribution 

(Gurvich et. al., 1997). 

Eugene et. al. (2002) proposed and study a general class of 

distributions based on the logic of a beta random variable 

named Beta-Generator (Beta-G) family distribution.  The 

Gamma-Generator (Gamma-G) was developed by (Ristic & 

Balakrishnan, 2012). More recently, Bourguignon et al. 

(2014) proposed and studied the generality family of a 

univariate distribution with two additional parameters using 

the Weibull-Generator (Weibull-G) applied to the odds ratio 

𝐾(𝑡) 1 − 𝐾(𝑡)⁄ .A familiar trait of these generalized 

distributions is that they contain more parameters. 

According to Johnson & Kotz (1994), four-parameter 

distributions should be reasonably useful for most practical 

applications. 

Burr (1942) introduced twelve different forms of 

cumulative functions for modelling data. These distributions 

have been widely used in the analysis of real-life data in the 

areas of health, agriculture, reliability and others. Several 

have received great attention including Burr Type X with two 

parameters (BX) that has a nonmonotone hazard function, 

unlike the Weibull, Generalized Exponential and Gamma 

distributions. BX is thus attractive in term of flexibility in 

dealing with hazard function variants. 

This paper presents the extension of Burr Type X with two 

parameters (BX) through Beta-G, Gamma-G and Weibull-G. 

We explore some properties of the estimators through 

simulation under different settings. The estimation of the 

parameters is via maximum likelihood estimation (MLE) 

method. The applicability of these new models is illustrated 

by utilizing several real data sets. We use several criteria to 

compare the fit of these three models with the baseline model 

that is the BX. 
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II. MATERIALS AND METHODS 

 

The probability density function (pdf) of Burr   

Type X with one parameter (BXI) is 

𝒇(𝒚, 𝝑) = 𝟐𝝑𝒚𝒆−𝒚𝟐
(𝟏 − 𝒆−𝒚𝟐

)
𝝑−𝟏

,  (1) 

 

and the cumulative density function (cdf) is 

       𝑭 (𝒚, 𝝑) = (𝟏 − 𝒆−𝒚𝟐
)

𝝑
,   (2) 

 

where𝜗 is the shape parameter. 

 

Surles & Padgett (2001) modified the BXI distribution 

following the method of Mudholkar & Srivastava (1993) for 

the exponentiated Weibull and named it Burr Type X with 

two parameters (BX) distribution. 

 

The pdf and cdf respectively of BX are 

𝒇(𝒚, 𝜼, 𝝑) = 𝟐𝝑𝜼𝟐𝒚𝒆−(𝒚𝜼)𝟐
[𝟏 − 𝒆(𝒚𝜼)𝟐

]
𝝑−𝟏

,  (3) 

 

and 

𝑭(𝒚, 𝜼, 𝝑) = [𝟏 − 𝒆−(𝒚𝜼)𝟐
]

𝝑
,   (4) 

 

where𝜗 is the shape parameter and 𝜂 is the scale parameter. 

 

A. Beta Burr Type X 

 

If 𝐹(𝑦) is the cumulative function of any random variable  𝑌, 

the cdf of Beta-G family of distribution with 𝜐 > 0 and 𝜔 > 0 

is defined by Eugene et al. (2002), 

Φ(𝑦, 𝜐, 𝜔) =
1

𝐵(𝜐,𝜔)
∫ 𝑡𝜈−1(1 − 𝑡)𝜔−1𝑑𝑡

𝐹(𝑦)

0
, (5) 

 

where 𝜈 and 𝜔 are the additional shape parameters. The pdf 

corresponding to (5) is 

𝜙(𝑦, 𝜈, 𝜔) =
1

𝐵(𝜈,𝜔)
[𝐹(𝑦)]𝜈−1[1 − 𝐹(𝑦)]𝜔−1𝑓(𝑦)

 (6)𝐵(𝜈, 𝜔) =
Γ(𝜈)Γ(𝜔)

Γ(𝜐+𝜔)
 

 

The pdf of Beta Burr Type X (BBX) from (3), (4) and (6) is 

𝜙(𝑦, 𝜈, 𝜔, 𝜂, 𝜗) =
2𝜗𝜂2𝑦

𝐵(𝜈, 𝜔)
[[1 − 𝑒−𝜂𝑦2

]
𝜗

]
𝜈−1

[1

− [1 − 𝑒−𝜂𝑦2
]

𝜗
]

𝜔−1

 

 

  × 𝑒−(𝜂𝑦)2
[1 − 𝑒−(𝜂𝑦)2

]
𝜗−1

,    (7) 

 

where 𝑦 > 0, the shape parameters 𝜈, 𝜔, 𝜗 > 0 and the scale 

parameter 𝜂 > 0.The cdf of BBX is 

Φ(𝑦, 𝜈, 𝜔, 𝜂, 𝜗) =
1

𝐵(𝜈,𝜔)
∫ 𝑡𝜈−1(1 − 𝑡)𝜔−1𝑑𝑡

[1−𝑒−(𝜂𝑦)2
]

𝜗

0
 (8) 

 

The hazard function is 

ℎ(𝑦, 𝜈, 𝜔, 𝜂, 𝜗) =
𝜙(𝑦, 𝜈, 𝜔, 𝜂, 𝜗)

1 − Φ(𝑦, 𝜈, 𝜔, 𝜂, 𝜗)
 

 

B.  Gamma Burr Type X 

 

From Ristic & Balakrishnan (2012), for any baseline 

cdf𝐹(𝑦) of a random variable 𝑦 ∈ 𝑅 and 𝑓(𝑦) is the pdf, they 

define the generalized class of Gamma distribution with cdf  

Φ(𝑦, 𝜈) = 1 −
1

Γ(𝜈)
∫ 𝑡𝜈−1𝑒−𝑡−𝑙𝑜𝑔[𝐹(𝑦)]

0
𝑑𝑡    𝑦 ∈ 𝑅   𝜈 > 0 (9) 

 

The pdf corresponding to (9) is 

𝜙(𝑦, 𝜈) =
𝑓(𝑦)[−𝑙𝑜𝑔[𝐹(𝑦)]]

𝜈−1

Γ(𝜈)
   𝑦 ∈ 𝑅   𝜈 > 0  (10) 

 

By substituting the pdf (3) and cdf (4) of BX distribution 

into (10), we obtain the pdf of Gamma Burr Type X (GBX) for 

𝑦 > 0 as 

𝜙(𝑦, 𝜈, 𝜗, 𝜂) =
2𝜗𝜂2𝑦𝑒−(𝜂𝑦)2

Γ(𝜈)
[1

− 𝑒−(𝜂𝑦)2
]

𝜗−1
[−𝜗𝑙𝑜𝑔[1 − 𝑒−(𝜂𝑦)2

]]
𝜈−1

 

    

    (11) 

 

The cdf of (11) is  

Φ(𝑦, 𝜈, 𝜗, 𝜂) = 1 −
𝛾[𝜈,−𝜗𝑙𝑜𝑔[1−𝑒−(𝜂𝑦)2

]]

Γ(𝜈)
 , (12) 

 

where [𝜈, 𝑦] = ∫ 𝑡𝜈−1𝑒−𝑡  𝑑𝑡
𝑦

0
 , is the incomplete  

gamma function. 

 

The two shape parameters of GBX make the new 

distribution more suitable for analysing skewed positive real 

data. 

 

C. Weibull Burr Type X 

 

Let 𝐹(𝑦, 𝜉) and 𝑓(𝑦, 𝜉) respectively be a cumulative and 

density functions of the baseline model with parameter vector 

𝜉. The Weibull cdf is Φ(𝑦, 𝜈, 𝜔) = 1 − (𝑒−𝜈𝑦𝜔
) for 𝑦 > 0 with 
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positive parameters 𝜈 and 𝜔. Based on this density, by 

replacing 𝑦 with 𝐹(𝑦, 𝜉) 1 − 𝐹(𝑦, 𝜉)⁄ , the cdf of the Weibull-G 

distribution with two extra parameters 𝜈 and 𝜔 as defined by 

Bourguignon et al. (2014) is 

Φ(𝑦, 𝜈, 𝜔, 𝜉) 

= ∫ 𝜈𝜔𝑦𝜔−1𝑒−𝜈𝑦𝜔
𝐹(𝑦,𝜉) 1−𝐹(𝑦,𝜉)⁄

0

 

=1-𝑒𝑥𝑝 (−𝜈 [
𝐹(𝑦,𝜉)

1−𝐹(𝑦,𝜉)
]

𝜔
)                                  (13) 

The pdf corresponding to (13) is 

𝜙(𝑦, 𝜈, 𝜔, 𝜉)

= 𝜈𝜔𝑓(𝑦, 𝜉)
𝐹(𝑦, 𝜉)𝜔−1

[1 − 𝐹(𝑦, 𝜉)]𝜔+1 𝑒𝑥𝑝 (−𝜈 [
𝐹(𝑦, 𝜉)

1 − 𝐹(𝑦, 𝜉)
]

𝜔

) 

 

By substituting the cdf (4) into (13), the cdf of Weibull Burr 

Type X (WBX) distribution 

is 

Φ(𝑦, 𝜈, 𝜔, 𝜂, 𝜗) = 1 − 𝑒 (−𝜈
[1 − 𝑒−(𝜂𝑦)2

]
𝜗𝜔

[1 − [1 − 𝑒−(𝜂𝑦)2]𝜗]𝜔
) 

 

(14) 

 

The pdf corresponding to (14) is 

𝜙(𝑦, 𝜈, 𝜔, 𝜂, 𝜗)

= 2𝜈𝜔𝜂2𝜗𝑦𝑒−(𝜂𝑦)2 [1 − 𝑒−(𝜂𝑦)2
]

𝜗𝜔−1

[1 − [1 − 𝑒−(𝜂𝑦)2]𝜗]𝜔+1 
 

× 𝑒𝑥𝑝 (−𝜈
[1−𝑒−(𝜂𝑦)2

]
𝜗𝜔

[1−[1−𝑒−(𝜂𝑦)2
]

𝜗
]

𝜔)   (15) 

 

where    𝜈 > 0, 𝜔 > 0, 𝜂 > 0   and 𝜗 > 0, with 𝜈 and𝜔 the two 

additional parameters. 

 

D. Parameter Estimation 

 

Let 𝑌1, 𝑌2, … , 𝑌𝑛be an i.i.d random variable with common BBX 

(𝜈, 𝜔, 𝜂, 𝜗) distribution, WBX distribution with the unknown 

parameters 𝜈, 𝜔, 𝜂 and 𝜗 and GBX distribution with the 

unknown parameters 𝜈, 𝜗 and 𝜂.  

The log- likelihood function for the vector of parameters Θ =

(𝜈, 𝜔, 𝜂, 𝜗)𝑇can be expressed as 

𝑙 = 𝑙𝑜𝑔[𝐿(Θ)] = 𝑛[𝑙𝑜𝑔2 + 𝑙𝑜𝑔𝜗 + 2𝑙𝑜𝑔𝜂 + 𝑙𝑜𝑔𝑦 + 𝑙𝑜𝑔Γ(𝜈 +

𝜔) − 𝑙𝑜𝑔Γ(𝜈) − 𝑙𝑜𝑔Γ(𝜔)] − ∑ (𝜂𝑦𝑖)2 + (𝜈𝜗 −𝑛
𝑖=1

1) ∑ 𝑙𝑜𝑔[1 − 𝑒−(𝑛𝑦𝑖)2
] + (𝜔 − 1) ∑ 𝑙𝑜𝑔 [1 − [1 −𝑛

𝑖=1
𝑛
𝑖=1

𝑒−(𝜂𝑦𝑖)2
]

𝜗
]     (16) 

The logarithm of likelihood function for the vector of 

parameters Θ = (𝜈, 𝜂, 𝜗)𝑇 of GBX is 

𝑙 = 𝑙𝑜𝑔[𝐿(Θ)] = 𝑛[𝑙𝑜𝑔2 + 𝜈𝑙𝑜𝑔𝜗 + 2𝑙𝑜𝑔𝜂 − 𝑙𝑜𝑔Γ(𝜈)]

+ 𝑙𝑜𝑔 (∑ 𝑦𝑖

𝑛

𝑖=1

)

+ (𝜗 − 1) ∑ 𝑙𝑜𝑔[1 − 𝑒 −(𝜂𝑦𝑖)2
]

𝑛

𝑖=1

− ∑(𝜂𝑦𝑖)2

𝑛

𝑖=1

−    (𝜈 − 1) ∑ 𝑙𝑜𝑔 [𝑙𝑜𝑔[1 − 𝑒−(𝜂𝑦𝑖)2
]]

𝑛

𝑖=1

 

    (17) 

The logarithm of likelihood function for the vector of 

parameters ξ = (𝜈, 𝜔, 𝜂, 𝜗)𝑇 of WBX is 

𝑙 = 𝑙𝑜𝑔(𝐿) = 𝑛 log 2 + 𝑛 𝑙𝑜𝑔(𝜈𝜔𝜂2𝜗) − ∑(𝜂𝑦𝑖)2

𝑛

𝑖=1

+ ∑ 𝑙𝑜𝑔𝑦𝑖

𝑛

𝑖=1
 

 +(𝜗𝜔 − 1) ∑ 𝑙𝑜𝑔[1 − 𝑒−(𝜂𝑦𝑖)2
] − (𝜔 −𝑛

𝑖=1

1) ∑ 𝑙𝑜𝑔 [1 − [1 − 𝑒−(𝜂𝑦𝑖)2
]

𝜗
]𝑛

𝑖=1 − 𝜈𝑙𝑜𝑔 (∑
[1−𝑒−(𝜂𝑦)2

]
𝜗𝜔

[1−[1−𝑒−(𝜂𝑦)2
]

𝜗
]

𝜔
𝑛
𝑖=1 )

   (18) 

 

Take the partial derivatives of log-likelihoods in (16), (17) 

and (18) with respect to their parameters and equate them to 

zero (Merovci et. al., 2016; Khaleel et. al., 2016; Ibrahim et 

al., 2017). Since the models do not have close form solutions, 

solve the equations numerically using iterative methods to 

obtain the maximum likelihood estimation (MLE) for the 

parameters. 

E. Simulation Study 

 

We conduct simulation studies to examine the behaviour of 

the maximum likelihood estimators of the parameters of 

BBX, GBX and WBX distributions for different sample size 

and initial values of the parameters. Random sample can be 

generated from the inverse function of (8), (12) and (14) 

respectively. The sample size considered are 𝑛=50, 100 and 

150 with the number of repetitions to be 1000 for each. The 

initial parameters values for BBX(𝜈, 𝜔, 𝜂, 𝜗) are arbitrarily 

chosen. Three sets were considered but only Set 1 for each is 

illustrated. They are Set1=(2,2,2,2) for BBX; for GBX(𝜈, 𝜂, 𝜗), 

Set1=(2,4,3), for WBX(𝜈, 𝜔, 𝜂, 𝜗), Set1=(3,3,3,3). The mean 

(AvE), bias and root mean square error (RMSE) of the 
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maximum likelihood estimators are calculated as measures to 

assess the performance of the estimators. 

AvE(Θ̂) =
∑ Θ̂1000

𝑖=1

1000
 Bias(Θ̂) = AvE(Θ̂) − Θ  ,  

RMSE=√∑
(Θ̂−Θ)

2

1000
1000
𝑖=1  

 

where Θ̂ is the MLE for Θ for the respective distributions. 

 

F. Application of Real Data 

 

We fit three data sets by using Beta Burr Type X (BBX), 

Gamma Burr Type X (GBX) and Weibull Burr Type X (WBX) 

to illustrate the potentiality and capability of these 

distributions. The real data sets used are either left-skewed or 

right-skewed or approximately symmetrical. The criteria 

used to compare the three models with the baseline are log 

likelihood and the Akaike information criterion (AIC). The 

likelihood ratio (LR) test can be used for testing the null 

hypothesis of the three distributions against the baseline 

distribution. The BBX, GBX and WBX distributions are 

reduced to BX distribution when 𝜈 = 𝜔 = 1, 𝜈 = 1 and 𝜈 =

𝜔 = 1 respectively. 

 

1. Time-to-Failure of the Turbochargers Diesel Engines 

Data 

 

This data set is time in hours of the failure of 40 

turbochargers diesel engines. These data were also used by 

Xu et. al., (2003) for reliability in forecasting engine. Table 1 

provides descriptive statistics of the data such as item 

number (N), mean, standard deviation (SD), median, 

skewness (Skew), kurtosis and standard error (SE). 

 

Table 1. Descriptive statistics of turbochargers failure data 

set 

N

N 

M

Mean 

S

SD 

M

Median 

S

Skew 

K

Kurtosi

s 

S

SE 

 

40 

6

6.25 

1

1.96 

6

6.5 

-

-0.64 

-

-0.49 

0

0.31 

 

2. Waiting Times (minutes) of Bank 

Customers Data 

This data set is from Ghitany et. al., (2008) which represents 

the waiting time (minutes) before service of 100 bank 

customers. Table 2 provides the same descriptive statistics as 

in Table 1. 

 

Table 2. Descriptive statistics of waiting times (minutes) of 

100 bank customers data set 

N Mea

n 

SD Media

n 

Ske

w 

Kurtosi

s 

SE 

10

0 

9.88 7.2

4 

8.1 1.45 2.43 0.7

2 

 

3. The Strengths of 1.5 cm Glass 

Fibres Data Set 

This data set consists of 63 observations of the breaking 

strengths of 1.5 cm glass fibres and have been analysed by 

Smith & Naylor (1987).The descriptive statistics is presented 

in Table 3. 

 

Table 3. Descriptive statistics of the strengths of 1.5 cm 

glass fibres data set 

N

N 

M

Mean 

S

SD 

M

Median 

S

Skew 

K

Kurtosi

s 

S

SE 

 

63 

1

1.51 

0

0.3

2 

1

1.59 

-

-0.88 

0

0.80 

0

0.04 

 

III. RESULTS AND DISCUSSION 

This section provides the results and discussion of the 

performance of the estimators of the three models: BBX, GBX 

and WBX based on the results of the simulation studies. The 

fit of the three models is assessed via real data application.  

Tables 4-6 present the AvE, bias and RMSE of the 

estimators for different initial values and 𝑛 for BBX, GBX and 

WBX respectively. In general, the AvE of all estimators are 

closer to the selected initial values as sample size increases. 

The bias of each tend to decrease with the increase of sample 

size. 

The RMSE of the estimators which measure the average 

error behave accordingly that is the values decrease as sample 

size increases. The simulation results of the other sets 

depicted similar trend. The simulation results indicate that 

the estimators perform well. 
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Table 4. The AEs, biases and RMSEs based on 1,000 

simulations of the BBX distribution and n=50, 100 and 150 

Set 1:𝑣=2; 𝜔 = 2; 𝜂 = 2; and 𝜗 = 2 

 

n 𝚽 AEs Bais RMSE 

 

 

50 

𝑣 2.0688 0.0688 0.4019 

𝜔 2.0580 0.0580 0.5167 

𝜂 2.0472 0.0472 0.2361 

𝜗 2.1212 0.1212 0.4741 

 

 

100 

𝑣 2.0477 0 .0477 0.3038 

𝜔 2.0198 0.0198 0.3971 

𝜂 2.0358 0.0358 0.1741 

𝜗 2.0641 0.0641 0.3652 

 

 

150 

𝑣 2.0241 0.0241 0.2450 

𝜔 2.0037 0.0037 0.3233 

𝜂 2.0138 0.0138 0.1293 

𝜗 2.0327 0.0327 0.2567 

 

Table 5. The AEs, biases and RMSEs based on 1,000 

simulations of the GBX distribution and n=50, 150 and 300 

Set 1:   𝜂=2; 𝜗 = 4 and 𝑣 = 3 

 

n 𝚽 AEs Bais RMSE 

 

50 

𝜂 2.0733 0.0733 0.6021 

𝜗 4.1382 0.1382 0.8219 

𝑣 3.2646 0.2646 0.7959 

 

100 

𝜂 2.0182 0.0182 0.4233 

𝜗 4.0842 0.0842 0.5385 

𝑣 3.1224 0.1224 0.4518 

 

150 

𝜂 1.9838 -0.0162 0.2708 

𝜗 4.0418 0.0418 0.2792 

𝑣 3.0197 0.0197 0.2435 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. The AEs, biases and RMSEs based on 1,000 

simulations of the WBX distribution and n=50, 100 and 150 

 

Set 1:𝑣=3; 𝜔 = 3; 𝜂 = 3; and 𝜗 = 3 

 

n 𝚽 AEs Bais RMSE 

 

 

50 

𝑣 3.1898 0.1898 0.2433 

𝜔 3.0642 0.0642 0.3759 

𝜂 3.0134 0.0134 0.0401 

𝜗 3.0482 0.0482 0.1301 

 

 

100 

𝑣 3.1555 0.1555 0.1942 

𝜔 3.0096 0.0096 0.2065 

𝜂 3.0054 0.0054 0.0216 

𝜗 3.0395 0.0395 0.0718 

 

 

150 

𝑣 3.1058 0.1058 0.1731 

𝜔 2.9969 -0.0031 0.1404 

𝜂 3.0022 0.0022 0.0148 

𝜗 3.0318 0.0318 0.0571 

 

Tables 7-9 present the MLEs of the parameters, the –log 

likelihood (-𝑙) and AIC. From Table 7 the values of AIC of 

WBX is the smallest. These data are left-skewed depicted by 

Figure 1.From Figure 2 we can see that the cdf of WBX 

distribution is very close to the empirical cdf. The results 

suggest that WBX is a good fit f0r for left-skewed data.  

 

Table 7. The ML estimates, −𝑙 and 𝐴𝐼𝐶of turbocharges 

failure data set 

Model ML Estim. −𝑙 𝐴𝐼𝐶 

 

 

BBX 

𝜈̂ = 0.119 

𝜔̂ = 164.8 

𝜂̂ = 0.121 

𝜗̂ = 14.056 

79.4 167 

 

 

GBX 

𝜈̂ = 2.145 

𝜂̂ = 0.142 

𝜗̂ = 2.811 

85.5 177 

 

 

WBX 

𝜈̂ = 0. .0532 

𝜔̂ = 1.731 

𝜂̂ = 0.343 

𝜗̂ = 0.136 

79.6 165 

 

BX 

𝜂̂ = 0.343 

𝜗̂ = 2.386 

85.8 176 
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Table 8. indicates that the GBX is a strong competitor to BBX, 

WBX and BX for fitting the waiting times of 100 bank 

customers data set. 

 

 

Figure 1. Histogram and plots of fitted densities time-to-

failure of turbochargers diesel engine data 

 

 

Figure 2. Empirical cdf and cdfs for time-to-failure of 

turbochargers diesel engine data 

 

GBX is the better fit followed by WBX. This data set is right-

skewed (Figure 3). This application suggests that GBX fits 

very well the right-skewed data. Figures 3 and 4 clearly 

indicate that GBX is the best fit. 

For the breaking strengths data set it is clearly shown in 

Table 9 that WBX is the best fit for these data based on the 

largest log likelihood and smallest AIC. Figures 5 and 6 

emphasize the strength of WBX. Figure 5 shows that this data 

set is approximately a symmetric data that is slightly skewed 

to the left. This illustration also indicates that WBX 

distribution is also suitable to fit approximately symmetric 

data. 

 

Table 8. The ML estimates, −𝑙 and 𝐴𝐼𝐶 of waiting times 

(minutes) of 100 banks customers data set 

 

 

Figure 3. Histogram and plots of fitted densities for waiting 

times (minutes) of 100 bank customers data 

 

Model ML Estim. −𝑙 𝐴𝐼𝐶 

BBX 𝜈̂ = 2.6858 

𝜔̂ = 6.968 

𝜂̂ = 0.0183 

𝜗̂ = 0.3565 

318 644 

GBX 𝜈̂ = 5.112 

𝜂̂ = 0.022 

𝜗̂ = 1.409 

318 641 

WBX 𝜈̂ = 13.968 

𝜔̂ = 0.247 

𝜂̂ = 3.037 

𝜗̂ = 0.016 

318 643 

BX 𝜂̂ = 0.0694 

𝜗̂ = 0.6289 

 

322 647 
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Figure 4. Empirical cdf and cdfs for waiting times (minutes) 

of 100 bank customers data 

 

Table 9. The ML estimates, −𝑙 and 𝐴𝐼𝐶 of breaking strengths 

data set 

 

 

Figure 5. Histogram and plots of fitted densities for glass 

fibres data. 

 

Figure 6. Empirical cdf and cdfs for glass fibres data. 

 

IV. SUMMARY 

The main ingredient of this work is in the generalization of 

Burr Type X distribution with two parameters (BX) which is 

the baseline distribution used to fit normally a right-skewed 

data sets. We extend this distribution by using three different 

families namely Beta-G, Gamma-G and Weibull-G. The 

parameters of the new distributions perform accordingly 

based on the simulation results. The real data applications 

illustrate the potentiality and flexibility of the new 

distributions and are able to model the data well. applications 

in all related areas. 
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Model ML Estim. −𝑙 𝐴𝐼𝐶 

BBX 𝜈̂ = 0.354 

𝜔̂ = 37.42 

𝜂̂ = 0.55 

𝜗̂ = 8.539 

14.9 37.7 

GBX 𝜈̂ = 4.88 

𝜂̂ = 0.561 

𝜗̂ = 6.575 

21.6 49.3 

WBX 𝜈̂ = 11.142 

𝜔̂ = 6.717 

𝜂̂ = 0.262 

𝜗̂ = 0.013 

14.6 35.1 

BX 𝜂̂ = 0.987 

𝜗̂ = 5.486 

 

23.9 51.9 
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