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Saybolt colour or number is a measured physical property of petroleum condensates and light crude 

oils which can be used as a quality indicator. As an alternative approach to the laboratory-based 

colour measurement method, this work aims to determine the influential physical properties in 

predicting Saybolt colour by applying a regression modelling approach. Data available on Saybolt 

colour and several physical properties are obtained from assay reports for condensates and light 

crude oils of Malaysian oil and gas fields. Other unavailable but potentially influential properties  are 

estimated using a commercial process simulation software, iCON. The properties identified as 

explanatory variables in this study are refractive index, kinematic viscosity at 40C, and 

characterization factor. This machine learning problem gives rise to applying multiple linear 

regression techniques based on a backward elimination approach in developing a correlation to 

predict Saybolt colour using the identified key properties of characterization factor, kinematic 

viscosity at 40C, and refractive index. 

Keywords: saybolt number; condensates; modelling; linear regression; liquid refractive index; 

kinematic viscosity 

 

 

I. INTRODUCTION 

 
Saybolt colour or number is a measurement scale used 

mainly for refined oils such as light petroleum products. It 

can serve as a quality indicator, e.g., of contaminants 

presence (Andrews et al., 2001), which can influence 

feedstock selection decision for refinery processing to ensure 

product specifications are met. Colour can be a physical 

property used in this way, especially if it is readily 

observable. In the petroleum industry, colour is measured 

depending on requirements according to available methods 

or scales such as ASTM, Hazen, Rosin (or Gardner), and 

Lovibond (Speight, 2001). 

The two scales used to define petroleum colour particularly 

for products (with their respective standard test methods) 

are: (1) ASTM colour scale using the ASTM D 1500 method 

(ASTM International 2008), and (2) Saybolt colour scale 

using the ASTM D 156 Saybolt chromometer method (ASTM 

International 2003). As shown in Figure 1, the ASTM colour 

scale is used to quantify a broad range of petroleum products 

defined by numbers ranging from 0.5 (lightest) to 8 

(darkest). Lighter petroleum colour with less than 0.5 on the 
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ASTM scale (typically for refined products) is graded using 

the Saybolt scale ranging from 30 (lightest) to −16 (darkest). 

Condensates, which have high API gravity and low density 

(Schlumberger 2018), possesses lighter shade and thus 

registers positive Saybolt numbers closer to values around 

30. 

A difference between the ASTM and Saybolt scales lies in 

the opposing magnitude used to describe the shade of a 

sample, e.g., ASTM scale uses smaller values for lighter 

coloured materials while Saybolt uses larger values. The 

colour value is determined by matching the sample with a 

specific set of standard scale either by direct or indirect 

visualization. The latter (indirect visualization) is aided with 

an instrument in matching output with the selected scale, 

e.g., the height of a column of a sample using Saybolt 

chromometer is adjusted until the colour match with that of 

standard. However, a detailed comparison between these 

two scales is beyond the scope of this work. 

Several physical properties have been reported in the 

literature to be influential to petroleum colour, as 

summarized in  

Table 1. However, there is still a lack of such a model 

describing a relation between petroleum colour and its 

physical properties. Historically, petroleum feedstock 

quality is evaluated by measurement of bulk physical 

properties as it is readily determined, quick, and economical. 

The typical physical properties measured are specific density 

(or API gravity), refractive index, and viscosity. Among the 

physical properties reported to affect petroleum colour are; 

refractive index, surface tension, and specific dispersion 

(Diller et al., 1943; Lykken and Rae, 1949; Speight, 2001; 

Rodriguez et al., 2017). 

 

 

Saybolt colour (typical scale) 

 

ASTM colour (illustrative typical scale) 

Figure 1. Colour spectrum (partial) for ASTM and Saybolt 

colour scales (Kemtrak 2019) 

 

 

 

Table 1. Summary of physical properties related to petroleum colour reported in past work 

Work Physical Property Remark 

Diller et al., (1943) Refractive index, surface tension, 

specific dispersion 

Saybolt colour is linearly related to the refractive index. 

Lykken & Rae (1949) Optical density Refractive index is used as an indicator of optical density. 

Speight (2001) Composition, acid or basic nature Total acid number is typically available from assay reports. 

Rodriguez et al. 

(2017) 

Composition of dodecane (C9 

paraffins) 

Dodecane composition is mostly available from assay reports 

(through detailed hydrocarbon analysis). 

Analysis of colour by visual inspection is susceptible to low 

accuracy as variation, and thus inconsistency may arise 

across multiple observers as colour can be influenced by 

individual perspective. Several strategies have been 

developed to overcome the subjectivity of relying on the 

human eye in improving colour determination accuracy, 

mainly by modifying existing instruments without 

developing new colour measurement method (Rodriguez et 

al., 2017). 

As part of the recent digitalization trend as established 

through the smart manufacturing initiative or Industry 4.0 

drive (Saudagar et al., 2019), there is interest to automate 

colour determination instead of relying on experimental- or 

instrumentation-based technique, which is subject to cost, 

time, and accuracy issues. In this regard, developing a 

mathematical correlation to estimate petroleum colour 

based on physical properties data typically reported in assay 

reports (e.g., density and kinematic viscosity) offers promise. 

To the best of our knowledge, there is no correlation 

developed for the automated colour determination of 

petroleum feedstock or products towards assessing their 
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quality. Methods involving eye visualization or laboratory 

analysis remain largely used in the industry. 

This work focuses on the Saybolt colour scale in correlating 

it with physical properties identified as potentially 

influential variables, particularly in the case of light crude 

oils and condensates. We conduct statistical analysis coupled 

with using a commercial process simulator towards 

formulating suitable linear regression models to describe the 

relationship between the physical properties as factors and 

Saybolt colour as the response. The work contributes by 

postulating such correlation as an automated way to 

determine Saybolt colour that can be an alternative to 

conventional laboratory analysis, which may be expensive, 

slow, and inaccurate. 

 

II. PROBLEM STATEMENT 

 
Several challenges in providing fast and cost-effective yet 

reliably accurate petroleum colour measurement motivates 

us to develop an alternative method. First, colour is currently 

determined using laboratory analysis by direct or indirect 

visual inspection. The method incurs time and cost besides 

possibly generating inaccurate results due to the reasons. 

Second, a reliable colour estimation can assist refinery 

operators in assessing feedstock quality in avoiding possible 

operational problems and inability to meet processing targets 

such as product specifications. Third, the colour 

measurement must be done timely because petroleum colour 

can age over time and become unstable. Petroleum colour 

tends to darken due to the oxidization of unstable 

components present such as olefins. Consequently, colour 

measurement at a certain lapsed time might not reflect the 

actual quality (Speight, 2001; Rodriguez et al., 2017). Thus, 

an alternative approach of developing correlation-based 

models empirically provides an alternative in determining 

petroleum colour instantly, overcomes the subjectivity of 

relying on human eye besides obviating time-consuming and 

cost-incurring laboratory analysis. 

 

III. REGRESSION MODELING 
FRAMEWORK 

 

This work adopts a semi-empirical modelling framework 

which integrates data-driven correlation development with 

physical modelling based on thermodynamic property 

estimation. As shown in the procedural flowchart in Figure 2 

starting with data extraction, we proceed to conduct 

regression modelling at two stages: first is to predict 

unknown properties using flowsheet simulation tools, then to 

relate the identified potentially influential properties to 

Saybolt colour. 

 

STOP: Regression model to predict Saybolt Color

Extract physical properties data from assay reports for whole 

(bulk) and product cuts

R2 > 0.700?

Conduct regression analysis to correlate identified physical 

properties with Saybolt color
NO

p-value < 0.050?

Conduct regression analysis to estimate unavailable physical 

properties using flowsheet simulation (PIONA analysis)

YES

NO

START

YES

  

Figure 2. Regression modelling framework adopted in this work 
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A. Data Extraction 

 
Physical properties of condensates and light crude oils are 

extracted from assay reports made available by the industrial 

collaborator on this work. The data are systematically recorded; 

the properties include density, boiling point, vapour pressure, 

kinematic viscosity (at temperatures −20°C, 20°C, 40°C, 50°C, 

70°C, 75°C, and 100°C), and characterization factor (also called 

UOP or Watson K factor) (Gary et al., 2007), which are 

identified as potentially influential factors to determine Saybolt 

colour as based on preliminary screening with insight from 

subject matter experts. Note that we consider properties data 

for the whole petroleum (i.e., bulk properties) as well as their 

product fractions or cuts at various boiling point ranges (such 

as C5–70°C, 70–90°C, 90–140°C, 140–155°C until 450–

520°C). Part of the data is used as inputs to a flowsheet 

simulation package to estimate other physical properties not 

provided in the assay reports, as explained next. 

 

B. Unknown Property Estimation 

 
To estimate certain physical properties such as liquid refractive 

index and Reid vapour pressure which are not available from 

the assay reports but deemed potentially influential for Saybolt 

colour prediction, we use a proprietary in-house process 

simulation software of PETRONAS called iCON (Virtual 

Materials Group, 2017). Within iCON, a predictive tool (called 

PIONA Slate) is invoked to postulate a compositional makeup 

with hydrocarbon pseudo-component characterization 

comprising molecular structural groups according to the 

PIONA (n-paraffin, isoparaffins, olefins, naphthenes, and 

aromatics classification. Each PIONA group for a certain 

number of carbon atoms with different boiling points may 

exhibit distinct thermodynamic properties which govern the 

physical properties determination. A parameter estimation 

procedure (called Oil Source) is then used to estimate the 

composition of the component slate which optimally matches 

the assay data available on distillation (mainly true boiling 

point) and physical properties. Finally, we determine the 

desired physical property value by executing a black-box 

modelling tool (called Special Property). 

 

C. Pairwise Variable Analysis 

 
Before performing regression analysis, we develop pairwise 

scatterplots between all the variables in the dataset, i.e., 

comprising Saybolt colour and the three physical properties 

considered, namely liquid refractive index (RI), kinematic 

viscosity at 40C (KV40), and characterization factor (KF). 

Each of the individual plots, as shown in Figure 3, depicts 

the relation (or non-relation) between the row variable and 

the column variable. For example, the individual plot on the 

first column of the second row represents a possible relation 

between Saybolt colour and characterization factor. The 

scatterplots show that there is no linear relation observed 

between Saybolt colour and any of the three factors nor is 

there linear relation between any of the three factors. 

Therefore, in our further analysis, we have considered 

higher-order terms of each variable and their possible 

interactions. Linear regression is used to assess the 

importance of these higher-order terms. This methodology 

is explained in detail in Section 4. 

 

D. Regression Analysis 

 
Regression analysis is used to determine the relationship 

between Saybolt colour and the physical properties. The 

independent variable or model response is Saybolt colour 

(or number) of a condensate type based on its certain 

physical properties as dependent variables or model 

predictors. We consider simple and multiple linear 

regression models to describe the correlation between 

Saybolt colour and the potentially influencing physical 

properties. The former (simple linear regression model) 

admits only one predictor property while the latter can 

handle more than one predictor property in which two and 

three such influential variables are considered appropriate 

and thus investigated for this problem using a backward 

elimination approach (Montgomery et al., 2012). 

The regression analysis is performed with the aid of an 

Excel spreadsheet (installed with an add-in called Data 

Analysis that features a regression tool); any similar 

software can also be used for this purpose. To verify the 

results obtained, we use a specific statistical package in the 

form of the open-source package of R (version 3.3.1) (R 

Core Team 2016). The value of the coefficient of 

determination R2 allows us to determine whether the 

predictor and regressor variables have a strong or weak 

relation. 
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Figure 3. Scatter plots of Saybolt colour versus the three factors considered: characterization factor (KF), kinematic viscosity 

at 40C (KV40), and liquid refractive index (RI). 

 

The value is indicative particularly for a single regressor 

variable in developing a simple linear regression model. A 

value of R2 closer to one indicates a higher percentage of data 

that fits a proposed regression model. A p-value of less than 

0.05 (for a 5% level of significance) indicates that there exists 

a statistically-significant linear relation between the response 

and the factors considered (Lind et al., 2001). 

It is noteworthy that the value of R2 tends to increase as 

more factors are added to the regression model. Thus, R2 does 

not penalize for model complexity—a few important features, 

together with many spurious factors result in a higher R2 

value. In other words, R2 does not discount spurious factors 

that do not affect the regression in a meaningful way. To 

address this drawback of R2, we use the adjusted R2 measure, 

which penalizes factors that are added but unimportant in the 

regression model (Draper and Smith, 1998). 

 

IV. REGRESSION MODEL 
DEVELOPMENT 

 

A. Raw Data 

 
This work considers data on physical properties of both bulk 

and product cuts (or fractions) of condensate and light crude 

oil types from Malaysian oil and gas fields mainly in offshore 

Sabah and Sarawak (e.g., Kimanis, Marjoram, Bintulu, and 

Kasawari). The underlying assumption is that physical 

property values are independent and identically distributed 

(i.i.d.). Due to commercial confidentiality, the data is not 

reported here. 

 

B. Multiple Linear Regression Model 

 
We use a multiple linear regression model as a basis for the 

model building in which the generalized formulation is given 

by: 

 

𝑦𝑗 = β0 + β1𝑥1𝑗 + β2𝑥2𝑗 +⋯+ β𝑖𝑥𝑖𝑗 +⋯+ 𝜀𝑗 (1) 

 

where for data point j, 𝑥𝑖𝑗  is the value of the independent 

variable i (i.e., predictor or regressor), 𝑦𝑗  is the observed 

value of the dependent variable, β0  is intercept, β𝑖  is slope 

coefficient associated with independent variable i, and 𝜀𝑗  is 

random error. As summarized in Table 2, we develop four-

second order variants of a multiple linear regression model, 

with and without considering interaction involving the 

factors for two or three of such independent variables to 

predict Saybolt colour. An interaction term is represented by 

the multiplication of a pair of variables such as RI ∙ KV40 and 

RI ∙ KF. 

The best result obtained among the models considered is 
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that for a second-order two-variable without interaction 

model; the other models tend to lead to a problem of 

parameters overfitting. For the former, the adjusted R2 value 

is 0.9903 with an F-statistic of 590.7 corresponding to a p-

value of 2.210−16 at a 95% confidence level, which indicates 

that 99.03% of the total sum of squares of the Saybolt colour 

response can be accounted for by the following correlation: 

 

𝑆𝑁 = −2.234104 + (3.120104)𝑅𝐼 + 13.71𝐾𝑉40 −

1.088104𝑅𝐼2 − (3.098104)𝐾𝑉402 (2) 

 

 

Table 2. Summary of regression models developed for identified physical properties. 

Model Type Regressor Adjusted R2 p-value 

Second-order two-variable 

without interaction 

RI, KV40, RI2, KV402 0.9903 2.210−16 

Second-order two-variable 

with two-way interaction 

RI, KV40, RI2, KV402, RI ∙ KV40 1 (overfitting) 0.0 

Second-order three-variable 

without interaction 

RI, KV40, KF, RI2, KV402, KF2 1 (overfitting) 0.0 

Second-order three-variable 

with two-way interaction 

RI, KV40, KF, RI2, KV402, KF2, RI ∙ KV40, RI ∙ KF, KV40 ∙ KF 1 (overfitting) 0.0 

 

V. CONCLUDING REMARKS 

 
The results obtained from multiple linear regression 

modelling indicates that a statistically significant relationship 

exists between Saybolt colour and condensate physical 

properties comprising liquid refractive index and kinematic 

viscosity at 40C. Future work involves exploring other 

potentially influential physical properties (e.g., contaminants 

content such as sulphur) (Speight, 2015) and systematic 

regression modelling strategies (e.g., such as stepwise 

regression) (Harrell, 2001). 
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