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Two-phase flow is the interaction of two different matters, namely fluid and solid that contributes to 

an intriguing model in the boundary layer flow problem. It is can be precisely defined as the binary 

mixture of the fluid and spherical particles that involve interaction between both phases on the flow 

region. The fascinating class of non-Newtonian fluid, particularly Casson, Williamson and Jeffrey 

models are further considered for fluid phase. The mathematical formulation on the respective models 

are presented and discussed. The adiabatic two phases is engaged throughout the entire flow process 

by means of no phase changes occurred. The governing equations for the proposed models are 

presented herein and need to undergo the boundary layer approximation as way of tackling its 

difficulty into a solvable form by using the order of magnitude analysis. 
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I. INTRODUCTION 
 
 

The field of fluid dynamics has been an object of research 

for the past century that relates to the fluid motion with 

forces. As regards to fluid, the viscosity is one of its 

fundamental characteristic which referring to the 

resistance of fluid when flowing(Nakayama, 2018). There 

is, therefore, the used of the Newton’s law of viscosity as a 

remarkable way to measure the viscosity that holds for the 

shear stress being proportional to the velocity gradient. 

Air, water and electrolyte are categorized as Newtonian 

fluid since they portrayed such behavior. However, for 

those fluids that opposed the law are recognized as non-

Newtonian fluid (Partal and Franco, 2010), which are 

commonly exhibited by blood, paint, polymer and etc. 

This complex fluid is classified into the different kinds of 

models depending on their rheological behavior that can 

be represented by the constitutive equation, the relation of 

applied stresses to deformation. Generally, the model is of 

the three broad categories which are time independent, 

time-dependent and viscoplastic fluids(Nguyen and 

Nguyen, 2012). Investigating non-Newtonian fluids has 

received consideration attentiondue toits applications in 

the mining industry, lubrication and biomedical 

flows(Khan et al., 2018). The studies of non-Newtonian 

fluid with various conditions have been investigated by 

several researchers (Kasim et al., 2012; Aurangzaib et al., 

2013; Arifin et al., 2018; Kasim and Shafie, 2010). 

In the case of two-phase flow, the involvement of two 

different states of matteris considered, which can occur 

either between solid, liquid and gas. The solid-liquid 

phase for instance, is referring to the fluid having dust 

particles which are important in packed beds, centrifugal 

separation of particles, sedimentation, environment 

pollution, and blood rheology (Butt et al., 2017).By 

drawing on the concept of two-phase flow, Saffman 

(1962)has been able to show the stability of dusty gas, 

while Marble (1963) identified four similarity parameters 
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for gas-particle flow. In view of this, the flow problems 

concerning fluid and dust particles have led to a 

numerous studies under different elements, effects, as 

well as dimensions(Isa et al., 2016; Sulochana et al., 2016; 

Arifin et al., 2017).  

In this paper, Casson, Williamson and Jeffrey fluids 

among the time-independent fluid model are selected, 

which primary concern to study for fluid-particle flow 

with the influences of aligned magnetic field and mixed 

convection over a vertical stretching sheet. The fluids were 

also examined by different authors (Hussanan et al., 2018; 

Nadeem et al., 2013; Hayat et al., 2011). Before proceeding 

to solve the two-phase flow problems, it is necessary to 

formulate the basic equations that are reliable. This paper 

first introduces the basic equations for each flow models 

in the vector form. Then, the boundary layer 

approximation is performed by applying the order of 

magnitude analysis. The resulting equations embodied the 

above arguments are finally expressed. 

 

 

II. GOVERNING EQUATIONS 
 

Turning now to the computation of flow problems, the 

modelling is carried out by solving its governing equations 

which are generally consist of continuity, momentum and 

energy equations. In addition, they are derived according 

to the three fundamental physical principles, which are 

mass is conserved, Newton’s second law and energy is 

conserved(Anderson Jr, 2009). These laws are also 

applied for dust phase. The basic equation of momentum, 

in particular, is different for each flow case caused by the 

different constitutive relation of fluid model which are 

revealed in Table 1. Next, the formulation for two-phase 

flow is carried out by independently derived the governing 

equations for each phase (Siddiqa et al., 2015). Three fluid 

models that have been mentioned so far will be examined, 

all of which are embedded with the dust particles. Keeping 

in mind that for fluid phase, they share the same 

continuity and energy equations, however, the momentum 

equation is based on their respective constitutive relation. 

 

 
Table 1. The constitutive relation for non-Newtonian fluid 

Types of fluid Constitutive equation 

i. Casson fluid 
( )

( )

2 2 ,     

2 2 ,   ,

B y ij c

B y c ij c

e

e

    

    

 + 


= 
+ 



                                                      (1) 

where B  and y  corresponds to the plastic dynamic viscosity of non-

Newtonian fluid and fluid yield stress respectively, ij ije e=  while c being its 

critical value with ije  is given by 

1
.

2

ji
ij

j i

vv
e

x x

 
= + 

   

                                                                             (2) 

ii. Williamson fluid  0 11 ,= + A ( ) ( )2
11 2 trace , = A                                                (3) 

where 0 ,  , and 1A  are zero shear rate of limiting viscosities, time constant 

and first Rivlin-Erickson tensor that is equated to ( )1 .
T

= + A V V  

iii. Jeffrey fluid 
1

1 1 1

2

,
1 t

  
= + +   

+   







A
A V A                                               (4) 

where   is dynamic viscosity, 1  and 2  corresponds to the relaxation time and 

ratio of relaxation to retardation, respectively. 
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The following equations are thus expressed for fluid 

and dust phases as 

Continuity equation:  

0,

0,

 =

  =p

V

V
     (5) 

Momentum equation:  

,

,

p b

p

p p p p

p
t

t





 
+  = − + + + 

 

 
+  = − 

 

V
V V F F

V
V V F



            (6) 

Energy equation: 

( )
( )

2
V

V

p p

s p p

c T k Q ,

c T Q ,

 

 −

 =  +

 =
                                 (7) 

Here, V ,  , bF ,  ,  , pc  and k  signifies to 

velocity field, stress tensor, body force, temperature, 

density, specific heat and thermal conductivity for fluid 

phase. Meanwhile, pV , p , and sc  refers to vector field, 

temperature and specific heat for dust phase. The total 

fluid-particle interaction of force and thermal per unit 

volumeare respectively referred to 

( )6 ,p p pn r = −F V V   (8) 

( )4 .p p pQ nr k T T= −    (9) 

 

 

III. MATHEMATICAL ANALYSIS 
 
 

The boundary layer theory is originally introduced by 

Prandtl (1904) to reduce the complexity of governing 

equations into the approximate solutions in which the 

only significant terms are retained. In an attempt to 

approximate the governing equations, each term is 

estimated with the order of magnitude which has been 

reported by Schlichting (1974). By taking into account the 

above arguments, this approach is applied into Equations 

(5)-(7) to obtain the desired results in which the retaining 

terms are determined to be important. In the Cartesian 

coordinates, the steady two dimensional flow is 

considered in which the basic equations of fluid and dust 

phases are expressed in x  and y directions with 

independent of time. The flow configuration of this 

problem is illustrated in Figure 1. 

 

Figure 1: Flow configuration 

 
To begin with, the terms contained in Equations 

(5)-(7) are estimated to be of order1and .Hence, the 

physical quantities contained in the respective 

equations are given as (Nadeem et al., 2013; 

Schlichting, 1974; Jaluria, 1980; Kasim, 2014; Kannan, 

2001) 

( )

2

2 2
02

2 2 2
1

2

1, 1, , ,

1
, , 1, 1,

, 1, ,
1

u x v y ,

B βg T T T


   



 



   







 −

 
+

(10) 

1 1
1, , , 1, 1,p p p p

v T

u v T 1  
 

(11) 

 

A. Continuity Equation 
 
 

In view of Equation (10), the continuity equation 

(5) is estimated and it can be seen from Table 2 that 

the first and second terms are of order 1  and they are 

considered to be retained. 

Table 2. Order of magnitude for continuity equation 

Term Order of magnitude 

0
u v

x y

 
+ =

 
 

1

1
    




 

0
p pu v

x y

 
+ =

 
 

1

1
     




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B. Momentum Equation 
 
 

Substituting Equations (1)-(4) and (8) into (6) results in 

the momentum equation of fluid phase. Thus, the 

resulting equations for each fluid model are estimated by 

applying Equation (10) as shown in the following tables. 

In the case of dusty Casson fluid, term
2 2u x  is 

negligible since it is of order 
2 which is a very small 

quantity as presented in Table 3. Meanwhile, the 

remaining terms of order 1  are retained. From Table 4, 

the terms with order   are maintained in y momentum 

equation. This is implying to the Prandtl’s theory which 

stated that the inertia terms and viscous terms are 

required to have the same order of magnitude. However, 

the variations of y  momentum in the fluid flow can be 

ignored stemming from all approximated terms are small 

quantity. 

Summing up from the above elaborations, the 

approximation of y  momentum equation for the other 

two fluid models will not be presented. Again, Schlichting 

(1974) has been shown that the equation of motion in y  

direction is completely discarded. For this reason, it is 

accurate enough to only estimate the momentum equation 

for x  direction and the repeating terms as contained in 

dusty fluid are not included in the following tables. 

 
Table 3. Order of magnitude for x  momentum equation 

of dusty Casson fluid 
Term Order of magnitude 

u
u

x




 

1
1 1

1
=  

u
v

y




 

1
1


=  

2

2

1
1B u

A x





 
+ 

 
 

2 2

2

1

1
 =  

2

2

1
1B u

A y





 
+ 

 
 

2

2

1
1


=  

1p

p

v

u


 
 

1
1 1

1




=  

1p

v

u


 
 

1
1 1

1




=  

2 2
0 1sinB u





 

2

2

1
1 1


=  

Table 4. Order of magnitude for y  momentum 

equation of dusty Casson fluid 
Term Order of magnitude 

v
u

x




 1

1


=  

v
v

y




 

1
 

=  

2

2

1
1B v

A x





 
+ 

 
 

2 3

21


 =  

2

2

1
1B v

A y





 
+ 
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2

2


 


=  

1p

p

v

v


 
 

1

1


 


=  

1p

v

v


 
 

1

1


 


=  

2 2
0 1sinB v





 

2

2

1
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
=  

 
 

 
Table 5. Order of magnitude for dusty Williamson 

fluid 

Term 
Order of 

magnitude 
2

0

2

u

x








 

2 2

2

1

1
 =   

2
0

2

u

y








 

2

2

1
1


=  

1
2 2

0
2

2

2

u

x

u v

y x

u

x





  
  

  
 

   + +     

 
 
 

 

( )

1

2

2
2

2

1

1

1

 




 
 
  
    

 

1
2 2

0
2

2

2

u

x

u v

y x

u

y





  
  

  
 

   + +     

 
 
 

 

1

2

2

2

2

2

1

1

1

 





 
   
  
  
   

 
 
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1
2 2

0
2

u

x

x u v

y x

u

x




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 
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1

2

2
2

2

1

1

1

 

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u

x
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Table 6. Order of magnitude for dusty Jeffrey fluid 
Term Order of magnitude 

2

2
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u
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





+ 
 2 21

1
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2

2
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u
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




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2

2

1
1


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3
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u
u

x






 
 
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3

1
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1
 

 
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 
  

3

1 2
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u
u

x y





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 
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2

2

1
1 1 1



 
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 
  

3
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u
v

x y






 
 
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1  



 
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 
 

3

1 3
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u
v

y






 
 
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2

3

1
1 1 
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 
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2

1
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y x y
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 
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2 1 1
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 

 
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2
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y x






  
 
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2

1

1


 



 
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2
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x x
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


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 
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2 2

2

1 1
1
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 

 
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2

1 2
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u u

x y






  
 
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2

2
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1




 
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2

1
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v u

x x y






  
 
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2 21
1

1


 



 
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 
 

 
 

In the similar manner as dusty Casson fluid, the 

terms with order 1  from Tables 5 and 6are remained. 

Therefore, according to Tables 3-6, the momentum 

equation for fluid phase of dusty Casson, dusty 

Williamson and dusty Jeffrey fluids are given by  

( )

( )

2

2

2 2
0 1

1
1

sin ,

p

p

v

u u u
u v u u

x y A x

B u g T T







 




   
+ = + + − 

   

− + −

 

(12) 

( ) ( )

2 2

2 2

2 2
0 1

2

sin ,
p

p

v

u u u u u
u v

x y yy y

u u B u g T T

 

 
 

 


    
+ = + 

   

+ − − + −

  

 

     (13) 

( ) ( )

2

2

3 3

2 3
2

1 2 2

2

2 2
0 1

1

sin ,
p

p

v

u

y

u u u u
u v u v

x y x y y

u u u u

y x y x y

u u B u g T T






 
 

 





 
    
+ = + 

  +     +      
 −          

+ − − + −

 

    (14) 

 
In above equations, the Casson parameter is 

equated to 2B yA   =  and the fluid viscosity 

  can be defined according to each fluid model as 

B  = ,   = 0  = . If A→ , 0 =  

and 1 2 0= =  , then the fluid case of Newtonian 

fluid can be recovered. It is therefore important to 

note that the momentum equations (12)-(14) are 

under the Boussinesq approximation, that being 

applied to the case of flow with buoyancy force term. 

The same approaches have been discussed by 

dissimilar authors (Jaluria, 1980; Bejan and Kraus, 
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2003).  

For dust phase, the momentum equation arises from 

inserting Equations (8) into (6) and it went on to use the 

boundary layer approximation that is treated similarly as 

in fluid phase by employing Equation (11). Tables 7 and 8 

provide the analysis of order of magnitude for steady two 

dimensional of dust phase. 

 

Table 7. Order of magnitude for x  momentum equation of 

dust phase 
Term Order of magnitude 

p

p

u
u

x




 

1
1 1

1
=  

p

p

u
v

y




 

1
1


=  

1p

p

p v

u


 
 11 1=  

1p

p v

u


 
 11 1=  

 
 

Table 8. Order of magnitude for y  momentum equation 

of dust phase 
Term Order of magnitude 

p

p

v
u

x




 1

1


=  

p

p

v
v

y




 


 

=  

1p

p

p v

v


 
 1  =  

1p

p v

v


 
 1  =  

 
From the above tables, all terms in dust momentum 

equation remains unchanged since they are equally 

important. Despite that, the simplified form of this basic 

equation is expressed by dropping for y  direction, hence 

( )
1

.
p p

p p p

v

u u
u v u u

x y 

 
+ = − −

 
 (15) 

 

C. Energy Equation 
 
 

The energy equation for fluid and dust phases are 

obtained by inserting Equations (9) into (7) and then the 

process of magnitude analysis is performed using 

Equation (10) as provides in Tables9 and 10.  

 

Table 9. Order of magnitude for energy equation of 
fluid phase 

Term Order of magnitude 

T
u

x




 

1
1 1

1
=  

T
v

y




 

1
1


=  

2

2

T

x




 

2 2

2

1

1
 =  

2

2

T

y




 

2

2

1
1


=  

1p s

p

s T

c
T

c



 
 11 1=  

1p s

s T

c
T

c



 
 11 1=  

 
 

Table 10. Order of magnitude for energy equation of 
dust phase 

Term Order of magnitude 

pT
u

x




 

1
1 1

1
=  

pT
v

y




 

1
1


=  

1p s

p

s T

c
T

c



 
 11 1=  

1p s

s T

c
T

c



 
 11 1=  

 

According to Table 9, the term 
2 2T x   is 

discarded from the fluid energy equation since it is 

estimated to be small quantity. Therefore, the energy 

equation for both phases can be written as follows that 

consist of the terms with order 1 , we have 

( )
2

2
,

p s

p

T p

cT T T
u v T T

x y cy




 

  
+ = + −

  
              

(16) 

( )
1

.
p p

p p p

T

T T
u v T T

x y

 
+ = − −

  
(17) 
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IV. CONCLUSION 
 
 

The indicating Equations (12)-(17) are now can be reduce 

into ordinary differential equations, which is less complex 

by using the appropriate similarity transformation which 

enable the numerical result to be computed.  
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