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The problem of the steady two-dimensional magnetohydrodynamics (MHD) stagnation-point flow of 

Carreau fluid towards a permeable stretching/shrinking sheet is studied. The effect of the induced 

magnetic field and convective boundary conditions are taken into account. The nonlinear partial 

differential equations are transformed into nonlinear ordinary differential equations by using similarity 

transformations. The transformed governing equations are solved numerically via the boundary value 

problem solver (bvp4c) in MATLAB software. Numerical solutions for the physical quantities as well as 

the velocity and temperature profiles are obtained. It is found that dual solutions exist for a certain 

range of the controlling parameter. Therefore, a stability analysis is performed to determine which 

solution is linearly stable and valid physically. 
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I. INTRODUCTION 

 

In view of far-flung applications, a lot of interest has been 

shown by the researchers towards the study of Carreau 

fluid. Carreau fluid is a type of generalized Newtonian fluid 

where viscosity depends upon the shear rate, the Carreau 

Viscosity Model (CVM) is useful in describing the flow 

behaviour of fluids in system at very low or high shear rate 

region. Initially invented by Pierre J. Carreau, his 

rheological model has garnered great attention nowadays 

(Carreau, 1972). Earlier, Khellaf and Lauriat (2000) 

investigated the heat transfer in non-Newtonian Carreau 

fluid between rotating concentric vertical cylinders and 

used SIMPLER algorithm to solve the resulting system. 

Later, Khan and Hashim (2015) studied the Carreau 

viscosity model and then they use it to obtain a 

mathematical model for the Carreau fluid flow problem. 

They found that the increasing in values of stretching 

parameter thinning the boundary layer thickness while 

opposite effect occurs for the thermal boundary layer 

thickness. Malik et. al., (2014) examined the Carreau fluid 

flow through porous medium with pressure dependent 

viscosity. Hayat et. al., (2014) provided a homotopy 

analysis method to solve the problem of two-dimensional 

boundary layer flow of Carreau fluid pass a permeable 

stretching sheet to acquire the numerical result. In another 

study, Suneetha and Gangadhar (2015) discussed the effect 

of thermal radiation on a two-dimensional stagnation-point 
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flow of an incompressible magnetohydrodynamic Carreau 

fluid toward a shrinking surface in the presence of 

convective boundary condition. The study on the impact of 

magnetic field on stagnation point flow of Carreau fluid was 

done by Khan et al. (2016). Recently, Khan et. al., (2018) 

solved the problem of non-Newtonian Carreau fluid flow 

over a nonlinear inclined shrinking surface in the presence 

of infinite shear rate viscosity. 

This present study is an extension work from Akbar et. 

al.,  (2014), where this study explores the presence of 

induced magnetic field on magnetohydrodynamics (MHD) 

stagnation point flow of Carreau fluid on 

shrinking/stretching sheet with the convective boundary 

conditions and performing a stability analysis of dual 

solutions since the solution is non-unique. Purpose of 

conducting a stability analysis is to determine which 

solution (first or second) is stable and physically realizable. 

Many works on stability analysis has been done by 

researchers such as Merkin (1985), Weidman et al. (2006), 

Adnan and Arifin (2017) and Junoh et. al., (2018). 

 

II. MATHEMATICAL FORMULATION 

 

Consider the steady two dimensional stagnation point flow 

of an incompressible Carreau fluid over a wall coinciding 

with plane = 0y , the flow is being confined to 0y  . The 

flow is generated due to the linear stretching. Extra stress 

tensor for Carreau fluid is,  
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in which ij  is the extra stress tensor, 
0  is the zero shear 

rate viscosity,   is the time constant, n  is the power law 

index and   is defined as 
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Here   is the second invariant strain tensor. Flow, 

induced magnetic and energy equations for Carreau fluid 

model after applying the boundary layer approximations 

can be defined as follows   
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where u  and v  are the velocity and 
1H and

2H  are the 

magnetic components along the x−  and y−  axes 

respectively,   is the kinematic viscosity,   is the density 

of the fluid,   is the magnetic permeability, 
e  is the 

magnetic diffusivity, T  is the temperature of the fluid, fk  

is the thermal conductivities of the fluid and pC  is the 

heat capacity of the fluid.  

The boundary conditions of these equations are 
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where a  and b  are constants, fT  is the temperature of 

convective fluid, fh  is the convective heat transfer 

coefficient, ( )eH x  is the x  component of magnetic field at 

the edge of the boundary layer and ( )0H x  is the applied 

magnetic field parallel to the x−  axis in the free stream. In 

order to transform Eqs. (3)-(8) into a set of ordinary 

differential equations, the following similarity variable are 

introduced 
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where primes denote differentiation with respect to  . 

Subtituting (9) into Eqs. (3)-(8), we obtain the following 

ordinary differential equations 
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subjected to the boundary conditions 
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Biot number or convective parameter. 

The physical quantities of interest are the skin 

coefficient fC  and the local Nusselt number 
xNu , which 

defined as 
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where
w  is the skin friction or shear stress and 

wq  is the 

surface heat flux given by 
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Using the similarity variables (9), we obtain 
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x
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
 is the local Reynolds number. 

 

III. STABILITY ANALYSIS 

 

To conduct the stability analysis, we consider the problem 

as unsteady case. The continuity Eqs. (3) and (4) hold, 

while Eqs. (5)-(7) are replaced by 
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where t  denotes the time. We now introduce the 

following new dimensionless variables: 
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so that Eqs. (17)-(19) can be written as 
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and are subjected to the boundary conditions 
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To test the stability of the steady flow solution, we use 

( ) ( )0=f f  , ( ) ( )0=h h   and ( ) ( )0=     which 

satisfying the boundary value problem (10)-(13). Hence, we 

write 
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where   is an unknown eigenvalue, ( , )F   , ( , )H    and 

( , )T    are small relative to 
0 ( )f  , 

0 ( )h   and 
0 ( )  . 

Solutions of the eigenvalue problem in Eqs. (21)-(24) give 

an infinite set of eigenvalue problem 
1 2< < ...  ; if 

1  is 

negative, there is an initial growth of disturbances and the 

flow is unstable but when 
1  is positive, there is an initial 

decay and the flow is stable. Introducing (25) into Eqs. (21)-

(24), we get the following linearized problem 
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The stability of the steady-state flow solution is based on 

the smallest eigenvalue 
1 . Therefore, the condition 

( )0 0F  →  has been put at rest as suggested by Harris et 

al.(2009) and for a fixed value of eigenvalue  . Eqs. (30)-

(33) will be solved by introducing a new boundary 

condition that is 0 (0) = 1F  . 

 

IV. RESULTS AND DISCUSSIONS 

 

 

Equations (10)-(12) subject to the boundary conditions (13) 

have been solved numerically using the bvp4c function in 

Matlab solver. To validate the accuracy of this present 

study, the numerical result for the skin friction coefficient 

when the magnetic parameter is neglected ( = 0)M  are 

compared with the previous published studies. The data 

obtained shows a good agreement with Bhattacharyya 

(2011) and Akbar et. al., (2014) as presented in Table 1. 

Figure 1 displays the effect of suction parameter on velocity 

profile. It is observed that for increasing value of suction 

parameter S , the boundary layer thickness is decreasing 

for upper and lower solutions in the profile. The effect of 

reciprocal magnetic parameter   on induced magnetic 

profile can be seen from figure 2. It seen clearly that the 

boundary layer thickness increases as the value of 

reciprocal magnetic parameter   increases.  

 

 

Table 1. Comparison values of the skin friction coefficient ( )0f   for some values of   when 0M =  

  

Bhattacharyya (2011) Akhbar et al. (2014) Present 

First 

Solution 

Second 

Solution 

First 

Solution 

Second 

Solution 

First 

Solution 

Second 

Solution 

-0.25 1.4022 - 1.4022 - 1.40224 - 

-0.50 1.4957 - 1.4957 - 1.49567 - 

-0.75 1.4893 - 1.4893 - 1.48929 - 

-1.00 1.3288 0 1.3288 0 1.32882 0 

-1.15 1.0822 0.1167 1.0822 0.1167 1.08223 0.11670 

-1.20 0.9325 0.2336 0.9325 0.2336 0.93247 0.23365 
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Figure 1. Velocity profile for various value of S  

 

 

Figure 2. Induced magnetic profile for various value of   

 

Next, figure 3 shows the effect of Prandtl number Pr  

on temperature profile. It noticed that as the value of Pr  

increases, the thermal boundary layer thickness decreases. 

On the other hand, it is seen from figure 4 for increasing 

values of Biot number Bi it increases the thermal boundary 

layer thickness on temperature profile. When the Biot 

number increases, the convection becomes stronger, hence 

it increases the surface temperature. Therefore, it is causing 

the thermal effect to penetrate deeper into fluid.  Figures 5-

10 illustrate the dual solutions for the physical quantities of 

interest, which are the skin friction coefficient (0)f   and 

the local Nusselt number (0) − . Based on the observation, 

dual solutions of Eqs. (10)-(12) can be obtained for both 

stretching and shrinking cases.  

 

 

 

 

 

 

 

Figure 3. Temperature profile for various value of Pr  

 

 

Figure 4. Temperature profile for various value of Bi  

 

From figures 5 and 6, we can see that as the values of 

magnetic parameter M  increase, the skin friction 

coefficient (0)f  and local Nusselt number (0) −

decreases. This is due to the fact that the presence of 

transverse magnetic field sets in Lorentz force, which 

results in retarding force on the velocity field. This force has 

the tendency to slow down the motion of the fluid in the 

boundary layer. As a result, the boundary layer separation 

occurs quicker when the magnetic field is applied. 

Therefore, the magnetic field enhances the boundary layer 

separation. The effects of power law index n  and 

Weissenberg number We  on the skin friction coefficient 

(0)f   and local Nusselt number (0) −  are shown in 

figures 7-10, respectively. Based on the critical value 
c  in 

these figures, the boundary layer separation occurs faster as 

power law index n  and Weissenberg number   increase. 
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Figure 5. Variation of skin friction coefficient for 

various M  

 

 

Figure 6. Variation of local Nusselt number for various 

M  

 

 

Figure 7. Variation of skin friction coefficient for 

various n  

 

Figure 8. Variation of local Nusselt number for various 

n  

 

Figure 9. Variation of skin friction coefficient for 

various We  

 

 

Figure 10. Variation of local Nusselt number for 

various We  

 

Based on all these figures, it is clearly shown that the 

existence of non-unique solution. Therefore, it is our 

determination to show whether the first solution is stable 

and realizable physically or otherwise. Therefore, the 

eigenvalue problem (30)-(33) is solved for the smallest 

eigenvalues 
1  on the upper and lower solution branches. 

These results are presented in Table 2 for several values of 

 when = 0.1,0.3,0.5M .  
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Table 2: Smallest eigenvalue 1  for some values of   

with different M  

 

From the table, it is observed that the smallest 

eigenvalue 
1  gives a positive value for the first solution 

and negative value for the second solution. Hence, we can 

draw a conclusion that only the upper branch solutions are 

physically significant while the lower branch solutions are 

not. Furthermore, as the value of   approaching the 

critical point 
c , the smallest eigenvalue 

1  converges to 0  

for both upper and lower branches as discovered by Merkin 

(1985). 

 

V. CONCLUSION 

 

A numerical study is performed for the problem of the 

steady two-dimensional magnetohydrodynamics (MHD) 

stagnation-point flow of Carreau fluid towards a 

permeable stretching/shrinking sheet in the presence of 

induced magnetic field. The convective boundary 

condition also taken into account. The effect of all 

parameters is investigated numerically and graphically. 

Dual solutions found to exist for both stretching and 

shrinking cases. Therefore, stability analysis is done via 

bvp4c function in MATLAB software and their results 

found that the first solution (upper branch) is stable and 

valid physically, while the second solution (lower branch) 

is not stable. 
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M    First solution Second solution 

0.1 

3.4 0.69576 -0.60028 

3.42 0.37946 -0.29936 

3.427 0.12595 -0.05125 

0.3 

3.3 0.60902 -0.60639 

3.32 0.34824 -0.34654 

3.329 0.08742 -0.08613 

0.5 

3.2 0.45343 -0.52959 

3.22 0.17612 -0.24112 

3.224 0.02718 -0.08991 
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