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In the present paper, stability analysis is performed to the dual solutions obtained in boundary layer 

flow of micropolar fluid over a shrinking sheet with exponential velocity. The problem is first considered 

as time-dependent problem. Then, the governing equations are transformed into ordinary differential 

equations using similarity transformations. Linear eigenvalue equations are introduced, and the 

smallest eigenvalues are computed by using a MATLAB solver called the bvp4c solver. The first solution 

is found to have positive smallest eigenvalues, while the second solution has negative smallest 

eigenvalues. Thus, the stable solution is the first solution, while the second solution is unstable. 
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I. INTRODUCTION 

 

Micropolar fluid is a non-Newtonian fluid introduced by 

Eringen (1966). The fluid consists of colloidal fluid 

elements suspended in small body fluid. Therefore, the fluid 

has micro-rotational effect and micro-rotational inertia. 

The boundary layer flow of micropolar fluid over 

shrinking surface was studied by Yacob & Ishak (2012). 

This study was then extended by Bhattacharyya et al. (2012) 

with thermal radiation. Later, Roşca and Pop (2014) 

studied the flow with second-order slip velocity. Sharma et 

al. (2016) extended this study for another type of flow called 

the stagnation-point flow. Then, Zaimi and Ishak (2014) 

studied this flow over a non-linear stretching and shrinking 

sheet. Sandeep and Sulochana (2015) discussed the 

unsteady mixed convection flow of magneto-micropolar 

fluid. Aurangzaib et. al., (2016) then extended the study 

with partial slip and stagnation-point flow. On the other 

hand, the fluid flow over an exponentially shrinking sheet 

was studied by Aurangzaib et. al., (2016). The time-

dependent flow past a curved surface was discussed by 

Saleh et. al., (2017). Khan et al. (2017) discussed the 

magnetohydrodynamics flow of the fluid with weak 

concentration. In all these studies, dual solutions were 

obtained. 

Stability analysis of dual solutions is usually done to 

identify the stable solution which is significant to the 

problem. One of the earliest studies on stability analysis 

was done by Merkin (1986). The analysis was performed to 

the dual solutions obtained in the problem of mixed 

convection in a porous medium. In the study, the solutions 

were divided into the upper branch and the lower branch. It 

was concluded that the upper branch is stable while the 

lower branch is unstable. In the study of micropolar fluid 

flow with dual solutions, the same conclusion was obtained 

by Roşca & Pop (2014) and Sharma et. al., (2016). 

In the present study, the stability analysis is done for 

the dual solutions obtained by Aurangzaib et. al., (2016). 

This analysis is performed to identify the solution that is 

stable and significant to the problem. The computations 

will be done by using bvp4c solver. 
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II. PROBLEM FORMULATION 

 

A steady, incompressible two-dimensional boundary layer 

flow and heat transfer of micropolar fluid over a permeable 

shrinking sheet is considered. The sheet is shrunk with 

velocity 𝑈𝑤 = 𝑎𝑒
𝑥

𝐿 where 𝑎 > 0 is the shrinking constant. 

The governing equations for the problem are: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0, (1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= (𝜈 +

𝜅

𝜌
)

𝜕2𝑢

𝜕𝑦2 +
𝜅

𝜌

𝜕𝑁

𝜕𝑦
,               (2) 

𝑢
𝜕𝑁

𝜕𝑥
+ 𝑣

𝜕𝑁

𝜕𝑦
=

𝜎

𝜌𝑗

𝜕2𝑁

𝜕𝑦2 −
𝜅

𝜌𝑗
(2𝑁 +

𝜕𝑢

𝜕𝑦
),        (3) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝜅∗

𝜌𝑐𝑝

𝜕2𝑇

𝜕𝑦2
,                                      (4) 

with the boundary conditions: 

𝑢 = −𝑈𝑤 = −𝑎𝑒
𝑥

𝐿,   𝑣 = 𝑣𝑤 = −𝑣0𝑒
𝑥

2𝐿, 

𝑁 = −𝑛
𝜕𝑢

𝜕𝑦
,   𝑇 = 𝑇𝑤 = 𝑇∞ + 𝑇0𝑒

𝑥

2𝐿at     𝑦 = 0, 

(5) 

𝑢 → 0,   𝑁 → 0,   𝑇 → 𝑇∞as    𝑦 → ∞,         (6) 

where u and v are the fluid velocity in 𝑥- and 𝑦-directions 

respectively, 𝜈 = 𝜇/𝜌 is the kinematic viscosity of the fluid 

with 𝜇 as the dynamic viscosity and 𝜌 as the density of the 

fluid, 𝜅 is the vortex viscosity of the fluid, 𝑁 is the 

microrotation, 𝑇 is the temperature of the fluid, 𝜅∗ is the 

thermal conductivity of the fluid, 𝑐𝑝 is the specific heat, 𝑣𝑤 

is the variable suction velocity with 𝑣0 as constant, 𝐿 is the 

reference length, 𝑇𝑤 is the temperature at the sheet, 𝑇0 is 

the rate of temperature increment along the sheet and 𝑇∞ is 

the ambient fluid temperature. The boundary condition has 

𝑛 (0 ≤ 𝑛 ≤ 1) as a constant with the case 𝑛 = 0 denotes 

strong concentration, 𝑛 = 0.5 denotes weak concentration 

and 𝑛 = 1 is for turbulent boundary layer flow. According to 

Aurangzaib et. al., (2016), 𝜎 is the spin gradient viscosity 

with 

𝜎 = (𝜇 +
𝜅

2
) 𝑗 = 𝜇 (1 +

𝐾

2
) 𝑗, 

where 𝑗 = 2𝐿𝜈𝑒−
𝑥

𝐿/𝑎 is the microinertia per unit mass and 

𝐾 = 𝜅/𝜇 is the material parameter.  

In this problem, the physical quantities of interest are 

the dimensionless skin friction coefficient, couple stress 

and Nusselt number, given by: 

𝐶𝑓𝑅𝑒𝑥

1

2√
2𝐿

𝑥
= (1 + (1 − 𝑛)𝐾)𝑓′′(0), 

𝑀𝑥𝑅𝑒𝑥 = (1 +
𝐾

2
) ℎ′(0), 

and 

𝑁𝑢𝑥𝑅𝑒𝑥

−
1

2√
2𝐿

𝑥
= −𝜃′(0), 

respectively, with local Reynolds number 𝑅𝑒𝑥 =  𝑥𝑈𝑤/𝜈. 

This problem has been solved by Aurangzaib et al. (2016) 

and the solutions are found to be of dual solutions. 

Therefore, stability analysis will be performed to the 

solutions. Firstly, the problem is considered to be unsteady 

where the flow is dependent of time. The continuity 

equation (1) holds and the governing equations for the 

unsteady problem are: 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= (𝜈 +

𝜅

𝜌
)

𝜕2𝑢

𝜕𝑦2 +
𝜅

𝜌

𝜕𝑁

𝜕𝑦
, (7) 

𝜕𝑁

𝜕𝑡
+ 𝑢

𝜕𝑁

𝜕𝑥
+ 𝑣

𝜕𝑁

𝜕𝑦
=

𝜎

𝜌𝑗

𝜕2𝑁

𝜕𝑦2 −
𝜅

𝜌𝑗
(2𝑁 +

𝜕𝑢

𝜕𝑦
) , (8) 

𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝜅∗

𝜌𝑐𝑝

𝜕2𝑇

𝜕𝑦2 ,                               (9) 

where 𝑡 is the time. The similarity transformations are 

given as: 

𝑁 = (
𝑎

2𝐿𝜈
) √2𝐿𝜈𝑎𝑒

3𝑥

2𝐿ℎ(𝜂, 𝜏),   𝜃(𝜂, 𝜏) =
𝑇 − 𝑇∞

𝑇𝑤 − 𝑇∞
, 

𝜓 = √2𝐿𝜈𝑎𝑒
𝑥

2𝐿𝑓(𝜂, 𝜏),   𝜂 = √
𝑎

2𝐿𝜈
𝑒

𝑥

2𝐿𝑦,    

𝜏 =
𝑎

2𝐿
𝑒

𝑥

𝐿𝑡, 

(10) 

where 𝜏 is the dimensionless time variable and 𝜓  is the 

stream function with 

𝑢 =
𝜕𝜓

𝜕𝑦
,   𝑣 = −

𝜕𝜓

𝜕𝑥
. 

This results to 

𝑢 = 𝑎𝑒
𝑥

𝐿
𝜕

𝜕𝜂
𝑓(𝜂, 𝜏),  

𝑣 = − [√
𝑎𝜈

2𝐿
𝑒

𝑥

2𝐿𝑓(𝜂, 𝜏) +
𝑎

2𝐿
𝑦𝑒

𝑥

𝐿
𝜕

𝜕𝜂
𝑓(𝜂, 𝜏)

+ 𝑡 (
𝑎

𝐿
) √

𝑎𝜈

2𝐿
𝑒

3𝑥

2𝐿
𝜕

𝜕𝜏
𝑓(𝜂, 𝜏)]. 

(11) 

Equations (10) and (11) are then substituted into Eqs. 

(7)-(9) to obtain the following ordinary differential 

equations: 

(1 + 𝐾)
𝜕3𝑓

𝜕𝜂3 + 𝑓
𝜕2𝑓

𝜕𝜂2 − 2 (
𝜕𝑓

𝜕𝜂
)

2

− 2𝜏 (
𝜕𝑓

𝜕𝜂

𝜕2𝑓

𝜕𝜂𝜕𝜏
−

𝜕𝑓

𝜕𝜏

𝜕2𝑓

𝜕𝜂2)

−
𝜕2𝑓

𝜕𝜂𝜕𝜏
+ 𝐾

𝜕ℎ

𝜕𝜂
= 0,                                  (12) 
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(1 +
𝐾

2
)

𝜕2ℎ

𝜕𝜂2 + 𝑓
𝜕ℎ

𝜕𝜂
− 3ℎ

𝜕𝑓

𝜕𝜂
− 𝐾 (2ℎ +

𝜕2𝑓

𝜕𝜂2) −
𝜕ℎ

𝜕𝜏

− 2𝜏 (
𝜕𝑓

𝜕𝜂

𝜕ℎ

𝜕𝜏
−

𝜕𝑓

𝜕𝜏

𝜕ℎ

𝜕𝜂
) = 0, 

(13) 

1

𝑃𝑟

𝜕2𝜃

𝜕𝜂2 + 𝑓
𝜕𝜃

𝜕𝜂
− 𝜃

𝜕𝑓

𝜕𝜂
−

𝜕𝜃

𝜕𝜏
− 2𝜏 (

𝜕𝜃

𝜕𝜏

𝜕𝑓

𝜕𝜂
−

𝜕𝑓

𝜕𝜏

𝜕𝜃

𝜕𝜂
)

= 0,                                                   (14) 

with 𝑃𝑟 = 𝜇𝑐𝑝/𝜅∗ as the Prandtl number. The boundary 

conditions are: 

𝑓(0, 𝜏) = 𝑆 = 𝑣0√
2𝐿

𝑎𝜈
,   𝑓′(0, 𝜏) = −1, 

ℎ(0, 𝜏) = −𝑛𝑓′′(0, 𝜏),   𝜃(0, 𝜏) = 1, 

𝑓′(∞, 𝜏) → 0,   ℎ(∞, 𝜏) → 0,   𝜃(∞, 𝜏) → 0,  

(15) 

where 𝑆 > 0 is the suction parameter. 

According to Weidman et. al., (2006), the stability of 

the steady flow solution 𝑓(𝜂) = 𝑓0(𝜂), ℎ(𝜂) = ℎ0(𝜂) and 

𝜃(𝜂) = 𝜃0(𝜂) that satisfies the boundary value problem in 

(1)-(6) can be tested by introducing the following equations: 

𝑓(𝜂, 𝜏) = 𝑓0(𝜂) + 𝑒−𝛾𝜏𝐹(𝜂, 𝜏), 

ℎ(𝜂, 𝜏) = ℎ0(𝜂) + 𝑒−𝛾𝜏𝐻(𝜂, 𝜏),         (16) 

𝜃(𝜂, 𝜏) = 𝜃0(𝜂) + 𝑒−𝛾𝜏𝐺(𝜂, 𝜏), 

such that 𝛾 is the unknown eigenvalue and 𝐹(𝜂, 𝜏), 𝐻(𝜂, 𝜏) 

and 𝐺(𝜂, 𝜏) are small relative to 𝑓0(𝜂), ℎ0(𝜂) and 𝜃0(𝜂). An 

infinite set of eigenvalues (𝛾1 < 𝛾2 < 𝛾3 < ⋯ ) will be 

produced by the unsteady problem in (12)-(15) (2016). If 

the smallest eigenvalue, 𝛾1 is less than zero (𝛾1 < 0), the 

flow is not stable due to an initial growth of disturbance, 

whereas if 𝛾1 > 0, there is initial decay of disturbance for 

stable flow. 

Equation (16) is substituted into Eqs. (12)-(15). Then, 

the following linearized problem is obtained: 

(1 + 𝐾)
𝜕3𝐹

𝜕𝜂3
+ 𝑓0

𝜕2𝐹

𝜕𝜂2
+ (1 − 2𝜏𝛾)𝐹

𝜕2𝑓0

𝜕𝜂2
+ (2𝜏𝛾 − 4)

𝜕𝑓0

𝜕𝜂

𝜕𝐹

𝜕𝜂

− (2𝜏
𝜕𝑓0

𝜕𝜂
+ 1)

𝜕2𝐹

𝜕𝜂𝜕𝜏
+ 𝛾

𝜕𝐹

𝜕𝜂
+ 2𝜏

𝜕𝐹

𝜕𝜏

𝜕2𝑓0

𝜕𝜂2

+ 𝐾
𝜕𝐻

𝜕𝜂
= 0,          (17) 

(1 +
𝐾

2
)

𝜕2𝐻

𝜕𝜂2 + 𝑓0

𝜕𝐻

𝜕𝜂
+ (𝐹 − 2𝜏𝛾𝐹 + 2𝜏

𝜕𝐹

𝜕𝜏
)

𝜕ℎ0

𝜕𝜂
− 3ℎ0

𝜕𝐹

𝜕𝜂

− (3 − 2𝜏𝛾)𝐻
𝜕𝑓0

𝜕𝜂
− 𝐾

𝜕2𝐹

𝜕𝜂2

− (1 + 2𝜏
𝜕𝑓0

𝜕𝜂
)

𝜕𝐻

𝜕𝜏
− 𝐻(2𝐾 − 𝛾)

= 0,                         (18) 

1

𝑃𝑟

𝜕2𝐺

𝜕𝜂2
+ 𝑓0

𝜕𝐺

𝜕𝜂
+ (𝐹 + 2𝜏

𝜕𝐹

𝜕𝜏
− 2𝜏𝛾𝐹)

𝜕𝜃0

𝜕𝜂
− (1 − 2𝜏𝛾)𝐺

𝜕𝑓0

𝜕𝜂

− 𝜃0

𝜕𝐹

𝜕𝜂
− (1 + 2𝜏

𝜕𝑓0

𝜕𝜂
)

𝜕𝐺

𝜕𝜏
+ 𝛾𝐺

= 0,    (19) 

with the boundary conditions: 

𝐹(0, 𝜏) = 0,   
𝜕

𝜕𝜂
𝐹(0, 𝜏) = 0,    

𝐻(0, 𝜏) = −𝑛
𝜕2

𝜕𝜂2 𝐹(0, 𝜏),   𝐺(0, 𝜏) = 0,  

𝜕

𝜕𝜂
𝐹(𝜂, 𝜏) → 0, 𝐻(𝜂, 𝜏) → 0, 𝐺(𝜂, 𝜏) → 0  as  η→∞. 

(20) 

Next, 𝜏 is set to 0 (𝜏 = 0), so that the solutions of 𝑓(𝜂) =

𝑓0(𝜂), ℎ(𝜂) = ℎ0(𝜂) and 𝜃(𝜂) = 𝜃0(𝜂) can be obtained. Then, 

𝐹 = 𝐹0(𝜂), 𝐻(𝜂) = 𝐻0(𝜂) and 𝐺(𝜂) = 𝐺0(𝜂) in Eqs. (17)-(19) 

identify the initial growth or decay of the solution (16). The 

resulting linear eigenvalue problem are: 

(1 + 𝐾)𝐹0
′′′ + 𝑓0𝐹0

′′ + 𝑓0
′′𝐹0 + (𝛾 − 4𝑓0

′)𝐹0
′ 

+𝐾𝐻0
′ = 0, (21) 

(1 +
𝐾

2
) 𝐻0

′′ + 𝑓0𝐻0
′ + 𝐹0ℎ0

′ − 𝐾𝐹0
′′ − 3ℎ0𝐹0             

′  

−𝐻0(3𝑓0
′ + 2𝐾 − 𝛾) = 0, (22) 

1

𝑃𝑟
𝐺0

′′ + 𝑓0𝐺0
′ + 𝐹0𝜃0

′ − 𝐺0𝑓0
′ − 𝜃0𝐹0 

′  

+𝛾𝐺0 = 0, (23) 

with the boundary conditions: 

𝐹0(0) = 0,   𝐹0
′(0) = 0,    

𝐻0(0) = −𝑛𝐹0
′′(0),   𝐺0(0) = 0,          (24) 

𝐹0
′(𝜂) → 0,   𝐻0(𝜂) → 0,   𝐺0(𝜂) → 0  as  𝜂 → ∞. 

As stated by Harris et al. (2009), the range of 

eigenvalues can be determined by relaxing the boundary 

condition either at 𝐹0(𝜂), 𝐻0(𝜂) or 𝐺0(𝜂). In this study, the 

boundary condition 𝐹0
′(𝜂) → 0 as 𝜂 → ∞ is selected to relax. 

Equations (21)-(23) are then solved along the following 

boundary conditions: 

𝐹0(0) = 0,   𝐹0
′(0) = 0,   𝐹0

′′(0) = 1, 

𝐻0(0) = −𝑛𝐹0
′′(0),   𝐺0(0) = 0,          (25) 

𝐻0(𝜂) → 0,   𝐺0(𝜂) → 0  as  𝜂 → ∞. 

 

III. RESULTS AND DISCUSSION 

 

The present study is an extension to the study done by 

Aurangzaib et. al., (2016). In the previous study, dual 

solutions were obtained. Figure 1 shows the velocity profile 

for the problem studied by Aurangzaib et. al., (2016). It 

shows clearly that dual solutions exist in the problem. It can 
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be seen in Fig. 2, the dual solutions exist when the value of 

suction parameter 𝑆 is greater than the value at the critical 

point 𝑆𝑐, one solution at 𝑆 equal to 𝑆𝑐 and no solution when 

𝑆 is less than 𝑆𝑐. Therefore, stability analysis is performed 

to determine the stability of the solutions. 

A solver in MATLAB called the bvp4c is used to solve 

Eqs. (21)-(23) along the new boundary conditions (25). The 

values of 𝛾1 for several values of 𝑆 are computed and shown 

in Table 1. In the table, the first solution has values of 𝛾1 >

0, while the second solution has values of 𝛾1 < 0. As stated 

by Awaludin et al. (2016), the values of 𝛾1 > 0 indicates 

thestable solution, while 𝛾1 < 0 implies theunstable 

solution. Therefore, based on the results in Table 1, it can be 

concluded that the stable solution is the first solution while 

the second solution is unstable. The first solution of this 

problem is said to be physically meaningful and more 

realizable in practice. 

 

 

Figure 1. Velocity profile 𝑓′(𝜂) for different values of 

material parameter 𝐾. 

 

 

Figure 2. Skin friction coefficient 𝑓′′(0) with 𝑆 and various 

values of 𝐾. 

Table 1. Smallest eigenvalues 𝛾1 for different values of 𝑆 

when 𝑃𝑟 = 1.0, 𝑛 = 0.5. 

𝐾 𝑆 1st solution 2nd solution 

0 2.266 0.03477 -0.03471 

2.267 0.06752 -0.06728 

2.268 0.08898 -0.08857 

0.1 2.322 0.04660 -0.04648 

2.323 0.07387 -0.07358 

2.324 0.09353 -0.09308 

0.2 2.376 0.03434 -0.03428 

2.377 0.06636 -0.06613 

2.378 0.08739 -0.08698 

 

IV. CONCLUSION 

 

Stability analysis is performed to the dual solutions 

obtained in the study by Aurangzaib et. al., (2016). The 

problem is considered as unsteady problem with flow 

dependent of time. Then, the computations of the smallest 

eigenvalue 𝛾1 are done by using the bvp4c solver. It is 

found that the first solution has positive values of 𝛾1 (𝛾1 >

0), while the second solution has negative values of 

𝛾1 (𝛾1 < 0). Thus, the first solution is said to be stable and 

more meaningful than the second solution. 
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