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In this paper, a model for the dengue transmission is presented using the fractional order derivative in the 

sense of the Caputo derivative. The basic reproduction number denoted by R0 is computed using the next-

generation matrix approach. The local and global stability of the disease-free equilibrium is performed, 

and the existence of the positive endemic equilibrium is obtained for R0>1. Further, sensitivity analysis is 

conducted to determine how changes in parameters affect the initial disease transmission of dengue. 
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I. INTRODUCTION 

 

Dengue is a fast-emerging pandemic-prone viral disease in 

many parts of the world, especially in the tropical and 

subtropical countries. The transmission process involved 

human and Aedes mosquitoes, primarily Aedes aegypti. The 

virus is transmitted to humans by the bites of an infected 

Aedes mosquito. There are four serologically different 

viruses, namely DEN I, II, III, and IV that can cause dengue 

disease (WHO, 2018). 

Various mathematical models have been developed and 

analysed to understand the dynamics of dengue 

transmission. Most of the proposed models (Derouich et. 

al., 2003; Esteva & Vargas, 1998; Esteva & Vargas, 1999; 

Pinho et. al., 2010; Soewono & Supriatna, 2001) is an 

extended model of susceptible-infected-recovered (SIR) 

model introduced by Kermack and McKendrick in 1927 

(Kermack & McKendrick, 1927). However, as the idea of 

fractional calculus being introduced, many researchers 

found that modelling infectious disease using the fractional 

order derivative is more realistic compared to the classical 

integer order derivative. Fractional order derivative 

provides a memory effect, where most of the biological 

systems have it. 

Different dengue epidemic model (Diethelm, 2013; 

Pooseh et. al., 2011; Sardar et. al., 2014; Sardar et. al., 

2015) have been proposed to study the dynamics of the 

dengue transmission using the fractional order derivative. 

But none of the models includes aquatic stages of the 

mosquito population. In the present work, we study the 

dengue epidemic model established in (Hamdan & 

Kilicman, 2018; Hamdan & Kilicman, 2019), but here, we 

consider all the dimension parameters to have a memory 

effect. Thus, parameters will be dependent on the order of 

the derivative, denoted by 𝛼. 

This paper is organized as follows: the formulation of 

the fractional order dengue epidemic model is briefly 

described in Section 2. In section 3, the stability analysis 

of the equilibrium points is presented. Local sensitivity 

analysis is performed in section 4 based on the normalized 

forward sensitivity index of the basic reproduction 

number, R0. Using numerical computation, we simulate 

the importance of our results in section 5. Finally, the 

conclusion of our study is given in section 6. 
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Table 1: Description of the model parameters. 

Parameter Description 

q Proportion of eggs that 

results in female mosquito 

ϕ Oviposition rate 

σA Transition rate from aquatic 

stage to adult 

μ
A

 Per capita mortality rate of 

 aquatic stage 

μ
m

 Per capita mortality rate of  

mosquito 

μ
h

 Per capita mortality rate of  

human 

b The biting rate 

β
m

 Transmission probability 

from human to vector 

β
h

 Transmission probability 

from vector to human 

γ
h
 Recovery rate in the human 

population 

C Mosquito carrying capacity 
 

 

II. MATHEMATICAL MODEL 

 

In this study, the Caputo derivative is used in fractionalize 

the integer order differential   equation. The definition of 

the Caputo derivative is given as follows (Petras, 2011):  

Definition 1 The Caputo derivative with order 𝛼 of a 

function f (t) is given by: 

𝐷𝑎
𝐶 𝑓(𝑡) =

1

Γ(n−α)
∫ (𝑡 − 𝜏)𝑛−𝛼−1𝑡

𝑎
𝑓(𝑛)

𝑡
𝛼 (𝜏)𝑑𝜏(1) where 𝛼 is 

the order of the derivative with 

𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈  ℤ+. 

In the construction of the model, the total human 

population at time t, denoted by H(t) is divided into three 

classes: H
s
(susceptible), H

i
(infected), Hr(recovered), 

meanwhile, the total mosquito population M is divided 

into two classes: M
s 

(susceptible), M
i
(infected). The 

aquatic phase of the mosquito in denoted by Am, 

represents immature stage including egg phase, larva, and 

pupa. The basic model for the transmission dynamics of 

dengue in the integer order sense is given by the following 

deterministic system of nonlinear differential equations: 

𝑑𝐴𝑚

𝑑𝑡
= 𝑞𝜙 (1 −

𝐴𝑚

𝐶
)𝑀 − (𝜎𝐴 + 𝜇𝐴)𝐴𝑚, 

𝑑𝑀𝑠

𝑑𝑡
= 𝜎𝐴𝐴𝑚 −

𝑏𝛽𝑚

𝐻
𝑀𝑠𝐻𝑖 − 𝜇𝑚𝑀𝑠, 

𝑑𝑀𝑖

𝑑𝑡
=

𝑏𝛽𝑚

𝐻
𝑀𝑠𝐻𝑖 − 𝜇𝑚𝑀𝑖 , 

𝑑𝐻𝑠

𝑑𝑡
= 𝜇ℎ(𝐻 − 𝐻𝑠) −

𝑏𝛽ℎ

𝐻
𝐻𝑠𝑀𝑖, 

𝑑𝐻𝑖

𝑑𝑡
=

𝑏𝛽ℎ

𝐻
𝐻𝑠𝑀𝑖 − (𝛾ℎ + 𝜇ℎ)𝐻𝑖 , 

𝑑𝐻𝑟

𝑑𝑡
= 𝛾ℎ𝐻𝑖 − 𝜇ℎ𝐻𝑟.    (2) 

All the parameters are non-negative constants for all 

time t ≥ 0. The state variables and parameters for system 

(2) are described in Table I. By following (Diethelm, 

2013), the proposed fractional order dengue model is as 

follows: 

𝐷𝛼𝐴𝑚 = 𝑞𝜙𝛼 (1 −
𝐴𝑚

𝐶
) − (𝜎𝐴

𝛼 + 𝜇𝐴
𝛼)𝐴𝑚, 

𝐷𝛼𝑀𝑠 = 𝜎𝐴
𝛼𝐴𝑚 −

𝑏𝛼𝛽𝑚

𝐻
𝑀𝑠𝐻𝑖  − 𝜇𝑚

𝛼𝑀𝑠, 

𝐷𝛼𝑀𝑖 =
𝑏𝛼𝛽𝑚

𝐻
𝑀𝑠𝐻𝑖 − 𝜇𝑚

𝛼𝑀𝑖 , 

𝐷𝛼𝐻𝑠 = 𝜇ℎ
𝛼(𝐻 − 𝐻𝑠) −

𝑏𝛼𝛽ℎ

𝐻
𝐻𝑠𝑀𝑖 , 

𝐷𝛼𝐻𝑖 =
𝑏𝛼𝛽ℎ

𝐻
𝐻𝑠𝑀𝑖 − (𝛾ℎ

𝛼 + 𝜇ℎ
𝛼)𝐻𝑖 , 

𝐷𝛼𝐻𝑟 = 𝛾ℎ
𝛼𝐻𝑖 − 𝜇ℎ

𝛼𝐻𝑟,   (3) 

where, α ∈ (0,1] is the order of the fractional derivative. 

The total human population is given by,  

H = Hs + Hi + Hr, thus, we can have Hr = H − Hs + Hi. 

Therefore, system (3) can be reduced to five-dimensional 

nonlinear system: 

𝐷𝛼𝐴𝑚 = 𝑞𝜙𝛼 (1 −
𝐴𝑚

𝐶
) − (𝜎𝐴

𝛼 + 𝜇𝐴
𝛼)𝐴𝑚, 

𝐷𝛼𝑀𝑠 = 𝜎𝐴
𝛼𝐴𝑚 −

𝑏𝛼𝛽𝑚

𝐻
𝑀𝑠𝐻𝑖  − 𝜇𝑚

𝛼𝑀𝑠, 

𝐷𝛼𝑀𝑖 =
𝑏𝛼𝛽𝑚

𝐻
𝑀𝑠𝐻𝑖 − 𝜇𝑚

𝛼𝑀𝑖 , 

𝐷𝛼𝐻𝑠 = 𝜇ℎ
𝛼(𝐻 − 𝐻𝑠) −

𝑏𝛼𝛽ℎ

𝐻
𝐻𝑠𝑀𝑖 , 

𝐷𝛼𝐻𝑖 =
𝑏𝛼𝛽ℎ

𝐻
𝐻𝑠𝑀𝑖 − (𝛾ℎ

𝛼 + 𝜇ℎ
𝛼)𝐻𝑖 .  (4) 

 

III. STABILITY ANALYSIS 

 

A. Basic Reproduction Number 

 

Definition 2 The basic reproduction number denoted by 

R0 is the expected number of secondary infections caused 

by a single infectious individual during their entire 

infectious lifetime. 
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The expression for the basic reproduction number R0 is 

obtained using the next generation matrix approach (van 

den Driessche & Watmough, 2002) as follows:  

𝑅0 = √
𝑏2𝛼𝛽𝑚𝛽ℎ𝐶(𝑞ϕα𝜎𝐴

𝛼−μm
α(σA

α+μA
α))

𝐻𝜇𝑚
2𝛼𝑞ϕα(𝛾ℎ

𝛼+𝜇ℎ
𝛼)

. (5) 

 

B. Equilibrium Points of the Model 

 

We obtained three equilibrium points for system (4), 

specifically known as the disease-free equilibrium (DFE) 

and the positive endemic equilibrium (EE). The trivial DFE 

is obtained as,𝐸0 = (0,0,0,𝐻, 0).Since 𝐴𝑚 = 0, the mosquito 

population is at zero value, thus, no dengue outbreak.  

The other DFE that is described as the biologically 

realistic disease-free equilibrium (BRDFE), is the case when 

human and vector interact, but no major outbreak 

occurred.  

𝐸1 = (𝐴̅𝑚, 𝑀̅𝑠, 0, 𝐻, 0), 

where A̅mand M̅sare given by  

A̅m = C(1 −
1

Rm
),      and       M̅s =

𝜎𝐴
𝛼A̅m

𝜇𝑚
𝛼 , 

where 𝑅𝑚 =
𝑞𝜙𝛼𝜎𝐴

𝛼

𝜇𝑚
𝛼 (𝜎𝐴

𝛼+𝜇𝐴
𝛼)

. 𝑅𝑚 is defined as the basic number of 

offspring of the mosquito population. 

The positive equilibrium point is called the endemic 

equilibrium point, denoted by 𝐸2. 

𝐸2 = (𝐴𝑚
∗ , 𝑀𝑠

∗, 𝑀𝑖
∗, 𝐻𝑠

∗, 𝐻𝑖
∗), 

where 

𝐴𝑚
∗ = 𝐶 (1 −

1

𝑅𝑚
), 

𝑀𝑠
∗ =

𝜎𝐴
𝛼𝐶 (1 −

1

𝑅𝑚
) (1 + 𝜇𝑚

𝛼 (𝛾ℎ
𝛼+𝜇ℎ

𝛼)𝑅0
2)

𝜇𝑚
𝛼 𝑅0

2𝐾1

, 

𝑀𝑖
∗ =

𝜎𝐴
𝛼𝐶 (1 −

1

𝑅𝑚
) (𝑅0

2 − 1)

𝜇𝑚
𝛼 𝑅0

2𝐾1

, 

𝐻𝑠
∗ =

𝐻𝐾2

𝐾2 + 𝜇𝑚
𝛼 (𝛾ℎ

𝛼+𝜇ℎ
𝛼)(𝑅0

2 − 1)
, 

𝐻𝑖
∗ =

𝐻𝜇𝑚
𝛼 𝜇ℎ

𝛼((𝑅0
2 − 1)

𝐾2 + 𝜇𝑚
𝛼 (𝛾ℎ

𝛼+𝜇ℎ
𝛼)(𝑅0

2 − 1)
,                  (6) 

with K1 = bαβ
m

μ
h
α + γ

h
α+μ

h
α and K2 = bαβ

m
μ

h
α + μ

m
α (γ

h
α+μ

h
α). 

Since EE can only be positive values, therefore, 𝐸2exists 

only if R0 > 1. Thus, the following result is established for 

the existence of equilibrium point. 

Theorem 1 (Existence of Equilibrium Points). System (4) 

always has a disease-free equilibrium point in the absence 

of the infective population (R0 < 1). If R0 > 1, the system of 

equations (4) has a unique positive endemic equilibrium 

point. 

Theorem 2 (BRDFE stability) The BRDFE of the system 

of equations (4) is locally asymptotically stable if R0 < 1 

and is unstable if R0 > 1.  

Proof 1 The disease-free equilibrium is locally 

asymptotically stable if all the eigenvalues, 𝜆𝑖 , 𝑖 = 1,2,3,4,5 

of the Jacobian matrix J(E1) satisfy the following 

condition: 

|arg (𝜆𝑖)| >
𝛼𝜋

2
. 

The Jacobian matrix of the system evaluated at the 

equilibrium point, E1: 

𝐽(𝐸1) =

[
 
 
 
 
 
 
−𝑅𝑚𝑘1 0 0 0 0

𝜎𝐴
𝛼 −𝜇𝑚

𝛼 0 0 −
𝑏𝛼𝛽𝑚

𝐻
𝑀̅𝑠

0 0 −𝜇𝑚
𝛼 0

𝑏𝛼𝛽𝑚

𝐻
𝑀̅𝑠

0 0 −𝑏𝛼𝛽ℎ −𝜇ℎ
𝛼 0

0 0 𝑏𝛼𝛽ℎ 0 −𝑘2 ]
 
 
 
 
 
 

,where 

𝑘1 = 𝜎𝐴
𝛼 + 𝜇𝐴

𝛼 and 𝑘2 = 𝛾ℎ
𝛼+𝜇ℎ

𝛼. The calculated eigenvalues 

are 𝜆1 = −𝑅𝑚(𝜎𝐴
𝛼 + 𝜇𝐴

𝛼), 𝜆2 = −𝜇𝑚
𝛼  , 𝜆3 = −𝜇ℎ

𝛼  ; the other 

two roots are determined by the roots of the quadratic 

equation below: 

𝜆2 + (𝜇𝑚
𝛼 + 𝛾ℎ

𝛼 + 𝜇ℎ
𝛼)𝜆 + 𝜇𝑚

𝛼 (𝛾ℎ
𝛼 + 𝜇ℎ

𝛼)(1 − 𝑅0) = 0.  

Hence, proved that E1 is locally asymptotically stable if 

R0< 1 and is unstable if R0> 1 and the condition Rm< 1 is 

satisfied. 

To prove for the global stability of the BRDFE of system 

(4), we used the Lyapunov function. 

Theorem 3  If 𝑅0 < 1, then the BRDFE 𝐸1 of reduced 

system (4) is globally asymptotically stable in positive 

invariant set 𝛺. 

Proof 2 We define the Lyapunov function 𝑉1(𝑀𝑖 , 𝐻𝑖) as 

follows 

𝑉1(𝑀𝑖 , 𝐻𝑖) = 𝑀𝑖 +
𝜇𝑚

𝛼

𝛽ℎ𝑏𝛼 𝐻𝑖 .                               (7) 

The derivative of (7) with respect to 𝑡 along the solution 

curves of system (4) is given by 

𝐷𝛼𝑉1(𝑡) =
𝑏𝛼𝛽𝑚

𝐻
𝑀𝑠𝐻𝑖 − 𝜇𝑚

𝛼 𝑀𝑖

+
𝜇𝑚

𝛼

𝛽ℎ𝑏𝛼
(
𝑏𝛼𝛽ℎ

𝐻
𝐻𝑠𝑀𝑖 − (𝜇ℎ

𝛼 + 𝛾ℎ
𝛼)𝐻𝑖)

=
𝑏𝛼𝛽𝑚

𝐻
𝑀𝑠𝐻𝑖 − 𝜇𝑚

𝛼 𝑀𝑖 +
𝜇𝑚

𝛼

𝐻
𝐻𝑠𝑀𝑖 −

(𝜇ℎ
𝛼+𝛾ℎ

𝛼)𝜇𝑚
𝛼

𝛽ℎ𝑏𝛼 𝐻𝑖

= (
𝑏𝛼𝛽𝑚

𝐻
𝑀𝑠 −

𝜇𝑚
𝛼 (𝜇ℎ

𝛼+𝛾ℎ
𝛼)

𝛽ℎ𝑏𝛼
)𝐻𝑖 − (𝜇𝑚

𝛼 −
𝜇𝑚

𝛼

𝐻
𝐻𝑠)𝑀𝑖

= (
𝑏𝛼𝛽𝑚

𝐻
𝑀𝑠 −

𝜇𝑚
𝛼 (𝜇ℎ

𝛼+𝛾ℎ
𝛼)

𝛽ℎ𝑏𝛼
)𝐻𝑖 − 𝜇𝑚

𝛼 (1 −
𝐻𝑠

𝐻
)𝑀𝑖

≤ (
𝑏𝛼𝛽𝑚

𝐻
𝑀𝑠 −

𝜇𝑚
𝛼 (𝜇ℎ

𝛼+𝛾ℎ
𝛼)

𝛽ℎ𝑏𝛼
)𝐻𝑖

= (
𝑏𝛼𝛽𝑚

𝐻

𝜎𝐴
𝛼

𝜇𝑚
𝛼 𝐶(1 − 1/𝑅𝑚) −

𝜇𝑚
𝛼 (𝜇ℎ

𝛼+𝛾ℎ
𝛼)

𝛽ℎ𝑏𝛼
)𝐻𝑖

 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦      1st 𝑝𝑎𝑟𝑡      𝑏𝑦     
𝛽ℎ𝑏𝛼(𝜇ℎ

𝛼+𝛾ℎ
𝛼)𝜇𝑚

𝛼

𝛽ℎ𝑏𝛼(𝜇ℎ
𝛼+𝛾ℎ

𝛼)𝜇𝑚
𝛼

=
𝜇𝑚

𝛼 (𝜇ℎ
𝛼+𝛾ℎ

𝛼)

𝛽ℎ𝑏𝛼
(𝑅0

2 − 1)𝐻𝑖 .                                       (8)

Thu

s, we established that 𝐷𝛼𝑉1(𝑡) < 0 if 𝑅0 < 1 and 𝑉1(𝑡) = 0 if 



ASM Science Journal, Volume 13, 2020 

 

 
 

4 
 

and only if 𝑀𝑖 = 0,𝐻𝑖 = 0. Therefore, the largest compact 

invariant set in 

{(𝐴𝑚 ,𝑀𝑠, 𝑀𝑖 , 𝐻𝑠, 𝐻𝑖) ∈ Ω: 𝐷𝛼𝑉1(𝑡) = 0}, 

is the singleton set 𝐸1 in 𝛺. From LaSalle’s invariant 

principle (LaSalle, 1968), every solution that starts in the 

region 𝛺 approaches 𝐸1 as 𝑡 → ∞. Hence, the BRDFE 𝐸1 is 

globally asymptotically stable for 𝑅0 < 1 in 𝛺. 

 

IV. SENSITIVITY ANALYSIS 

 

Sensitivity analysis is an essential tool in analysing the 

importance of each model parameter in disease 

transmission. It helps us to measure the relative change in a 

variable when a parameter changes. This is crucial to 

optimize control measures of the disease. In this study, the 

sensitivity index is calculated using the normalized 

sensitivity index. 

Definition 3 (Chitnis et al., 2008) The normalised 

forward sensitivity index of 𝑅0, that depends differentiably 

on a parameter 𝑝, is defined by 

Υ𝑝
𝑅0 =

𝜕𝑅0

𝜕𝑝
×

𝑝

𝑅0
.   (9) 

The sensitivity indices revealed the delicacies of variable 

𝑅0 to the model parameters. The positive (negative) index 

indicate that an increase in the parameter value leads to an 

increase (decrease) of 𝑅0 value. The sensitivity index of 

each parameter in model (4) are depicted in Table 2. 

 

Table  2. SensitivIty indices of R0, for α = 0.9. 

Parameter 
Baseline 

values 

Sensitivity 

indices 

𝑞 0.8 -0.0167 

𝜙 7.5 -0.0112 

𝜎𝐴 0.08 +0.5123 

𝜇𝐴 0.25 +0.0123 

𝜇𝑚 0.029 -1.0167 

𝜇ℎ 0.0000365 -0.00014153 

𝛽𝑚 0.375 +0.5 

𝛽ℎ 0.75 +0.5 

𝑏 0.5 +0.9 

𝛾ℎ 0.3288 -0.5232 

 

It follows from Table 2, parameters that related to the 

death rate of adult mosquitoes, the mosquito biting rate, 

human recovery rate, and transition rate from the aquatic 

stage to adult stage mosquito, have highest sensitivity 

indices towards 𝑅0. This indicates, for example, an increase 

in the death rate by 10% will result in a decrease in the 

value of 𝑅0 by 10.17%. 

 

V. NUMERICAL RESULTS 

 

Numerical simulation has been performed to validate the 

stability analysis presented in section 3. To simulate the 

results,a MATLAB routine called fde12 established by 

Garrappa (Garrappa, 2018) is used in this work. The 

simulations are carried out using the following initial 

conditions:  

𝐻𝑠0 = 𝑁ℎ − 𝐻𝑖0, 𝐻𝑖0 = 2511 

𝐴𝑚0 = 𝑘𝑁ℎ, 𝑀𝑠0 = 𝑚𝑁ℎ 

where 𝑁ℎ = 31200000, 𝑘 = 1,𝑚 = 2. The final time 𝑡𝑒𝑛𝑑 =

365 days. The initial conditions are chosen based on the 

real data of dengue cases reported in Malaysia in 2016. 

 

Figure 1.Time series plot for 𝛼 = 0.9 and 𝑅0 < 1. 

Figure 1 shows that all the solution trajectories 

approach the BRDFE over time when 𝑅0 < 1. This confirms 

the theorem that the BRDFE is globally asymptotically 
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stable if 𝑅0 < 1. 

Figure 2 represents the integer order solution as 𝛼 = 1. 

We can observe that for 𝑅0 > 1, solutions approach the EE 

point, both for 𝛼 = 1, and also 𝛼 = 0.9 in Figure 3. These 

figures show that 𝐸2 is a stable EE of system (4). In the case 

where epidemic occurs (𝑅0 > 1), we observed that, if 𝛼 = 1 

(implies integer order model), the solutions require shorter 

time to approach the steady state (EE). However, in the 

fractional order model, when 𝛼 = 0.9, more time is needed 

to reach the EE. 

 

Figure 2. Time series plot for 𝛼 = 1 and 𝑅0 > 1. 

 

Figure 4 verifies the sensitivity analysis done in section 

4. We can see that the infected human population is 

decreasing as 𝜇𝑚 is increasing, where more time is needed 

for the major outbreak to be reached. Reversely, when 𝑏 is 

increasing, a major epidemic occurs within a short period of 

time. 

 

 

Figure 3.Time series plot for 𝛼 = 0.9 and 𝑅0 > 1. 

 

VI. CONCLUSION 

 

Dengue has become a worldwide public health problem. 

Thus, a well-developed mathematical model is crucial in 

understanding the dynamics of dengue transmission. In the 

present study, we have used fractional order model to study 

the behaviour of the dengue transmission. 

This model has shown promising results and provides 

flexibility to researchers in designing the transmission 

model by associating memory into the model. 

The sensitivity analysis performed shows that any 

control and prevention measures should target the vector 

control that can reduce the abundance of immature form 

and adult female mosquitoes, also reducing mosquito-

human contact rates. 
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Figure 4.Time series plot for 𝛼 = 0.9 and variation in 

parameter 𝜇𝑚 and b. 
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