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The influence of internal heat generation on the onset of the Marangoni convection in a liquid layer 

system with insoluble surfactant is investigated. The liquid layer is bounded below by a uniformly 

heated plate and above by a deformable free surface. The surface tension is assumed to depend linearly 

on the surfactant concentration and the temperature of the liquid. The linear stability theory is used and 

the closed form analytical solution for the steady convection is obtained. The marginal curves are 

plotted to observe the effects of the physical parameters such as the elasticity number, internal heat 

source, Crispation number and Bond number on the onset of steady Marangoni instability. Surfactants 

and gravity waves stabilize the fluid system, but the internal heat generation and the surface 

deformability destabilize the system. 
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I. INTRODUCTION 

 

Thermocapillary convection and solutocapillary convection, 

known as Marangoni convection, are important in many 

areas of applications such as in industrial processes and 

fundamental sciences. The convective instability has been 

extensively studied starting with the pioneering 

experimental and theoretical works of Bénard (1900), 

Rayleigh (1916) and Pearson (1958). Pearson (1958) 

introduced the linear stability analysis to investigate 

theoretically the Marangoni instability in a fluid layer. 

Extensive review on the thermocapillary instability can be 

found in Davis (1987).  

Marangoni instability can be affected by the 

existence of surface-active agent or also called as surfactant 

which can alter the surface tension of the fluid layer and act 

as a stabilizing factor.  Mikishev and Nepomnyashchy 

(2010) studied the effect of insoluble surfactants on the 

long-wave Marangoni convection in a liquid layer for both 

steady and oscillatory convection in the case of 

nondeformable and deformable surface by using the linear 

stability theory and asymptotic expansion of the amplitudes 

of perturbation functions in terms of scaling parameter. It 

was found that the surface-active agent has stabilizing effect 

on the monotonic instability. Ab. Hamid et. al., (2011) 

considered the work of Mikishevand Nepomnyashchy 

(2010) to find the exact analytical solutions for the cases of 

thermally conducting and insulating bottom boundary and 

found that surfactant has greater stabilizing effect for the 

conducting case than insulating case.  

Unlike surfactant which can act as a stabilizer, internal 

heat generation is one of the factors that are known to 

destabilize the liquid layer system. Char and Chiang (1994) 

studied the effect of internal heat generation on stability of 

Bernard–Marangoni convection. The internal heat 

generation acts as destabilizer. Char and Chiang (1997) 

investigated the couple effect of Coriolis force (rotating 
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fluid) and internal heat generation on the onset of 

oscillatory instability of Bernard-Marangoni convection. 

Rotation stabilizes the fluid system while internal heat 

source has a destabilizing effect. 

Nanjundappa et. al., (2011) considered the effect of 

internal heat generation on Bernard–

Marangoniferroconvection instability in the presence of a 

uniform vertical magnetic field. The increasing magnetic 

Rayleigh number and internal heat generation have a 

destabilizing effect on the onset of Bernard-

Marangoniferroconvection. The magnetic number has no 

effect on the onset of pure Marangoniferroconvection in the 

absence of internal heat generation. Hashim et. al., (2009) 

and Bachok and Ariffin (2011) used proportional linear 

thermal control feedback to delay the onset Marangoni 

convection and the controller reduces the destabilizing effect 

of the internal heat generation. Awang Kechil and Ab. 

Hamid (2012) considered the effect of insoluble surfactant 

and internal heat generation on the onset of Marangoni 

instability in a liquid layer with deformable free surface 

subject to a uniform heat flux. Stabilizing effect of the 

surfactant on the Marangoni instability was shown while 

internal heat generation destabilizes the liquid layer system. 

Bhadhauria and Kiran (2014) theoretically study the 

combined effect of rotation speed modulation and internal 

heat generation in a temperature-dependent viscous fluid 

layer by employing nonlinear stability analysis and using 

Ginzburg-Landau model in a rotational speed modulation. It 

is found that internal heating destabilizes fluid layer system. 

The influence of internal heat generation has been analysed 

in Rayleigh-Benard convection in water well-dispersed with 

nanoliquids using linear and weakly nonlinear stability 

analysis (Kanchana and Zhao, 2018). The effect of internal 

heat generation is shown to promote or to supress the onset 

of convection. McCord et. al., (2016) generate the analytical 

solutions to the Stefan problem (solid-liquid phase change) 

with internal heat generation and compare the results with 

computational fluid dynamics analysis. The internal heat 

generation is used to separate the transient steady-state 

portions of the heat equation. The influence of the internal 

heat generation is studied by Yekasi et al. (2017) in a 

micropolar fluid with a Rayleigh-Benard convection 

together with the effect of temperature modulation. The 

Rayleigh-Benard convection is controlled by the effects of 

both heat generation and temperature modulation, either by 

advancing or delaying the convection.  

In this paper, the influences of insoluble surfactant and 

internal heat generation on the onset of Marangoni 

instability in a horizontal liquid layer with deformable free 

surface subject to the uniform temperature are considered. 

The stability analysis theory is used, and the analytical 

solutions will be determined to assess the effects of the 

physical parameters on the critical Marangoni number. 

Marginal curves for steady convection will be analysed for 

the effects of elasticity number, internal heat generation, 

Crispation number and Bond number. 

 

II. PROBLEM FORMULATION 

 

Consider a horizontal liquid layer of thickness d bounded 

below by a rigid plate at z =0 and the upper surface, z = d, is 

a deformable free surface. The bottom boundary has a no-

slip condition, and the temperature condition is set to have a 

fixed uniform temperature.  The surface tension   is 

assumed to depend linearly on temperature and surfactant 

concentration.  

)()TT( 02010  −−−−=   (1) 

where T and  are the temperature of the liquid and the 

surfactant concentration, respectively. 0 is the reference 

surface tension corresponding to the reference temperature 

0T  and reference concentration 0  and 1 and 2  are 

positive constants. 

For a very thin fluid layer or under microgravity 

conditions, the buoyancy effect can be neglected. Other 

physical properties of the liquid such as density, pressure, 

viscosity etc. are assumed to be constants. When the fluid is 

at rest, the hydrodynamic pressure with the atmospheric 

pressure ap  and the gravitational acceleration g at the 

reference steady state is  

)zd(gpp ab −−=  ,   (2) 

In the presence of internal heat source, the basic state 

temperature is in the form of parabolic distribution (Char 

and Chiang, 1994) 

0
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where  q  is the uniformly distributed internal heat 

generation, T is the temperature difference in the fluid 
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across the layer and  is the thermal diffusivity.  If there is 

no internal heat generation (q=0), the basic state 

temperature distribution is linear (Mikishev and 

Nepomnyashchy, 2010). The governing equations of the 

liquid system are 

0= v , (4) 

( ) qTT
t

T
+=+



 2v , (5) 

( ) g+−


−=+



vvv

v 2


p

t
,(6) 

which represent   the equations of continuity (mass),   

energy and momentum, respectively.   

v = (u,v,w) is the fluid velocities in the (x,y,z) directions, T is 

the temperature, g is the gravitational field,   is the 

kinematic viscosity,  p is the pressure,   is the density and t 

is the time. The surfactant distribution at the free surface 

(Mikishev and Nepomnyashchy, 2010), is 






2

0 sns Du)u(
t

=++



, (7) 

where nu  and u  are normal and tangential velocities, 

respectively, 0D is the surfactant diffusivity,  is the local 

surface curvature and s  is the surface gradient. In the 

linear stability analysis, the introduction of infinitesimal 

perturbation, linearization, scaling and superposition of the 

normal modes transform the partial differential equations 

into system of ordinary differential equations. The 

nondimensional linearized momentum and heat equations 

are, 

( ) WkWDkWDWkWDr
Pr

422422 2
1

+−=− ,         (8) 

W)z(QrkD ][ 21122 −−=−−  ,(9) 

The no-slip and temperature conditions at the bottom 

surface 0=z , 

               0 ,DWW ==         (10) 

. )( 0 re temperatuuniform=   (11) 

At the upper free surface, 1=z , 
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Where W and   are the velocity and temperature 

amplitudes, respectively, and k is the wave number. The 

nondimensional parameters are  ,hdBi =

,DL 0= ,dgBo 1
2 = ,TdM  1=

,Pr = ,dCr 0= ,dN  0
2

2=

,TqdQ 22= which represent  the Biot number, 

Lewis number ,  Bond number,  Marangoni number,  

Prandtl number,  Crispation number, elasticity number, and 

internal  heat generation, respectively.  Z is the surface 

deflection and D = d/dz. 

The onset of steady Marangoni convection can be 

determined by solving the system of equations (8) - (15). 

The analytical solutions for the steady Marangoni 

convection will be determined and the marginal curves will 

be plotted to assess the effects of the parameters on the 

critical Marangoni number. 

 

III. ANALYTICAL SOLUTIONS 

 

The exact analytical solutions for the steady Marangoni 

convection of the linearized problem (8) - (15) subject to 

conducting lower boundary layer are obtained with the aid 

of Maple algebra package by setting  r = 0 where the 

stability is at marginal state. The critical Marangoni number 

is obtained to determine the onset of  Marangoni instability. 

The solutions  W(z) and )z( for the system are  

 ( ) ( )( )
( ) ,kcothzkkzsinh

zkzsinhkzcoshkzC)z(W

+

−+−= 11
(16) 
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and C1 is an arbitrary constant. The closed form of analytical 

solution for the Marangoni number M is 
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IV. RESULT AND DISCUSSIONS 

The marginal curves for the steady convective instabilities 

are in the plane )M,k( which separate the region of stability 

and the region of instability. The onset of convection sets is 

determined by the global minimum of M denoted by Mc. 

 

 

Figure 1.  Stability curves for steady convection with Q=1, 

Cr=0.01, and L=Bi=Bo=0.1, for various values of elasticity 

number. 

 

Figure 2.  Stability curves for steady convection with 

Cr=0.01, N=0.5 and L=Bi=Bo=0.1 for various values of 

internal heat source. 

 

Figure 3.  Stability curves for steady convection with Q=1, 

N=0.5 and L=Bi=Bo=0.1 for various values of Crispation 

number. 

 

Figure 4.  Stability curves for steady convection with 

Cr=0.01, Q=1,N=0.5 and L=Bi= 0.1 for various values of 

Bond number. 

 

Figure 5.  The effect of elasticity number on the critical 

Marangoni number for various values of Crispation number 

with Q=1and L=Bo= Bi=0.1. 

 

Figure 6.  The effect of elasticity number on the critical wave 

number for various values of Crispation number with 

Q=1and L= Bo= Bi=0.1. 
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Figure 7.  The effect of elasticity number on the critical 

Marangoni number for various values of internal heat 

generation with Cr=0.01 and L=Bo=Bi=0.1. 

 

Figure 8.  The effect of elasticity number on the critical wave 

number for various values of internal heat generation with 

Cr=0.01 and L=Bo=Bi=0.1. 

 

Figure 1 shows the effect of the elasticity parameter N 

on the steady curves with the parameters’ values Q=1, 

Cr=0.01 and L=Bi=Bo=0.1. In the absence of surfactant, 

N=0, the curve has the lowest critical value of the 

Marangoni number, Mc. As the value of the elasticity 

number increases, the value of Marangoni number Mc also 

increases, and hence, the surfactants stabilize the fluid 

layer system. An opposite effect occurs when the liquid 

layer generates internal heat, Q as shown in Figure 2. 

Internal heat generation has a destabilizing effect on 

Marangoni instability as the increased value of the internal 

heat source decreases the value of the critical Marangoni 

number Mc. Without internal heat generation, Q=0, the 

fluid layer is at its highest stability. 

The rigidity of the deformable surface of the fluid layer 

system is determined by the value of Crispation number, 

Cr. Figure 3 shows the marginal stability curves for the 

effect of Cr on the critical Marangoni number Mc where 

increasing value of Cr will decrease the value of Mc. If Cr = 

0 (flat surface), the liquid layer is at its highest stability.  

For a deformable surface, Mc is at the long wavelength 

(k=0) and reduces as the Crispation number increases. The 

system of liquid layer is more stable if the degree of the 

deformability is low. 

As shown in Figure 4, the increasing values of Bond 

number will increase the value of the critical Marangoni 

number Mc. The Bond number measures the effect of 

gravity waves at the free surface and the result shows that 

Bond number has a significant stabilizing effect. Figure 5 

and Figure 6 show the effect of the elasticity number on 

the critical Marangoni number Mc and the critical wave 

number kc, respectively, for various values of Crispation 

number.  The values of the critical Marangoni number is 

almost linearly increasing as the values of elasticity 

number increasing but the Crispation number has a 

destabilizing effect on the layer system.  Surface 

deformability destabilizes the fluid layer system. However, 

the elasticity number has little influence on the value of the 

critical wave number kc.  High surface deformability 

reduces the wave number as shown in Figure 6.  The 

reduction of the value of the internal heat source will 

increase the value of the critical Marangoni number Mc. 

The value of the critical Marangoni number increases 

proportionally with the values of elasticity number as 

shown in Figure 7. In Figure 8, the effect of increasing heat 

source reduces, and the elasticity number has negligible 

effect on the critical wave number kc. 

 

V. CONCLUSION 

 

The steady Marangoni instability is examined by obtaining 

the exact analytical solutions of the system of equations for 

a liquid layer with deformable free surface subject to 

uniform temperature in the presence of insoluble 

surfactant and internal heat generation. The surface 

tension is assumed to depend linearly on the temperature 

and the surfactant concentration of the fluid layer system. 

It is found that the surfactant and gravity waves (Bond 

number) have stabilizing effects. Internal heat source and 

surface deformability act as destabilizing factors. The fluid 

system is most stable when there is no internal heat 

generation, and the upper surface is flat. 

 

 

 



ASM Science Journal, Volume 13, 2020 

 

7 
 

VI. ACKNOWLEDGEMENT 

The authors would like to express sincere gratitude to the 

Faculty of Computer and Mathematical Sciences, University 

Teknologi MARA (600-

IRMI/DANA5/3/LESTARI(0140/2016)) for the fund and 

support. 

 

VII.  REFERENCES 

Ab. Hamid, A. S., Awang Kechil, A. S., &Abd. Aziz, A. S. 

2011, Marangoni Instability in a fluid layer with insoluble 

surfactant. World Academy of Science, Engineering and 

Technology, 58, 24-28. 

Awang Kechil, S.& Ab. Hamid, A. S. 2012, Steady Marangoni 

instability in a fluid layer with insoluble surfactant and 

internal heat generation. Advances in Mathematical and 

Computational Methods, 125-135. 

Bénard, H. 1900, Les tourbillons cellulaires dans une nappe 

liquid. Revue Générale des Sciences Pures et 

Appliquées,11,1261-1271. 

Bachok, N. & Ariffin, N. M. 2011, Feedback control of the 

Marangoni-Bernard convection in a horizontal fluid layer 

with internal heat generation. Microgravity Science and 

Technology, 22, 97-105. 

Bhadauria, B. S. &Kiran, P. 2014, Effect of rotational speed 

modulation on heat transport in a fluid layer with 

temperature dependent viscosity and internal heat source. 

Ain Shams Engineering Journal, 54, 35-42. 

Char, M. I. & Chiang, K. T. 1994, Stability analysis of 

Bernard-Marangoni convection in fluids with internal heat 

generation. J. Phys. D: Appl., 27, 748-755. 

Char, M. I. &Chiang, K. T. 1997, Oscillatory instability 

analysis of Bernard-Marangoni convection in rotating fluid 

with internal heat generation. Int. J. Heat Mass Transfer, 

40, 857-867. 

Davis, S.H. 1987, Thermocapillary instabilities.  Annual 

Review of Fluid   Mechanic, 19, 403-405. 

Hashim, I., Othman, H. & Awang Kechil, S. 2009, 

Stabilization of thermocapillary instability in a fluid layer 

with internal heat source. International Communications 

in Heat and Mass Transfer, 36, 161-165. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kanchana, C. & Zhao, Y. 2018, Effect of internal heat 

generation/absorption on Rayleigh-Bernard convection in 

water well-disperse with nanoparticles or carbon 

nanotubes. International Journal of Heat and Mass 

Transfer,  

McCord, D., Crepeau, J., Siahpush, A., & Brogin, J. A. F. 

2016, Analytical solutions to the Stefan problem with 

internal heat generation. Applied Thermal Engineering, 

103, 443-451. 

Mikishev, A. B. & Nepomnyashchy, A. A. 2010, Long-

wavelength Marangoni convection in a liquid layer with 

insoluble surfactant: lineartheory. Microgravity Science 

and Technology, 22, 415-423. 

Nanjundappa, C. E., Shivakumara, I. S., & Arukumar, R. 

2011, Onset of Bernard-Marangoniferroconvection with 

internal heat generation.   Microgravity Science and 

Technology, 23, 29-39. 

Pearson, J. R. A. 1958, On convection cells induced by 

surface tension. Journal of Fluid Mechanics, 4, 489-500. 

Rayleigh, L. 1916, On convection currents in a horizontal 

layer of fluid with the higher temperature is on the other 

side.  Philosophical Magazine. 32, 529-543. 

Yekasi. V., Pranesh, S., & Bathul S. 2017, Effect of 

temperature modulation and internal heat generation on 

the onset of Rayleigh-Bernard convection in a micropolar 

fluid. Global Journal of Pure and Applied Mathematics, 13, 

2411-2437. 


