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For the past decade, Wi-Fi signal fingerprinting algorithm has been considered as a prevalent solution 

for indoor positioning systems. Fingerprinting based methods require a massive database of Wi-Fi 

signal samples to calibrate the indoor positioning system and to achieve a high location accuracy. 

Traditionally the calibration procedure requires human intervention and is very time-consuming, which 

makes a large-scale deployments of indoor positioning systems non-trivial. Objective of this research to 

minimise the manual workload by combining the conventional sampling algorithm with signal 

prediction. In contrast to traditional algorithms, proposed method requires only few signal samples to 

be collected and rest of the data are approximated using Discrete Fourier Transforms. The main 

objective of our research is to reduce the calibration effort while maintaining an acceptable location 

accuracy of the indoor positioning systems. 
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I. INTRODUCTION 

 

In many scenarios of everyday life and especially 

warehousing, manufacturing, advertising, navigation and 

logistics, it is highly desirable to locate and track objects or 

person quickly and accurately. The market of real-time 

location systems (RTLS) is growing with tremendous rates 

and expected to reach US55 billion by 2020 Sakr & El-

Sheimy (2017). Currently, the most extensively used and 

commercially successful location system is the Global 

Positioning System (GPS), which provides high degree of 

accuracy and is available worldwide. However, GPS signals 

originating from satellites suffer from accuracy 

deterioration and outages in dense urban environments 

and are almost unavailable indoors (He et al., 2016). The 

rapid development of Wi-Fi wireless local area networks 

and advent of great mobility have facilitated numerous 

indoor positioning techniques (Khalajmehrabadi et. al., 

2017). Originally designed to provide Internet access to 

mobile users, 802.11 WLAN standards also emerged as 

viable alternative for indoor positioning systems. 

Indoor environment characteristics and specific 

requirements of time-based positioning schemes make 

received signal strength information (RSSI) based 

positioning techniques more attractive for indoor location 

estimation (Dwiyasa & Lim, 2016). The RSSI originated 

from a wireless access points (AP) is used to estimate the 

location of a mobile device. All RSSI based localization 

techniques can be divided into two major categories: signal 

propagation model and fingerprinting approaches 

(Salamah et. al., 2016). Since path loss propagation models 

are prone to large estimation errors due to the random 

propagation effects in different indoor environments 

(Narzullaev et. al., 2015), signal fingerprinting approach 

received most attention from both, academia and industry 

(Davidson & Piché, 2017). 

Wi-Fi signal fingerprinting is a popular location 

estimation technology for Wi-Fi based indoor positioning 
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systems. The position of mobile users is estimated by 

matching received signal strength (RSSI) pattern with pre-

recorded radio map. Although, the fingerprinting is being 

heavily used by most of the commercially successful indoor 

positioning systems (Google Indoors, Ekahau, Aeroscout 

etc.) its main drawback is the time-consuming and 

exhaustive calibration process. This procedure involves 

moving around the building and sampling the Wi-Fi 

signals strength information from nearby wireless access 

points at pre-defined reference spots. Collected samples 

stored in a database to build a signal strength map of the 

region. This procedure carried out manually and it requires 

tremendous time and efforts to collect signal strength 

samples for the target area (Jun et. al., 2018).  

In this research, we propose a new hybrid approach of 

constructing RSSI fingerprints database, that combines 

conventional signal sampling procedure with RSSI 

estimation using Direct Fourier Transform (DFT). The 

main objective of this research is to create an accurate and 

complete Wi-Fi radio signals DB from a limited number of 

on-site measurements using Discrete Fourier Transform, 

thus reducing the cost of time-consuming calibration 

procedure.  

The rest of the paper is organized in the following 

manner. Section II discuss the related work. Section III 

describes the proposed signal prediction model. The 

experiment set-up and results are discussed in Section IV. 

Concluding remarks are given in Section V. 

 

II. RELATED WORK 

 

A. Wi-Fi Fingerprinting Based RTLS 

 

The fingerprint in wireless environment is a feature of the 

signal, such as RSSI or signal-to-noise ratio (SNR) that 

varies from one place to another. Combination of such 

features from multiple radio sources creates a unique 

pattern of signals specific to a given location. Wi-Fi 

fingerprinting localization technique is based on 

comparing the unique signals data from external sources 

sensed at a particular location with a database of pre-

recorded data (Davidson & Piché, 2017).  

Wi-Fi fingerprinting works in two stages: offline 

(calibration) and online (positioning). During the 

calibration phase the RSSI from surrounding APs at 

different, predetermined locations are acquired and then 

stored in a database. This manual procedure is carried out 

by an operator who has knowledge of the area. Signal DB 

contains RSSI samples along with MAC address of wireless 

APs and spot coordinates. In the online positioning phase, 

the location of mobile device is estimated by comparing the 

real-time RSSI values from nearby APs, with the values 

stored in the DB.  

An advantage of Wi-Fi fingerprinting is ubiquitous 

deployment of Wi-Fi access points. Due to rapid growth of 

wireless networks in indoor environments, Wi-Fi 

fingerprinting based RTLS does not require any special 

changes or upgrades to existing network infrastructure 

(Khalajmehrabadi et. al., 2017). On the other hand, 

creating a fingerprint DB is often time consuming and, 

furthermore the newly collected DB may not be reliable if 

there are major changes to the indoor environment. 

Consequently, large-scale deployment of fingerprinting 

RTLS for becomes non-trivial. 

B. RSSI Prediction 

 

Recently, several attempts to reduce the calibration efforts 

via signal interpolation have been made. These methods 

generally approximate the missing RSSI data by 

interpolation of the measurements at neighbouring 

reference points. In Hu et. al., (2013) authors presented an 

efficient database construction method, from relatively 

sparse measurements, based on low-rank approximation. 

However, this method starts with assumption that 

positioning area is represented as a rectangle (to create 

RSSI measurements matrix) which is not practical for real-

life scenarios. Another interesting approach is presented in 

Lee & Han (2012). In this research, authors combined 

signal sampling procedure with Nelder-Mead simplex 

algorithm. In order to consider signal fading caused by 

walls and other obstacles, researches refine the 

approximation model for each cell of target area by a 

higher-order Voronoi diagram. Although, the proposed 

method significantly reduces the calibration time, the 

location accuracy of the model  is bit on the downside. 

Despite the numerous approximation methods mentioned 

above, there is still potential to improve the existing 

techniques in terms of increased accuracy and reduced 

efforts and complexity. 

C. Discrete Fourier Transform 

 

The discrete Fourier Transform (DFT) converts a spatial 
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(real space) description of signal/audio/image data into 

one in terms of its frequency components called Fourier 

space description of the data (Broughton & Bryan, 2018). 

DFT has been widely deployed by modern video coding 

standards, for example, MPEG, JVT etc. for multimedia 

Image/Video/Audio Compression. Although standard DFT 

technique exist, the focus will be placed on the machine 

learning regressors. 

 

III. METHODOLOGY 

 

A. Reference Signals Sampling 

 

The proposed Wi-Fi RTLS calibration procedure works in 

two stages: reference samples collection and RSSI 

approximation using Direct Fourier Transform. First, we 

divide the target area into multiple paths, commonly used 

by people to navigate the building. Next, we allocate 

multiple reference points along each path, and collect RSSI 

signal samples originated from surrounding APs. Once we 

finish the signal sampling, we will create path-specific 

prediction function using DFT. 

 

B. Direct Fourier Transform 

 

Let reference points coordinates x and collected RSSI 

samples y be vectors defined by 

1( ,..., )T

Nx x x= ,   (1) 

1( ,..., )T

Ny y y= .  (2) 

where N is the total number of reference points. 

We propose the regression function has a form: 
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It is obvious that the function ( )h x in (4) can be 

describes as a scalar product of two vectors 

( ) ( )Th x C x =    (4) 

where ( )C x is a vector valued function defined as 

0 1 2( ) ( ( ), ( ),..., ( )).T

mC x c x c x c x=   (5) 

The regression parameter vector   is defined by the 

minimum 

( )min J 

    (6) 

of the regression cost function 
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Theorem 1.1. The regression parameter vector   has 

the form 
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Proof. Since   is an absolute minimum point of the 

cost function J ( ) we consider the system of equations 
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the equations (9) have the form 
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(11) 

Due to the equality in (4) the function ( )h x is scalar 

product of the vector function C(x) and . 

Consequently, we have 
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By virtue of the definition of the matrix C, the vector 

matrix in the last equality satisfy 
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and hence the equation (11) is reduced to the form 

T

yCC C =   (15) 

which provides the equation   in (8) 

Due to the fact that J ( ) is a quadratic form and   is 

a unique critical point, we can claim that  is the absolute 

minimum of the cost function. 

 

C. RSSI Prediction 

 

RSSI prediction for any given x is performed using 

equations (4), (5) and (8). 

 

IV. RESULTS AND DISCUSSION 

 

A. Experiment Setup 

 

The algorithm evaluation is done using Wi-Fi RSSI data 

samples collected on the 4th floor of the Mines shopping 

complex located in Serdang, Malaysia. Figure 1 shows the 

layout of the test area. RSSI samples were collected at 682 

reference points, along the five paths with overall length of 

over 600m (dash lines). Android devices, with custom 

software were used for data sampling. The WLAN 

infrastructure of the building includes more than 250 APs, 

however only 20 APs with widest coverage and stable 

signal levels were chosen for further evaluation. In order to 

have the reliable RSSI DB, we collected 20 samples at each 

reference points, and the average of 20 measurements is 

stored in the database. The final DB contains over 13,000 

RSSI samples. 

 

 

Figure 1. A plan of the building where experiments were 

conducted. 

 

We compared the proposed method (DFT) with 

conventional measurement-based algorithm (CONV), as 

well as, with two recent RSSI prediction-based methods, 
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MOSM (Narzullaev & Park, 2013) and VORO (Lee & Han, 

2012). 

B. RSSI Prediction Accuracy 

 

In the following experiment we have evaluated the 

proposed model in terms of RSSI prediction accuracy. 

Since, the main idea behind proposed algorithm is to 

reduce the calibration time, for further evaluation we 

gradually decrease the total number of reference points 

(NRP). In order to get two times of efficiency η=2, we 

reduce the number of RPs from 682 to 341, and we can 

obtain η=4 times the efficiency by choosing NRP=170 and 

so on. 

Figure 2 compares the power spectrum of measured 

and approximated signals with different number of RPs, 

for one particular AP, on a single path. Results show that 

forη=2 and η=4the proposed algorithm can recover the 

original signal almost identically. 

 

 

Figure 2. Power spectrum of measured and approximated 

signals. 

 

Figure 3 shows the cumulative distribution function 

(CDF) of RSSI prediction error. Results show that even 

with ten times less measurements (η=10), 70% of the time 

the proposed algorithm can predict RSSI values with less 

than 2.5dB error. 

Next, we compared the proposed algorithm with 

existing prediction methods. Results in Figure 4 show that 

the proposed model clearly outperforms the VORO and 

MOSM, even when NRP is extremely low 

 

Figure 3. CDF of RSSI prediction accuracy. 

 

Figure 4. RSSI prediction accuracy of three methods. 

 

C. Positioning Accuracy 

 

Next, we evaluate the positioning accuracy or proposed 

method. We compared the proposed method with 

conventional (CONV) sampling-based method, as well as, 

with previously mentioned prediction-based algorithms. 

Here we adopt the K-nearest neighbour (KNN) algorithm 

(Narzullaev & Park, 2013) for location estimation, and we 

fix the parameter K=4. Figure 5 shows the mean location 

estimation error results. The proposed method (DFT) 

outperforms the existing algorithms. When NRP=341 the 

mean error was 1.36m for DFT, 2.45m for MOSM, 2.98m 

for VORO and 2.84m for CONV. For the worst-case 

scenario with NRP=45, results were 5.10m for DFT, 6.74m 

for MOSM, 10.32m for VORO and 11.20m for CONV. 
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Figure 5. Positioning accuracy results. 

 

 

 

 

 

 

 

V. CONCLUSION 

 

In this research we proposed a new Wi-Fi fingerprint DB 

construction method based on signal approximation using 

Direct Fourier Transform. The proposed method 

significantly reduces the calibration effort, compared to 

conventional, measurement-based algorithm. Real-life 

field test results showed that proposed method achieves 

better approximation accuracy than existing prediction-

based methods. The constructed fingerprint database was 

used for positioning and the results showed that the 

location accuracy is significantly improved compared to 

conventional, as well as state-of-the-art prediction-based 

algorithms. 
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