
_________ 
*Corresponding author’s e-mail: aini_zainuddin@utp.edu.my 

 
 
 
ASM Sc. J., 13, 2020 
https://doi.org/10.32802/asmscj.2020.sm26(4.26) 
 

 

Two-Point Block Method for Van der Pol 
Equation 

 

Nooraini Zainuddin1*  and Zarina Bibi Ibrahim2 

1Department of Fundamental and Applied Sciences, Faculty of Science and Information 

Technology, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia. 

2Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, 

Selangor, Malaysia. 

 

The second order ordinary differential equations (ODEs) of Van der Pol equation is treated by using the 

two-point block backward differentiation formula. Two types of Van der Pol equation which are stiff and 

nonstiff are considered. The main motivation of this study is to solve the Van der Pol equation directly 

instead of reducing it to a system of first order equation. The two-point block method is implemented in 

constant step size and will produce two approximated solutions for each step.  Some numerical results 

are presented, and the comparisons are made with the existing solvers for both stiff and nonstiff ODE to 

validate the numerical performance of the two-point block method. 
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I. INTRODUCTION 

 

Van der Pol (VDP) equation is first introduced in 1920’s by 

the physicist Balthasar van der Pol to describe a simple self-

oscillating triode circuit. Since then, this equation has been 

used to model a variety of physical and biological 

phenomena such as in the development of the model of the 

interaction of two plates in a geological fault (Cartwright et 

al., 1999).   

The VDP equation is a nonlinear second order ordinary 

differential equation (ODE) given as  

𝑦″ = −𝑦 + 𝜇(1 − 𝑦2)𝑦′  (1) 

where𝜇indicates the stiffness of the VDP equation. 

Occasionally, equation (1) is solved by reducing it into the 

form of first order system as 

𝑦1
′ = 𝑦2, 𝑦2

′ = −𝑦1 + 𝜇(1 − 𝑦1
2)𝑦2.  (2) 

Many studies were designed on solving various form of 

VDP equation. Ramana & Prasad (2014) proposed the 

modified version of Adomian Decomposition Method to 

solve the forced and unforced VDP equation with𝜇 = 1. In a 

study done by He et al. (2016), the variable order fractional 

VDP is treated by using the method of Adams Bashforth 

Moulton with 𝜇 = 2.5. Mishra et al. (2016) successfully used 

the Homotopy analysis method to deal with the fractional 

order VDP equation.   

A paper written by Cartwright (1999), noted that for 

VDP equation, at the large 𝜇, the equation is very stiff and 

exhibiting a relaxation oscillator. The concept of stiff 

equations was first introduced by Curtiss & Hirschfelder 

(1952) where they claim that “stiff equations are equations 

where certain implicit methods, in particular Backward 

Differentiation Formulas, perform better, usually 

tremendously better than explicit ones”. Cash (2003) gives 

the idea of stiff equation as a problem with some smooth 

and transient solutions. There are numerous works on stiff 

problems were done since the introduction of stiff equation 

in 1952. For instances, Ibrahim et. al., (2007) proposed 2-

point and 3-point block method for stiff first order ODE 

and Coudière et al. (2018) proposed Exponential Adams-

Bashforth for the stiff ODE system in the models of cardiac 

electrophysiology.  

In this paper, the authors propose to solve the nonstiff 

and stiff VDP directly by varying the value of 𝜇. The 

proposed method is Fifth Order Direct Block Backward 
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Differentiation Formula (5-DBBDF) as proposed by 

Zainuddin et al. (2016). The numerical results are 

compared with the existing MATLAB solvers for ODE, 

which are ode45 for nonstiff ODE and ode15s for the stiff 

ODE. 

 

II. Fifth Order Direct Block Backward 

Differentiation Formula (5-DBBDF) Method: 

A Review 

 

The Fifth Order Direct Block Backward Differentiation 

Formula (5-DBBDF) is a method specifically design to solve 

the problem of second order ODE. The method is derived 

by utilizing up to five back values at the points 

𝑥𝑛−4, 𝑥𝑛−3, 𝑥𝑛−2, 𝑥𝑛−1and 𝑥𝑛. The 5-DBBDF is given as:  
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(3) 

This method solves the second order problem in block 

term, for which solutions are given at two points 

simultaneously. The authors had proven that the method is 

capable to solve the problem of stiff ode as indicated by the 

numerical result section. However, no numerical result on 

the nonlinear ODE is given to prove the availability of the 

method on dealing with nonlinear stiff ODEs. 

 

III. NUMERICAL RESULT 

 

Numerical performance of the 5-DBBDF method on the 

various values of   are presented in this section. The 

values of  are varied as𝜇 = 1, 10, 100, 200 with the initial 

conditions𝑦(0) = 2and 𝑦′(0) = 0. The ode45 and ode15s are 

variable steps solvers while the 5-DBBDF is fixed step 

method. For figures 1 – 3 below, the numerical plotting is 

made by using the tolerance (tol) and step size of 0.01 for 

the 𝜇 = 1, 10. For𝜇 = 100, 200, the tolerance used is 0.01, 

while for 5-DBBDF, the step size used is 0.001. 

(a)𝜇 = 1 

 

(b)𝜇 = 10 

 

(c)𝜇 = 100 

 

(d)𝜇 = 200 

Figure 1. Graph of solution for x and y by 

using tolerance 0.01 for ode45 and ode15s and 

step size 0.01 for 5-DBBDF for 𝜇 = 1, 𝜇 = 10, 

and step size 0.001 for 5-DBBDF for 𝜇 =

100, 𝜇 = 200 
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(a)𝜇 = 1 

 

(b) 𝜇 = 10 

 

(c)𝜇 = 100 

 

(d)𝜇 = 200 

Figure2. Graph of solution for x and y’ by 

using tolerance 0.01 for ode45 and ode15s and 

step size 0.01 for 5-DBBDF for 𝜇 = 1, 𝜇 = 10, 

and step size 0.001 for 5-DBBDF for 𝜇 =

100, 𝜇 = 200. 

 

(a)𝜇 = 1 

 

(b)𝜇 = 10 

 

(c)𝜇 = 100 

 

(d)𝜇 = 200 

Figure3. Graph of solution for y and y’ by 

using tolerance 0.01 for ode45 and ode15s and 

step size 0.01 for 5-DBBDF for 𝜇 = 1, 𝜇 = 10, 

and step size 0.001 for 5-DBBDF for 𝜇 =

100, 𝜇 = 200. 
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Table 1. Values of 𝑦 and 𝑦′ at end of interval for 𝜇 = 1. 

Tol/ 

Step Size 
Method 𝑦 𝑦′ 

0.01 

ode45 -1.99588 2.64076E-01 

ode15s -1.97900 1.88920E-02 

5-DBBDF -2.00905 3.00933E-02 

0.001 

ode45 -2.01299 2.06769E-02 

ode15s -2.00864 2.44333E-02 

5-DBBDF -2.00835 3.28777E-02 

0.0001 

ode45 -2.00833 3.32591E-02 

ode15s -2.00835 3.24814E-02 

5-DBBDF -2.00834 3.29068E-02 

0.00001 

ode45 -2.00834 3.29342E-02 

ode15s -2.00831 3.29217E-02 

5-DBBDF -2.00834 3.29093E-02 

 

Table 2. Values of 𝑦 and 𝑦′ at end of interval for 𝜇 = 10. 

Tol/ 

Step Size 
Method 𝑦 𝑦′ 

0.01 

ode45 1.63861 -9.43305E-02 

ode15s -1.68083 9.03342E-02 

5-DBBDF 1.75409 -8.40846E-02 

0.001 

ode45 1.64412 -9.57840E-02 

ode15s 1.57360 -1.05176E-01 

5-DBBDF 1.64312 -9.59645E-02 

0.0001 

ode45 1.64165 -9.61515E-02 

ode15s 1.62665 -9.80003E-02 

5-DBBDF 1.64092 -9.62381E-02 

0.00001 

ode45 1.64089 -9.62419E-02 

ode15s 1.63874 -9.65102E-02 

5-DBBDF 1.64089 -9.62857E-02 

 

Table 3. Values of 𝑦 and 𝑦′ at end of interval for 𝜇 = 100. 

Tol/ 

Step Size 
Method 𝑦 𝑦′ 

0.01 

ode45 1.71715 -4.47473E-04 

ode15s 1.64776 -9.58070E-03 

5-DBBDF NC NC 

0.001 

ode45 1.72087 -8.72080E-03 

ode15s 1.70908 -8.88933E-03 

5-DBBDF 1.73559 -8.62459E-03 

0.0001 

ode45 1.71875 -8.75417E-03 

ode15s 1.71825 -8.79914E-03 

5-DBBDF 1.71891 -8.79366E-03 

0.00001 

ode45 1.71859 -8.79476E-03 

ode15s 1.71834 -8.79890E-03 

5-DBBDF 1.71859 -8.79679E-03 

*NC=Not converge 

 

Table 4. Values of 𝑦 and 𝑦′ at end of interval for 𝜇 = 200. 

Tol/ 

Step Size 
Method 𝑦 𝑦′ 

0.01 

ode45 1.70501 -3.37740E-03 

ode15s 1.63208 -4.84997E-03 

5-DBBDF NC NC 

0.001 

ode45 1.71069 -4.40335E-03 

ode15s 1.69660 -4.50429E-03 

5-DBBDF 1.72117 -4.38528E-03 

0.0001 

ode45 1.71093 -4.42442E-03 

ode15s 1.70773 -4.45501E-03 

5-DBBDF 1.71201 -4.43323E-03 

0.00001 

ode45 1.71079 -4.43850E-03 

ode15s 1.71083 -4.43886E-03 

5-DBBDF 1.71080 -4.43933E-03 

*NC=Not converge 

 

IV. DISCUSSION 

 

All three methods manage to solve the VDP equation 

given 𝜇 = 1, 10, 100, 200. The ode45 is specially designed 

for nonstiff ODE and ode15s is specifically for stiff 

ODE. From figures 1-3, at the values of 𝜇 = 100,200, the 

steps taken for ode45 are so small that the individual 

crosses representing each step merge to become a 

continuous broad line. However, the ode15s only take 

small steps at the changing phase of fast and slow 

states. This shows that for 𝜇 = 1, 10, the VDP equation 

is nonstiff, while for 𝜇 = 100, 200,the VDP equation is 

stiff. 

From figures 1 – 3, the numerical performance of 

the 5-DBBDF had shown its potential on solving stiff 

and nonstiff nonlinear second order ODE directly. The 

graph of the numerical solutions agrees with the results 

obtained with the ode45 and ode15s. When 𝜇 = 1 and 

tolerance/step size used is 0.01, the graph of 5-DBBDF 

follow closely the graph of ode45 and ode15s. Referring 

to tables 1, 2, 3 and 4, by comparing the numerical 

solutions at the end of interval, the 5-DBBDF manages 

to get the approximation values that equivalent to the 

ode45 and ode15s up until four decimal values at lower 
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tolerance/step size for y and up to two decimal values 

for 𝑦′. 

The graphs when 𝜇 = 10 and the interval up to 𝑥 =

100are plotted for the tolerance and step size of 0.01. 

The oscillation of the numerical is clearly shown. 

However, it is clearly seen that the result from ode15s 

deviates from the result of ode45 and 5-DBBDF. The 

numerical values from tables 1 and 2 conclude that the 

result should follow the result of ode45 and 5-

DBBDF.As the tolerance/step size becomes smaller, the 

result agrees with the values given by the ode45 and 5-

DBBDF. 

The graphs when 𝜇 = 100, 200, are given with the 

interval up to 𝑥 = 200, 400 respectively. The 5-DBBDF 

do not converge for the step size 0.01. However, graphs 

and tables of the numerical solution indicate that even 

the 5-DBBDF requires step size 0.001 to give the 

approximated values, the solutions agreed to the same 

decimal values as given by ode45 and ode15s. 

 

 

V. REFERENCES 

 

 

VI. CONCLUSION 

 

Numerical performance given by the 5-DBBDF had 

proven its availability on solving nonstiff and stiff 

nonlinear VDP equation. Although the 5-DBBDF 

requires smaller step size to converge at higher 𝜇, the 

approximated solutions still follow closely the results 

given by ode45 and ode15s. Since the 5-DBBDF is fixed 

step method, it is recommended that the 

implementation is further extended to variable step so 

that it will able to give numerical solution at higher 

tolerance and at the same time reducing the 

computational cost. 
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