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The study of boundary layer stagnation point flow and heat transfer towards a permeable stretching 

surface saturated in a nanofluid with slips boundary conditions, applied magnetic field and thermal 

radiation in porous medium have been analysed numerically. A mathematical model of partial 

differential equations corresponds to momentum, energy and nanoparticle concentration is reduced 

into nonlinear ordinary differential equations using similarity variables. These ordinary differential 

equations are solved numerically by MAPLE software using Runge-Kutta-Fehlberg along with shooting 

technique.  The influences of velocity ratio, permeability, thermophoresis and Brownian motion 

parameters on velocity, temperature and concentration profiles are analysed and presented graphically.  

It is found that the velocity ratio enhances the velocity profile but reduces both temperature and 

concentration profiles. However, the opposite results are observed for the permeability parameter. 

Furthermore, the thermophoresis and Brownian motion parameters elevate both the temperature 

profiles, but the thermophoresis increases, and the Brownian motion decreases the concentration 

profiles respectively. 

Keywords: Boundary layer flow, slip permeable stretching sheet, MHD stagnation flow, 

thermophoresis, Brownian motion 

 
 

I. INTRODUCTION 
 
 

The idea of boundary layer pioneered by Ludwig Prandtl 

(Anderson, 2005) has been widely applied especially in 

engineering processes. For example, materials manufactured 

by extrusion where MHD has been considered in order to 

improve the extrusion production efficiency (Shaw et al. 

2016; Hsiao, 2017; Zaman et al. 2017; Soid et al. 2017).MHD 

flow was investigated and analysed by Mukhopadhyay,(2013) 

and Agbaje et al. (2018). Plasmas and electrolyte are 

examples of the dynamics of electricity conducting fluids 

(Mabood et al. 2015). Stagnation-point flow is the 

combination of static and dynamic pressure.  In addition, 

stagnation happens at a point when the velocity is zero 

(Shaughnessy et al. 2005). Ibrahim and Shankar, (2013) 

have studied about the presence of stagnation point in 

MHD boundary layer nanofluid flow. The theory on 

nanofluid was introduced by Choi and Eastman, (1995) and 

had become a very active area of exploration. The authors 

also stated that nanofluid might exhibit superior properties 

(Soid et al. 2017; Soid and Ishak, 2017). 

Thermal radiation and heat transfer play significant and 

important effects especially in  controlling heat transfer in 

industry (Hamad and Ferdows, 2012).   Recently, the 

boundary layer nanofluid flow induced by a permeable 

surface has received significant considerations of several 

researchers (Azmi et al. 2017; Bejan and Nield, 2013). Slips 

are applied in technological matters such as internal 

cavities and polishing of artificial heart valves (Ibrahim and 
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Shankar, 2013). The velocity, temperature and nanoparticles 

concentration are influenced by the coefficient of slip. 

Motivated by the above observations, this paper extends the 

work done by Ibrahim et al. (2013) on the influences of 

velocity ratio, permeability, thermophoresis and Brownian 

motion parameters. 

 

II. MATHEMATICAL FORMULATION 
 
 
Consider the steady two-dimensional convective nanofluid 

flow over a permeable horizontal sheet in porous media in 

the presence of radiation. The horizontal plate is along x -

axis and the y -axis is normal to the plate.  In the positive 

direction of y -axis, the inflexible magnetic field of strength

0B is activated together with the thermal radiation effect 

while porous plate is along the horizontal axis. 
T is 

considered as ambient temperature and 
C  as ambient 

concentration where the body surface of horizontal plate is 

kept at a fix temperature 
wT and concentration

wC . The 

sheet is stretched with velocity axuw = , where a  is a 

constant,
wV is the wall mass flux and cxU = is the ambient 

velocity where c is a constant. 

 

 

Figure 1. Schematic diagram of the problem 
 

 

The boundary layer equations of continuity, 

momentum, energy and concentration are (Ibrahim et al., 

2013) 
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where u and v  are the velocity component along  x -

direction and y -direction respectively. f /= is the 

kinematic viscosity where   is dynamic viscosity of the 

fluid and f  is the density of the base fluid,  is the 

electrical conductivity, k  is medium porosity,T  is the 

temperature and ( ) fc /=  is the thermal diffusivity 

where   is the thermal conductivity and ( ) fc  is heat 

capacity of the fluid.
rq is  radiative heat flux,  is stated as

( ) ( ) fp cc  / , ( )pc is effective heat capacity of a 

nanoparticle and pc is specific heat capacity at constant 

pressure. , ,
T B

C D D are concentration, thermophoresis 

diffusion coefficient and Brownian diffusion coefficient 

respectively. 

 
The corresponding boundary conditions are 
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 →→=→→ CCTTcxUuy ,,: . (6) 

wV is  the wall mass flux where 0wV  is injection and 

suction when 0wV ,both surface temperature, 
wT  and 

surface concentration wC are constants. The condition with 
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no-slip is recovered when .1 2 0= = =L K K
1, KL  and

2K  are the velocity, the thermal and the concentration slips 

factor. The mathematical formulation is simplified using 

similarity variables 

where r  is similarity variable,   is stream  function which 

defined as yu = / and xv −= / . Both identically 

satisfy equation (1), ( )f is the dimensionless stream 

function, ( )  is dimensionless temperature and ( ) is  

dimensionless concentration. The mathematical problem 

defined by equations (2)-(4) with boundary conditions (5)-

(6) are transformed into ordinary differential equations as 
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where ac /= is velocity ratio parameter, 

aBM f /
2

0= is parameter of magnetic field,

/ ak=  is permeability parameter, 
34 * */R T k=  

is a radiation parameter where 
* is the Stefan-Boltzmann 

constant and
*k  is the mean absorption coefficient,

Pr /=    is a Prandtl number
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c  is a Brownian 

motion parameter, 

( ) ( ) ( ) −= TcTTDcNt
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 / is the 

thermophoresis parameter and
BDLe /= is a Lewis 

number. 

The transformed boundary conditions are 
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where /wS V a= −  , /A L a=  , 
1 /B K a=   and 

2 /C K a=    are suction parameter, velocity slip, thermal 

slip and concentration slip parameter respectively. The 

physical quantities in this problem are local skin friction 

coefficient ,fC  local Nusselt number
xNu  and local 

Sherwood number xSh  are declared as 
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where the wall shear stress 
w  the surface heat flux

wq  and 

the surface mass flux
mh  are given by 

Solving the above equations, we obtained 
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where xuwx =Re  is the local Reynolds number. 

 

III. RESULTS AND DISCUSSIONS 
 

The nonlinear ordinary differential equations (8)-(10) with 

the boundary conditions (11)-(12) were solved numerically 

using “dsolve” MAPLE software. The procedure is based on 

Runge-Kutta-Fehlberg fourth and fifth order method with 

shooting technique. 

A comparison with previously published papers 

Ibrahim and Shankar, (2013) and Hayat et al. (2011) are in 

a good agreement with the present results as shown in 

Table 1. 
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Table 1. Comparison of the skin friction coefficient 

( )0f −  for various values of the velocity slip parameter 

 

A  Hayat et al. 

(2011) 

Ibrahim and 

Shankar, 

(2013) 

Present 

results 

0.0 1.000000 1.0000 1.0000 

0.1 0.872082 0.8721 0.8721 

0.2 0.776377 0.7764 0.7764 

0.5 0.591195 0.5912 0.5912 

2.0 0.283981 0.2840 0.2840 

5.0 0.144841 0.1448 0.1448 

10.0 0.081249 0.0812 0.0812 

20.0 0.043782 0.0438 0.0438 

50.0 0.018634 0.0186 0.0186 

 

 

Figure 2. Velocity profiles ( )f    for several values of   

with 1 0 1 6 2, . , Pr . ,M =  = =

.1,5.0,5 ======== CBASNbNtRLe  

 
Figure 2 exhibits as velocity ratio parameter increases, 

the velocity profile increases. This indicates that there is a 

slightly decline in the boundary layer with increase in 

which means the free stream velocity surpasses the 

stretching velocity.  

Therefore, increment in the pressure and straining 

motion near the stagnation point leads to reduce the 

boundary layer thickness. The effect of velocity ratio 

parameter   increment reveals that the temperature field 

decreased as depicts in Figure 3. As a result, the thermal 

boundary layer thickness decreases. Concentration boundary 

layer thickness is also reduced as the velocity ratio parameter 

  increases as shown in Figure 4.   This is due to the fall in 

the dimensionless temperature inside thermal boundary 

layer. 

 

 

Figure 3. Temperature profiles )(  for several values of 

  with 1 0 1 6 2, . , Pr . ,M =  = = ,5=Le

0 5 1. , ,R Nt Nb S A B= = = = = = 1.C =  

 
 

 

Figure 4. Concentration profiles ( )  for several values of 

  with 1 0 1 6 2, . , Pr . ,M =  = =

.1,5.0,5 ======== CBASNbNtRLe  

 

Figure 5 illustrates the decrement of velocity profile 

with different permeability parameter  due to a high 

Darcy force which slowing down the fluid in the boundary 

layer. However, both temperature and concentration 

profiles increase as the values of the permeability 

parameter  rises. At the same time, the gradient for both 

temperature and concentration distributions decrease with 

small changes as described in Figures 6 and 7. Hence, the 

changes in the permeability parameter  is insignificant 

to the boundary layer thickness of temperature and 

concentration profiles. 
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Figure 5. Velocity profiles ( )f  for several values of  with

1 0 1 6 2, . , Pr . ,M =  = =

.5.0,5.0,10 ====== ASNbNtRLe  

 

 

Figure 6. Temperature profiles )(  for several values of 

  with 1 0 1 6 2, . , Pr . ,M =  = =

.1,5.0,5.0,10 ======= BASNbNtRLe  

 

 

Figure 7. Concentration profiles ( )  for several values of 

  with 1 0 1 6 2, . , Pr . ,M =  = =  

.1,5.0,5.0,10 ======== CBASNbNtRLe  

 

Figures 8 and 10 shows the same results as Brownian 

motion and thermophoresis parameters rise respectively. 

This is due to the collision between in the random of particles 

motion in a fluid encourages temperature enhancement. 

Figure 9 depicts the variation of concentration in response to 

a different value in Brownian motion parameter Nb . As the 

values of Nb  increase, the concentration boundary layer 

thickness become thinner and close to the surface while 

oppositely for Figure 11 as the thermophoresis parameter 

Nt  increases, the concentration field and boundary layer 

thickness also increases. 

 

 

Figure 8. Temperature profiles )(  for several values of 

Nb  with 1 0 1 0 1 6 2, . , . , Pr . ,M =  =  = =  

.1,5.0,5 ====== BASNtRLe  

 

 

Figure 9. Concentration profiles ( )  for several values of 

Nb  with 1 0 1 0 1, . , . ,M =  =  =

.1,5.0,5,2.6Pr ======== CBASNtRLe  

 
 

 

Figure 10. Temperature profiles )(  for several values of 

Nt  with 1 0 1 0 1, . , . ,M =  =  =

.1,5.0,5,2.6Pr ======= BASNbRLe  

 



ASM Science Journal, Volume 13, 2020 
 

6  

 

Figure 11. Concentration profiles ( )  for several values of 

Nt  with 1 0 1 0 1 6 2, . , . ,Pr . ,M =  =  = =

.1,5.0,5 ======= CBASNbRLe  

 

 

IV. CONCLUSION 
 

The effect of velocity ratio   and permeability parameter 

  on the MHD boundary layer flow and heat transfer of a 

nanofluid over a permeable stretching sheet and slips 

effects with the presence of thermophoresis and Brownian 

motion were studied numerically. 

In conclusion, the velocity ratio enhances the velocity 

profile but reduces both temperature and concentration 

profiles. However, the opposite results are observed for the 

permeability parameter. Furthermore, the thermophoresis 

and Brownian motion parameters elevate both the 

temperature profiles, but the thermophoresis increases, and 

the Brownian motion decreases the concentration profiles 

respectively. 
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