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Riccati differential equations are one of the most common type of non-linear differential equation used 

to model real life applications from various fields. The issue when dealing with non-linear differential 

equations is obtaining their exact solutions. In this research, a three-point block multi-step method in 

backward difference form is introduced to provide approximated solutions for these Riccati differential 

equations. The accuracy of the proposed three-point block method will be tested against known 

numerical methods. The efficiency of the method will apparent when compared with another multi-step 

method. 
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I. INTRODUCTION 

 

Applications of Riccati differential equations have become a 

common occurrence in social and natural sciences. 

Mathematical models in the form of Riccati differential 

equations ranges from stochastic realization theory, 

financial mathematics, network synthesis to random 

process and diffusion problems. The general Riccati 

differential equation (RDE) has the form 

 
2

0( ) ( ) ( ) ( ) ( ) ( ), ,y t t y t t y t t t t T   = + +    

 ( )0y t C=  

where the functions ( ),t ( )t  and ( )t  are given. 

    Direct approach using multistep method have become a 

trend for solving higher order ordinary differential 

equations. This is because compared to reduction of order 

methods, direct methods have shown to be not only 

accurate but with the added advantage of being cost 

effective (computational cost). Previous approximation 

methods for ODEs were considered to be robust because of 

their efficiency but, due to authors such as Krogh (1973), 

Lambert (1973) and Suleiman (1989) the interest of 

researchers was revived. Among the more avid researchers 

in developing these direct methods includes authors such as 

Suleiman (2011), Rasedee et. al., (2016) and Ijamet al. 

(2018).  

     In the current work, a three-point block multistep 

method is introduced to obtain the numerical 

approximation for Riccati differential equations. Inspired 

by research conducted in Suleiman (1989), the three-point 

block method is infused with a variable order step size 

algorithm (3PBVOS) to reduce computational cost. The 

3PBVOS method is formulated using an Adams-like code to 
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overcome the drawback of calculating integration 

coefficients at every step change as required when 

implementing a divided difference code (Suleiman, 1989). 

By extending the works of Rasedee et. al., (2014) and Ijam 

et. al., (2014), we established the 3PBVOS formulation in 

predictor-corrector form for solving Riccati type differential 

equations. 

 

II. INTEGRATION COEFFICIENTS 

 

This section provides derivation of the three-point 

integration coefficients. For the derivation of the one-point 

integration coefficients, refer to Rasedee et. al., (2014) and 

for the two-point integration coefficients see Ijam et. al., 

(2014), Consider the higher order ordinary differential 

equation 

 ( )( ) ( 1), , , ,..., ,d dy f t y y y y − = 1 

where we denote ( )( 1), , ,..., dy y y y −   by 

 
( 1)( , , ,..., ),dY y y y y − =  

with the initial value conditions 

 ( ) ,Y a =  

given that 

 
( 1)( , , ,..., ), .d a t b     − =    

Obtaining the predictor-corrector formulae begins with the 

derivation of the explicit integration coefficients. For the 

explicit coefficients, we first consider the higher order ODE, 

( )dy . By integrating 
( )dy  once, yields  

 ( ) ( ) ( )3( 1) ( 1)

3 , .
n

n

t
d d

n n
t

y t y t f t Y dt
+− −

+ = +   

Next, by substituting the Gregory-Newton polynomial, 

 ( )
1

0

,
k

i

n n

i

s
P t f

i

−

=

− 
=  

 
  

into the equation above by interpolating the k values 

( ) ( ) ( )( ) ( )1 1
, , , , , ,n n n k n kn k n k

t f t f t f− −− − − −
 provides the 

following estimate 

 ( ) ( )
13
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3
0
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d d i
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−
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where  

 .nt t sh= +  

Let 
3,1,i  be a set of coefficients denoted by the generating 

function, 

 ( )3,1 3,1,

0

,i

i

i

t t


=

 =  2 

given  
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3

3,1,
0
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− 
= −  

 
  3 

By substituting the coefficients from (3) into (2), yields  

 ( ) ( )
3

3,1
0

0

1 .
i

i

s
t ds

i



=

− 
 = −  

 
   

Solving the integral above provides a simpler notation for 

the generating function, ( )3,1 t  as follows 

 ( )
( )

( ) ( )

3

3,1

1 1

1 1

t
t

log t log t

− −
 = − − 

− −  

 

and its corresponding integration coefficients 

 

1
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3, 3 .
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The integration process is repeated by integrating (1) from 

2 up to d   number of times, resulting in a general 

formulation for the predictor: 

1 1
( ) ( )

3 3, ,

0 0

(3 )
( ) ( ) ,

!

ij k
d j d j i j i

n n j i n

i i

h
y x y x h f

i


− −
− − +

+

= =

= +  
 

Through mathematical deduction, a general formula for the 

explicit integration coefficients is obtained as follows, 

 

1
3, ,

3, ,0 3, 1,1 3, , 3, 1, 1

0

 , ,
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k
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d d d k d k
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
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−
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=

 
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where 1,2,k =  whereas, the implicit integration 

coefficients are derived in a similar manner as the explicit 

coefficients, but with a slight difference of changing the 

limit of integration by the following 

 
3 .nt t sh+= +  

This provides the subsequent corrector formulae 

1 1
( ) ( ) *

3 3, , 3

0 0

(3 )
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n n j i n

i i

h
y t y t h f

i


− −
− − +

+ +

= =

= +  
 

The derivation will also show that the implicit integration 

coefficients can be written as 
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3, ,* * * *
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A connection between the explicit and implicit integration 

coefficients is then established. These coefficients are 

shown to correspond together in the following recursive 

relationship 

 
* 3

3, , 3, ,

0 0

(1 ) .i i

j i j i

i i

t t t 
 

= =

= −   

 

III. ERROR ESTIMATION AND STEP 

CHANGE CRITERION 

 

This research adopts a modified error estimation based on a 

predict-evaluate correct-evaluate (PeCe) algorithm as 

suggested by Hall and Watt (1976). In establishing this 

PeCe algorithm, we have the predictor which takes the form  

( ) ( ) ( )
1 1

3 3, ,

0 0

3
,

!

ij k
d j d j ipr j i

n n j i n

i i

h
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with 0,1, ,j d=  . and its corresponding corrector 
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With the advantage of obtaining a recursive relationship 

between the explicit and implicit integration coefficient, the 

corrector can be represented by way of the predictor  

 
( ) ( ) *

3 3 3, , 3,
d j d jcr pr j k

n n j i pr ny y h f
− −

+ + += +   

to reduce computational cost. From here, the local 

truncation error (LTE) is obtained from corrector of 

different orders. For purpose of this research, the difference 

between the corrector of order k  and 1k −  is considered 

hence, giving the estimate 

 
( ) *

3, , 3 0,1, , .,j j k

k j i pr nLTE h f j d +=  =   

Because this research implements a variable order step size 

algorithm, strategies and selection criteria as discussed in 

Rasedee et. al., (2014) are employed, resulting in the 

following LTE,  

 
( )

3, , 3, 0, , .
d p d p k

k d p i pr nLTE h f p d
− − 

− +=  =   

which is monitored by selecting the appropriate p  to 

provide less computational time with minimal loss of 

accuracy. 

As mentioned in Rasedee et. al., (2014), a crucial aspect 

when practicing a variable order step size algorithm is the 

acceptance criteria. The decision to accept an integration 

step effects the reliability of a variable order step size (VOS) 

algorithm. In this research, the acceptance criteria are 

based on the local accuracy 

 
( )

( )1
. .

*

d p

k

n

Err TOL
A B P

−


+
 

where ,A B  determines the type of test that is selected.  

This research adopts a step size changing technique as 

proposed by Shampine and Gordon (1975) combined with 

the doubling and halving step size algorithm established by 

Krogh (1973). 

The standard Adam's variable order code algorithm relies 

entirely on the amount of back values stored. The order of 

an Adam algorithm can be increased or decreased by simply 

retaining or discarding the appropriate amount of back 

values stored. 

Variable order strategies for a multistep method simply 

depends on the back values stored. The order can be 

increased if the previous back values remains and can be 

decreased simply by discarding the appropriate amount of 

back values. Literature shows that there many strategies for 

implementing variable order algorithm in an Adam based 

code. In this research, similar strategies suggested by 

Shampine and Gordon (1975) was adopted. The variable 

step size strategy chosen for this research adopted the step 

size changing technique from Shampine and Gordon (1975) 

coupled with the doubling and halving step size algorithm 

derived in Krogh (1973). 

 

IV. THREE POINT BLOCK 

ALGORITHM 

 

For the sake of clarity, we present the algorithm for the for 

the three-point block method. 

Step 1. Calculation of integration coefficients for block one, 

two, and three. 

Step 2. Using the k back values to obtain the predictor and 

1k + back values to obtain the corrector. 

Step 3. Obtain a recursive relationship for integration 

coefficients between predictor and corrector also for 

coefficients of different orders. 

Step 4. Determine whether 
kE satisfies the local accuracy 

requirements (Tolerance) to decided VOS strategy. 

Step 5. If the current step size h , is less than the distance 
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between the current and end point ( | |endh x x −  ), 

repeat Steps 2 - 4. If not, the ratio r   where 

| | /endr x x h= −   then recalculate integration coefficients. 

Repeat Steps 2 – 4and exit the program. 

 

V. NUMERICAL SIMULATIONS AND 

DISCUSSIONS 

 

Research conducted by authors Ghorbani and Momani 

(2010), Mokhtarzadeh (2010), Mabood et. al., (2013), 

Opanuga et al. (2015) and Rasedee et. al., (2018) focuses on 

numerical solutions for Riccati differential equations. The 

3PBVOS method is tested with first and higher order 

Riccati differential problems. Test problems 1 and 2 consist 

applied RDE problems. The maximum error of the 

proposed method is then compared with other Adam's type 

multistep method to validate its accuracy. For test problems 

3 and 4, the exact solutions are unknown. The 

approximated solution of the 3PBVOS method is then 

analysed parallel with known methods at various point to 

show its reliability. The solutions are also estimated with 

error types suggest in Suleiman (2011). The following are 

abbreviations used throughout this section: 

MAXERR: the overall maximum error 

MTHD: the method used, 

TOL : tolerance, 

TTS : Truncated Taylor Series, 

RTA : Rational Approximation, 

DI : Direct Integration, 

2PBVOS: 2-Point Block Variable Order Stepsize,  

3PBVOS: 3-Point Block Variable Order Stepsize, 

 

 

Table I: Test Problems. 

No. Problem Initial 

conditions 

Exact solution 

1. 𝑦′(𝑡) = −𝑦2(𝑡) + 2𝑦(𝑡) + 1 

0 ≤ 𝑡 ≤ 100 

𝑦(0) = 0 
𝑦(𝑡) = 1 + √2 𝑡𝑎𝑛ℎ(√2𝑡 +

1

2
𝑙𝑜𝑔 (

√2 − 1

√2 + 1
)) 

2. 𝑦′(𝑡) = 𝑦(𝑡) + 𝑎(𝑡)𝑦2(𝑡) + 𝑠𝑖𝑛 𝑥 

𝑎(𝑡) = −
28(784 + 𝑐𝑜𝑠 𝑡 + 29𝑠𝑖𝑛 𝑡)

(784 + 𝑐𝑜𝑠 𝑡)2
 

0 ≤ 𝑡 ≤ 5 

𝑦(0) =
785

28
 𝑦(𝑡) =

1

28
(784 + 𝑐𝑜𝑠𝑡) 

3. 𝑦″(𝑡) = 6𝑦2(𝑡) + 𝜆𝑡,  𝜆 = 1 

0 ≤ 𝑡 ≤ 5 

𝑦(0) = 1 

𝑦′(0) = 0 

None 

4. 𝑦″(𝑡) = 2𝑦3(𝑡) + 𝑡𝑦(𝑡) + 𝜇,  𝜇 = 1 

0 ≤ 𝑡 ≤ 5 

𝑦(0) = 1 

𝑦′(0) = 0 

None 

    

 

Figure 1: Accuracy of DI, 2PBVOS and 3PBVOSmethod for 

Problem 1. 

 

 

Figure 2: Accuracy of DI, 2PBVOS and 3PBVOSmethod 

for Problem 2. 
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TABLE I and II consists of test problems in the form of 

Riccati differential equations to validate the accuracy and 

efficiency of the proposed method. The competitive nature 

of the proposed 3PBVOS method is illustrated in TABLES 

II-III and FIGURES 1-2. Numerical results in TABLES II-

III compares accuracy of the 3PBVOS against DI and 

2PBVOS. Results in TABLE III shows the competitiveness 

of the 3PBVOS in comparison with 2PBVOS and DI 

whereas, TABLE II exemplifies the advantage of the 

3PBVOS over other methods, with the exception of

2TOL 10−= . Another obvious advantage 3PBVOS will 

have over the DI and 2PBVOS method is, when 

implementing a parallel programming algorithm. Due to its 

block algorithm, the computational workload of the 

3PBVOS method can then be distributed to 3 different 

processors which will reduce computational cost 

significantly whereas the 2PBVOS can only distribute its 

workload to 2 different process.  

 

Table II: Numerical result for Problem 1. 

TOL MTHD MAXERR AVER 

210−
 

DI 

2PBVOS 

3PBVOS 

5.01213(-2) 

2.99323(-2) 

2.04926(-1) 

3.89184(-3) 

5.71488(-3) 

1.11497(-2) 

410−
 

DI 

2PBVOS 

3PBVOS 

4.21037(-4) 

1.03746(-3) 

3.95254(-4) 

8.71137(-5) 

2.80303(-4) 

4.97861(-5) 

610−
 

DI 

2PBVOS 

3PBVOS 

2.94671(-5) 

2.45586(-5) 

8.30493(-6) 

5.56654(-6) 

2.93877(-6) 

8.52755(-7) 

810−
 

DI 

2PBVOS 

3PBVOS 

2.50331(-7) 

1.76946(-7) 

3.52116(-8) 

5.25393(-8) 

1.43320(-8) 

9.68788(-9) 

1010−
 

DI 

2PBVOS 

3PBVOS 

3.65933(-9) 

1.09322(-9) 

3.79234(-10) 

1.26729(-10) 

1.14302(-10) 

9.72491(-11) 

 

Table III: Numerical result for Problem 2. 

TOL MTHD MAXERR AVER 

210−
 

DI 

2PBVOS 

3PBVOS 

5.01213(-2) 

2.99323(-2) 

2.04926(-1) 

3.89184(-3) 

5.71488(-3) 

1.11497(-2) 

410−
 

DI 

2PBVOS 

3PBVOS 

4.21037(-4) 

1.03746(-3) 

3.95254(-4) 

8.71137(-5) 

2.80303(-4) 

4.97861(-5) 

610−
 

DI 

2PBVOS 

3PBVOS 

2.94671(-5) 

2.45586(-5) 

8.30493(-6) 

5.56654(-6) 

2.93877(-6) 

8.52755(-7) 

810−
 

DI 

2PBVOS 

3PBVOS 

2.50331(-7) 

1.76946(-7) 

3.52116(-8) 

5.25393(-8) 

1.43320(-8) 

9.68788(-9) 

1010−
 

DI 

2PBVOS 

3PBVOS 

3.65933(-9) 

1.09322(-9) 

3.79234(-10) 

1.26729(-10) 

1.14302(-10) 

9.72491(-11) 
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Test problems 3 and 4, are problems without any exact 

solutions (refer TABLES IV and V). Approximated solution 

for these problems validates the accuracy of the 3PBVOS 

method. The Truncated Taylor series (TTS) and Rational 

Approximation (RTA) are known methods that have been 

proven to show high accuracy. The reason for comparison 

with these methods is to show the reliability (in accuracy) of 

the 3PBVOS method against more established algorithms. 

Numerical approximation from TABLES IV and V shows 

that by a point to point comparison of the 3PBVOS rivals 

with approximations obtained by Truncated Taylor series 

and Rational Approximation. When a finer tolerance is used, 

the accuracy of 3PBVOS becomes more evident. 

 

Table IV: Numerical result for Problem 3. 

t 

 3PBVOS  

TTS RTA TOL =

11 10−  

TOL =

51 10−  

TOL =

101 10−  

0.0 1.00000 

(0) 

1.00000 

(0) 

1.00000 

(0) 

1.00000 

(0) 

1.00000 

(0) 

0.2 1.12673 

(0) 

1.12670 

(0) 

1.12637 (0) 1.12640 

(0) 

1.12640 

(0) 

0.4 1.59121 

(0) 

1.58484 

(0) 

1.58305 

(0) 

1.58310 

(0) 

1.58310 

(0) 

0.6 2.67815 

(0) 

2.72634 

(0) 

2.72125 

(0) 

2.72120 

(0) 

2.72120 

(0) 

0.8 6.59993 

(0) 

6.05708 

(0) 

6.03835 

(0) 

6.03830 

(0) 

6.03830 

(0) 

1.0 2.52538 

(1) 

2.34075 

(1) 

2.33937 (1) 2.33936 

(1) 

2.33860 

(1) 

 

Table V: Numerical result for Problem 4. 

t 

 3PBVOS  

TTS RTA TOL =

11 10−  

TOL =

51 10−  

TOL =

101 10−  

0.0 1.00000 

(0) 

1.00000 

(0) 

1.00000 

(0) 

1.00000 

(0) 

1.00000 

(0) 

0.2 1.06336 

(0) 

1.06269 

(0) 

1.06261 

(0) 

1.0620 

(0) 

1.06260 

(0) 

0.4 1.30608 

(0) 

1.27459 

(0) 

1.27415 (0) 1.27420 

(0) 

1.27420 

(0) 

0.6 1.72803(0) 1.73044 

(0) 

1.72538 

(0) 

1.72540 

(0) 

1.72540 

(0) 

0.8 2.71372(0) 2.74206 

(0) 

2.73694 

(0) 

2.73690 

(0) 

2.73690 

(0) 

1.0 1.52444 (1) 6.32029 

(0) 

6.31100 

(0) 

6.31100 

(0) 

6.31040 

(0) 
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