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In DNA computing, there are various formal language theoretical approaches that involves the 

recombinant behavior of DNA sequences. A Watson-Crick automaton is a mathematical model that 

represents the biological properties of DNA based on the Watson-Crick complementarity of DNA 

molecules. Meanwhile, a sticker system is another DNA computing models which uses the sticker 

operation to form complete double-stranded sequences. Previously, Watson-Crick grammars have been 

introduced as the grammar counterparts of Watson-Crick automata which generate double-stranded 

strings using the Watson-Crick complementarity rules. Following that, static Watson-Crick grammars 

are introduced, where both stranded strings are generated dependently by checking for the Watson-

Crick complementarity of each complete substring. In formal language theory, normal forms, such as 

Chomsky Normal Form (CNF) are defined by imposing the restrictions on the rules contained in 

context-free grammars. However, in previous research, 1-normal form for a Watson-Crick linear 

grammar was defined. In this research, 1-normal forms are introduced for both static Watson-Crick 

regular and linear grammars. Moreover, the implementation of 1-normal form is also presented by 

investigating the computational properties between the static Watson-Crick regular and linear 

grammars. The results from this research, hence, simplify the length of the rules in the grammars, 

which are useful for studying computational properties of Watson-Crick grammars. 

Keywords: DNA computing, formal languages, context-free grammars, static Watson-Crick 

grammars, normal form 

 

 

I. INTRODUCTION 
 

DNA (Deoxyribonucleic acid) computing contains various 

formal language theoretical approaches that broadly use 

the recombinant behavior of DNA sequences under the 

effect of enzymatic activities. DNA is a polymer which is 

constructed from monomers namely 

deoxyribonucleotides.  

Each deoxyribonucleotides consists of three 

components; a sugar, a phosphate group, and a 

nitrogenous base. The four nitrogenous bases are adenine 

(A), thymine (T), guanine (G), and cytosine (C). The 

adenine (A) and guanine (G) bases are double-ring 

molecules called purines; whereas the cytosine (C) and 

thymine (T) bases are single-ring molecules called 

pyrimidine (P ãun et al., 1998).  

A DNA molecule is composed of two DNA strands 

which are held together by the hydrogen bonds between 

the paired bases. There are two fundamental features of 

DNA molecules known as Watson-Crick (WK) 
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complementarity and massive parallelism of DNA strands. 

WK complementarity is a base pairing where a purine 

always binds with a pyrimidine, but each purine binds to 

one particular type of pyrimidine only; meanwhile, 

massive parallelism of DNA strands allows construction of 

many copies of DNA strands where numerous operations 

are carried out on the encoded information 

simultaneously (P ãun et al., 1998; Ng et al., 2007). 

DNA computation has been marked by Adleman 

(1994). By using the DNA strand in his experiment, he 

was able to solve the Hamiltonian path problem (HPP) for 

a simple graph with the method of sticker operation. 

Then, Kari et al. (1998) proposed a mathematical model 

known as a sticker system which uses the sticker 

operation on DNA to form complete double-stranded 

sequences. Following that, Freund et al. (1997) proposed 

the Watson-Crick automata (WKA) which is one of the 

mathematical models used in DNA computation. WKA is 

an extension of finite automata with the addition of two 

reading heads on double-stranded sequences.  

The grammatical studies of DNA strands started in 

2012 when Subramanian et al. (2012) introduced the WK 

regular grammar, and later, modified variants for 

different types of grammars were defined in (Zulkufli et 

al., 2016). The research is motivated by the synthesis 

processes in DNA replication which can be simulated by 

derivations in the WK grammars. Although these WK 

grammars use different restriction of production rules, all 

of them generate double-stranded strings dynamically: 

the WK complementarity can only be checked once 

generating both strands of a complete double-stranded 

string. Motivated by the WK grammars, the static WK 

grammars are proposed as a grammar counterpart of the 

sticker systems (Abdul Rahman et al., 2018a; 2018b). This 

new theoretical model generates both stranded strings 

dependently by checking for WK complementarity of each 

complete substring and also illustrate the replication of 

DNA in DNA molecules. 

Next, a normal form is defined by imposing the 

restrictions of the rules contained in the grammar. In 

Chomsky grammars, the normal forms are implemented 

for context-free grammars and context-sensitive 

grammars (Ito et al., 2010). The most important normal 

forms of context-free grammars are the Chomsky Normal 

Form and Greibach Normal Form (Levelt, 1974). For WK 

grammars, Zulkufli et al. (2016) have introduced 1-normal 

form for WK linear grammars and showed that for every 

WK linear grammar, there exist an equivalent WK linear 

grammar in 1-normal form. In this research, we 

investigate the 1-normal form for each static WK regular 

and linear grammars. 

This paper is organized as follows: Section 1 

introduces the background of the research. In Section 2, 

some preliminary concepts involve the basic terms of 

strings, languages and grammars, sticker systems as well 

as dynamic and static WK grammars are presented. In 

Section 3, the normal forms for static WK regular and 

linear grammars are introduced. 

 
 

II. PRELIMINARIES 
 
 

This section includes some preliminary concepts which 

involves the basic terms and definitions that are used in 

this paper. The reader may refer to (P ãun et al., 1998; 

L i n z ,  2 0 0 6 ) for detailed information regarding on the 

basic concepts of strings, languages, grammars and sticker 

systems. 

In this paper, the symbol ∈ denotes the membership of 

an element to a set. Let 𝑇 be an alphabet which is a 

nonempty finite set of abstract symbols, then 𝑇∗ is a set of 

all strings, a finite sequence of symbols (words) over 𝑇. A 

string with no symbol is called the empty string and 

denoted by 𝜆. The set 𝑇+ is defined as the set of all 

nonempty finite strings over 𝑇, i.e., 𝑇+ = 𝑇∗ − 𝜆. 

A Chomsky grammar is defined as a quadruple 𝐺 =

(𝑁, 𝑇, 𝜌, 𝑆, 𝑃) where the alphabet 𝑁 is defined as the 

nonterminal alphabet,  𝑇 is the terminal alphabet, 𝑆 ∈ 𝑁  

is the axiom or the start symbol, and 𝑃 ⊆ (𝑁 ∪ 𝑇)∗𝑁(𝑁 ∪

𝑇)∗ is a set of production rules of 𝐺. The rules  (𝑥, 𝑦) ∈ 𝑃 

are written in the form of 𝑥 → 𝑦. We say that 𝑢 directly 

derives 𝑣 or 𝑣 is derived from 𝑢 with respect to 𝐺, which is 

written as 𝑢 ⇒ 𝑣, if and only if 𝑢 = 𝑢1𝑥𝑢2, 𝑣 = 𝑢1𝑦𝑢2, for 

some 𝑢1, 𝑢2 ∈ (𝑁 ∪ 𝑇)∗ and 𝑥 → 𝑦 ∈ 𝑃. The reflexive and 

transitive closure of ⇒ is denoted by ⇒∗. 

A grammar can normally generate many strings by 

applying the rules in arbitrary order. The set of all 
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terminal strings is the language generated by the grammar 

which is defined by 𝐿(𝐺) = {𝑤 ∈ 𝑇∗: 𝑆 ⇒∗ 𝑤}.  

The Chomsky grammars are classified depending on 

their respective form of production rules. A grammar 𝐺 =

(𝑁, 𝑇, 𝜌, 𝑆, 𝑃) is called context-sensitive, if each rule 𝑢 →

𝑣 ∈ 𝑃 has 𝑢 = 𝑢1𝐴𝑢2, 𝑣 = 𝑢1𝑥𝑢2 for 𝑢1, 𝑢2 ∈ (𝑁 ∪ 𝑇)∗, 𝐴 ∈

𝑁 and 𝑥 ∈ (𝑁 ∪ 𝑇)+; context-free, if each rule 𝑢 → 𝑣 ∈ 𝑃 

has 𝑢 ∈ 𝑁; linear, if each rule 𝑢 → 𝑣 ∈ 𝑃 has 𝑢 ∈ 𝑁 and 𝑣 ∈

𝑇∗ ∪ 𝑇∗𝑁𝑇∗; regular, if each rule 𝑢 → 𝑣 ∈ 𝑃 has 𝑢 ∈ 𝑁 

and 𝑣 ∈ 𝑇 ∪ 𝑇𝑁 ∪ {𝜆} (P ãun et al., 1998). 

All those families of languages generated by context-

sensitive, context-free, linear and regular grammars are 

denoted as CS, CF, LIN and REG respectively. Other 

than that, RE and FIN represent the family of recursive 

enumerable languages, i.e., arbitrary languages and finite 

languages. 

Further, we recall the definitions of Watson-Crick 

grammars: 

 

Definition 1. (Zulkufli et al., 2016)  

A Watson-Crick (WK) grammar 𝐺 = (𝑁, 𝑇, 𝜌, 𝑆, 𝑃) is called 

regular, if each production has the form 𝐴 → 〈𝑢/𝑣〉  where 

𝐴, 𝐵 ∈ 𝑁 and 〈𝑢/𝑣〉 ∈ 〈𝑇∗/𝑇∗〉; linear, if each production 

has the form 𝐴 → 〈𝑢1/𝑣1〉𝐵〈𝑢2/𝑣2〉 or 𝐴 → 〈𝑢/𝑣〉 where 

𝐴, 𝐵 ∈ 𝑁 and 〈𝑢/𝑣〉, 〈𝑢1/𝑣1〉, 〈𝑢2/𝑣2〉 ∈ 〈𝑇∗/𝑇∗〉; context-

free, if each production has the form 𝐴 → 𝛼 where 𝐴 ∈ 𝑁 

and 𝛼 ∈ (𝑁 ∪ 〈𝑇∗/𝑇∗〉)∗. 

 

In order to generate or form a complete double-

stranded sequence of DNA, the sticker system uses a 

sticker operation on DNA molecules (P ãun and 

Rozenberg, 1998). Let 𝑉 be an alphabet for a symmetric 

relation 𝜌 ∈ 𝑉 × 𝑉 over 𝑉. The set 𝑊𝐾𝜌(𝑉) = [
𝑉
𝑉

]
𝜌

∗

 where 

[
𝑉
𝑉

]
𝜌

= {[
𝑎
𝑏

] | 𝑎, 𝑏 ∈ 𝑉, (
𝑎
𝑏

) ∈ 𝜌} denotes the Watson-Crick 

domain associated to alphabet 𝑉 and the complementarity 

relation 𝜌. The elements [
𝑤1

𝑤2
] ∈ 𝑊𝐾𝜌(𝑉) are called well-

formed double-stranded sequences. The strings 𝑤1 is the 

upper strand and 𝑤2 is the lower strand of the molecule.  

Apart from that, the set of incomplete molecules are 

denoted as 𝑊𝜌(𝑉) = 𝐿𝜌(𝑉) ∪ 𝑅(𝑉) ∪ 𝐿𝑅𝜌(𝑉), where 

𝐿𝜌(𝑉) = ((
𝜆

𝑉∗) ∪ (
𝑉∗

𝜆
)) [

𝑉
𝑉

]
𝜌

∗

, 

𝑅𝜌(𝑉) = [
𝑉
𝑉

]
𝜌

∗

((
𝜆

𝑉∗) ∪ (
𝑉∗

𝜆
)), 

𝐿𝑅𝜌(𝑉) = ((
𝜆

𝑉∗) ∪ (
𝑉∗

𝜆
)) [

𝑉
𝑉

]
𝜌

+

((
𝜆

𝑉∗) ∪ (
𝑉∗

𝜆
)). 

     In this research, the definition of 𝐿𝑅𝜌(𝑉) is modified 

according to our grammar, where  

𝐿𝑅𝜌
∗(𝑇) = ((

𝜆
𝑇∗) ∪ (

𝑇∗

𝜆
)) [

𝑇
𝑇

]
𝜌

∗

((
𝜆

𝑇∗) ∪ (
𝑇∗

𝜆
)), 

𝐿𝑅𝜌
+(𝑇) = ((

𝜆
𝑇∗) ∪ (

𝑇∗

𝜆
)) [

𝑇
𝑇

]
𝜌

+

((
𝜆

𝑇∗) ∪ (
𝑇∗

𝜆
)), 

 
and the alphabet 𝑉 which is defined in 𝑊𝜌(𝑉) is changed to 

alphabet 𝑇 according to the definition in the Chomsky 

grammar.  

Next, we recall the definition of static WK regular 

grammar and static WK linear grammar. Since static WK 

regular grammar consists of right-linear and left-linear 

grammar, then we state only for right-linear grammar 

(Rahman et al., 2018a) in this paper.  

 

Definition 2. (Rahman et al., 2018a)  

A static Watson-Crick right-linear grammar is a 5-tuple 

𝐺 = (𝑁, 𝑇, 𝜌, 𝑆, 𝑃) where 𝑁, 𝑇 are disjoint nonterminal and 

terminal alphabets respectively, 𝜌 ∈ 𝑇 × 𝑇 is a symmetric 

relation (Watson-Crick complementarity), 𝑆 ∈ 𝑁 is a start 

symbol (axiom) and 𝑃 is a finite set of production rules in 

the form of  

(i) 𝑆 → [
𝑢
𝑣

] (
𝑥
𝑦) 𝐴 where 𝐴 ∈ 𝑁 − {𝑆}, [

𝑢
𝑣

] (
𝑥
𝑦) ∈ 𝑅𝜌(𝑇); 

(ii) 𝐴 → (
𝑥
𝑦) 𝐵 where 𝐴, 𝐵 ∈ 𝑁 − {𝑆}, (

𝑥
𝑦) ∈ 𝐿𝑅𝜌

∗(𝑇); or  

(iii)  𝐴 → (
𝑥
𝑦) [

𝑢
𝑣

] where 𝐴 ∈ 𝑁 − {𝑆}, (
𝑥
𝑦) [

𝑢
𝑣

] ∈ 𝐿𝜌(𝑇). 

 

Definition 3. (Rahman et al., 2018b)  

A static Watson-Crick linear grammar is a 5-tuple 𝐺 =

(𝑁, 𝑇, 𝜌, 𝑆, 𝑃) where 𝑁, 𝑇 are disjoint nonterminal and 

terminal alphabets respectively, 𝜌 ∈ 𝑇 × 𝑇 is a symmetric 

relation (Watson-Crick complementarity), 𝑆 ∈ 𝑁 is a start 

symbol (axiom) and 𝑃 is a finite set of production rules in 

the form of 

(i) 𝑆 → [
𝑢1

𝑣1
] (

𝑥1

𝑦1
) 𝐴 (

𝑥2

𝑦2
) [

𝑢2

𝑣2
] where 𝐴 ∈ 𝑁 − {𝑆}, 

[
𝑢1

𝑣1
] (

𝑥1

𝑦1
) ∈ 𝑅𝜌(𝑇), (

𝑥2

𝑦2
) [

𝑢2

𝑣2
] ∈ 𝐿𝜌(𝑇); 
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(ii) 𝐴 → (
𝑥1

𝑦1
) 𝐵 (

𝑥2

𝑦2
) where 𝐴, 𝐵 ∈ 𝑁 − {𝑆}, (

𝑥1

𝑦1
) , (

𝑥2

𝑦2
) ∈

𝐿𝑅𝜌
∗(𝑇); or 

(iii)   𝐴 → (
𝑥1

𝑦1
) where 𝐴 ∈ 𝑁 − {𝑆}, (

𝑥1

𝑦1
) ∈ 𝐿𝑅𝜌

∗(𝑇).    

     Next, the 1-normal form for static WK regular and 

linear grammars are discussed in the following section.  

 
 

III. RESULTS AND DISCUSSIONS 
 
 

The normal form represents the standardized form for the 

production rules in the grammars. Therefore in this 

section, we define a 1-normal form for static WK regular 

and linear grammars where the order of each upper and 

lower strand is less than or equal to one, such that |𝑢𝑖| ≤

1, |𝑣𝑖| ≤ 1. The following shows a  1 -normal  form for  

stat ic  WK regular  grammar  as stated  in  

Definit ion 4 and Lemma 1 .  

 

Definition 4.   A static WK regular grammar 𝐺 =

(𝑁, 𝑇, 𝜌, 𝑆, 𝑃) is said to be in 1-normal form if each 

production in 𝑃 has one of the following forms: 

(i) 𝐴 → (
𝑎
𝜆

) 𝐵 | (
𝑎
𝜆

), 

(ii) 𝐴 → (
𝜆
𝑎

) 𝐵 | (
𝜆
𝑎

), 

(iii)  𝐴 → (
𝜆
𝜆

) 𝐵 | (
𝜆
𝜆

), 

(iv)  𝐴 → [
𝑎
𝑏

] 𝐵 | [
𝑎
𝑏

], 

  where 𝐴, 𝐵 ∈ 𝑁 and (𝑎, 𝑏) ∈ 𝜌. 

 

Lemma 1. For every static WK regular grammar, there 

exists a static WK regular grammar in 1-normal form.  

Proof.   Let 𝐺 = (𝑁, 𝑇, 𝜌, 𝑆, 𝑃) be a static WK regular 

grammar. By definition, 𝑃 can be divided into three 

subsets: 

(i) 𝑃1 = {𝑆 → [
𝑢
𝑣

] (
𝑥
𝑦) 𝐴 ∈ 𝑃 | [

𝑢
𝑣

] (
𝑥
𝑦) ∈ 𝑅𝜌(𝑇), 𝐴 ∈

𝑁 − {𝑆}}; 

(ii) 𝑃2 = {𝐴 → (
𝑥
𝑦) 𝐵 ∈ 𝑃 | (

𝑥
𝑦) ∈ 𝐿𝑅𝜌

∗(𝑇), 𝐴, 𝐵 ∈ 𝑁 −

{𝑆}};   or 

(iii)  𝑃3 = {𝐴 → (
𝑥
𝑦) [

𝑢
𝑣

] ∈ 𝑃 | (
𝑥
𝑦) [

𝑢
𝑣

] ∈ 𝐿𝜌(𝑇), 𝐴 ∈ 𝑁 −

{𝑆}}; 

   i.e., 𝑃 = 𝑃1 ∪ 𝑃2 ∪ 𝑃3. Without loss of generality, consider 

𝑟: 𝐴 → (
𝑥
𝑦) 𝐵 where (

𝑥
𝑦) =   (

𝑎1𝑎2 ⋯ 𝑎𝑘

𝜆
) 

  [
𝑏1𝑏2 ⋯ 𝑏𝑛

𝑐1𝑐2 ⋯ 𝑐𝑛
] (

𝜆
𝑑1𝑑2 ⋯ 𝑑𝑚

). We construct the sequence of 

new productions {𝑟}: 𝐴 → (
𝑎1

𝜆
) 𝐵𝑟

1, ⋯ , 𝐵𝑟
𝑘−1 →

(
𝑎𝑘

𝜆
) 𝐵𝑟

𝑘 , 𝐵𝑟
𝑘 → [

𝑏1

𝑐1
] 𝐶𝑟

1, ⋯ , 𝐶𝑟
𝑛−1 → [

𝑏𝑛

𝑐𝑛
] 𝐶𝑟

𝑛, 𝐶𝑟
𝑛 →

(
𝑑1

𝜆
) 𝐷𝑟

1, ⋯ , 𝐷𝑟
𝑚−1 → (

𝑑𝑚

𝜆
) 𝐵 where 𝐵𝑟

𝑖 , 𝐶𝑟
𝑗 and 𝐷𝑟

𝑘 are 

new nonterminals that are only used in the rule 𝑟. 

      Next, we define a static WK regular grammar 𝐺′ =

(𝑁′, 𝑇, 𝜌, 𝑆, 𝑃′) where 𝑁′ contains the nonterminals of 𝑁 

and all new nonterminals introduced above and 𝑃′ 

contains the productions constructed above. Hence, every 

production 𝑟 in 𝑃 can be replaced with the corresponding 

sequence {𝑟} of productions in 𝑃′ and vice versa. 

Therefore, 𝐿(𝐺) = 𝐿(𝐺′).           ■           

Next, the following definition and lemma of 1-

normal form for static WK linear grammars are given. 

 

Definition 5.   A static WK linear grammar 𝐺 =

(𝑁, 𝑇, 𝜌, 𝑆, 𝑃) is said to be in 1-normal form if each 

production in 𝑃 has one of the following forms: 

(i) 𝐴 → (
𝑎
𝜆

) 𝐵 | 𝐵 (
𝑎
𝜆

) |  (
𝑎
𝜆

), 

(ii) 𝐴 → (
𝜆
𝑎

) 𝐵 | 𝐵 (
𝜆
𝑎

) | (
𝜆
𝑎

), 

(iii)  𝐴 → (
𝜆
𝜆

) 𝐵 | 𝐵 (
𝜆
𝜆

) |  (
𝜆
𝜆

), 

(iv)  𝐴 → [
𝑎
𝑏

] 𝐵 | 𝐵 [
𝑎
𝑏

] |  [
𝑎
𝑏

], 

  where 𝐴, 𝐵 ∈ 𝑁 and (𝑎, 𝑏) ∈ 𝜌. 

 

Lemma 2. For every static WK linear grammar, there 

exists a static WK linear grammar in 1-normal form.  

Proof.   Let 𝐺 = (𝑁, 𝑇, 𝜌, 𝑆, 𝑃) be a static WK linear 

grammar. By definition, 𝑃 can be divided into three 

subsets: 

(i) 𝑃1 = {𝑆 → [
𝑢1

𝑣1
] (

𝑥1

𝑦1
) 𝐴 (

𝑥2

𝑦2
) [

𝑢2

𝑣2
] ∈ 𝑃 | [

𝑢1

𝑣1
] (

𝑥1

𝑦1
) ∈

𝑅𝜌(𝑇), (
𝑥2

𝑦2
) [

𝑢2

𝑣2
] ∈ 𝐿𝜌(𝑇) and 𝐴 ∈ 𝑁 − {𝑆}}; 
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(ii) 𝑃2 = {𝐴 → (
𝑥1

𝑦1
) 𝐵 (

𝑥2

𝑦2
) ∈ 𝑃 | (

𝑥1

𝑦1
) , (

𝑥2

𝑦2
) ∈

𝐿𝑅𝜌
∗(𝑇), 𝐴, 𝐵 ∈ 𝑁 − {𝑆}};   or 

(iii)  𝑃3 = {𝐴 → (
𝑥1

𝑦1
) ∈ 𝑃 | (

𝑥1

𝑦1
) ∈ 𝐿𝑅𝜌

∗(𝑇), 𝐴 ∈ 𝑁 −

{𝑆}}; 

   i.e., 𝑃 = 𝑃1 ∪ 𝑃2 ∪ 𝑃3. Without loss of generality,   

consider 𝑟: 𝑆 → [
𝑢1

𝑣1
] (

𝑥1

𝑦1
) 𝐴 (

𝑥2

𝑦2
) [

𝑢2

𝑣2
] =

[
𝑎1𝑎2 ⋯ 𝑎𝑛

𝑎1𝑎2 ⋯ 𝑎𝑛
] (

𝑏1𝑏2 ⋯ 𝑏𝑘

𝜆
) 𝐴 (

𝑐1𝑐2 ⋯ 𝑐𝑙

𝜆
) [

𝑑1𝑑2 ⋯ 𝑑𝑚

𝑑1𝑑2 ⋯ 𝑑𝑚
]. 

       We construct the sequence of new productions 

{𝑟}: 𝑆 → [
𝑎1

𝑎1
] 𝐵𝑟

1, 𝐵𝑟
1 → [

𝑎2

𝑎2
] 𝐵𝑟

2, ⋯, 

𝐵𝑟
𝑛−1 → [

𝑎𝑛

𝑎𝑛
] 𝐵𝑟

𝑛, 𝐵𝑟
𝑛 → (

𝑏1

𝜆
) 𝐶𝑟

1, 𝐶𝑟
1 →

(
𝑏2

𝜆
) 𝐶𝑟

2, ⋯ , 𝐶𝑟
𝑘−1 → (

𝑏𝑘

𝜆
) 𝐶𝑟

𝑘 , 𝐶𝑟
𝑘 → 𝐷𝑟

1 [
𝑑𝑚

𝑑𝑚
] , ⋯ ,

𝐷𝑟
𝑚−1 → 𝐷𝑟

𝑚 [
𝑑1

𝑑1
] , 𝐷𝑟

𝑚 → 𝐴𝑟
1 (

𝑐𝑙

𝜆
) , ⋯ , 𝐴𝑟

𝑙−1 → 𝐴 (
𝑐1

𝜆
)  

where 𝐴𝑟
𝑖 , 𝐵𝑟

𝑗 , 𝐶𝑟
𝑝 and 𝐷𝑟

𝑞 are new nonterminals that are 

used in this production with 1 ≤ 𝑖 ≤ 𝑙 − 1, 1 ≤ 𝑗 ≤ 𝑘, 1 ≤

𝑝 ≤ 𝑘 and 1 ≤ 𝑞 ≤ 𝑚.  

      Next, we define a static WK linear grammar 𝐺′ =

(𝑁′, 𝑇, 𝜌, 𝑆, 𝑃′) where 𝑁′ contains the nonterminals of 𝑁 

and all new nonterminals introduced above and 𝑃′ 

contains the productions constituted above. Hence, every 

production 𝑟 in 𝑃 can be replaced with the corresponding 

sequence {𝑟} of productions in 𝑃′ and vice versa. 

Therefore, 𝐿(𝐺) = 𝐿(𝐺′).      ■ 

 

 To further investigate on the computational properties 

between the static WK regular and linear grammars, the 

next lemma shows that there exist a static WK linear 

language which cannot be generated by static WK regular 

grammar. We consider a language 𝐿(𝐺) =

{𝑎𝑛𝑏𝑚𝑐𝑚𝑑𝑛| 𝑛, 𝑚 ≥ 1} where the idea of 1-normal form is 

used to simplify the length of the rules in the grammars as 

shown in Lemma 3.   

 

Lemma 3.   𝐿(𝐺) = {𝑎𝑛𝑏𝑚𝑐𝑚𝑑𝑛| 𝑛, 𝑚 ≥ 1} ∈ SLIN− 

SREG.  

Proof.   Let 𝐺 = ({𝑆, 𝐴, 𝐵, 𝐶, 𝐷, 𝐸}, {𝑎, 𝑏, 𝑐, 𝑑},

{(𝑎, 𝑎), (𝑏, 𝑏), (𝑐, 𝑐), (𝑑, 𝑑)}, 𝑆, 𝑃) be a static WK linear 

grammar, where 𝑃 consists of the following rules: 

𝑆 → [
𝑎
𝑎

] 𝐴 [
𝑑
𝑑

] , 𝐴 → (
𝑎
𝜆

) 𝐴 (
𝑑
𝜆

) | (
𝑎
𝜆

) 𝐵 (
𝑑
𝜆

) , 𝐵 →

(
𝜆
𝑎

) 𝐵 (
𝜆
𝑑

) | (
𝜆
𝑎

) 𝐶 (
𝜆
𝑑

) , 𝐶 → (
𝑏
𝜆

) 𝐶 (
𝑐
𝜆

) | (
𝑏
𝜆

) 𝐷 (
𝑐
𝜆

) , 𝐷 →

(
𝜆
 𝑏

) 𝐷 (
𝜆
𝑐

)  |   (
𝜆
𝑏

) 𝐸 (
𝜆
𝑐

) , 𝐸 → (
𝜆
𝜆

) .  

From this, we obtain the derivation: 

𝑆 ⇒ [
𝑎
𝑎

] 𝐴 [
𝑑
𝑑

] ⇒∗ [
𝑎
𝑎

] (𝑎𝑛

𝜆
) 𝐵 (𝑑𝑛

𝜆
) [

𝑑
𝑑

] ⇒∗ [𝑎𝑛+1

𝑎𝑛+1] 

𝐶 [𝑑𝑛+1

𝑑𝑛+1] ⇒∗ [𝑎𝑛+1

𝑎𝑛+1] (𝑏𝑚

𝜆
) 𝐶 (𝑐𝑚

𝜆
) [𝑑𝑛+1

𝑑𝑛+1] ⇒∗ 

[𝑎𝑛+1𝑏𝑚

𝑎𝑛+1𝑏𝑚] 𝐸 [𝑐𝑚𝑑𝑛+1

𝑐𝑚𝑑𝑛+1] ⇒ [𝑎𝑛+1𝑏𝑚

𝑎𝑛+1𝑏𝑚
𝑐𝑚𝑑𝑛+1

𝑐𝑚𝑑𝑛+1]. 

Therefore,  𝐿(𝐺) = {𝑎𝑛𝑏𝑚𝑐𝑚𝑑𝑛| 𝑛, 𝑚 ≥ 1}. 

   Next, we need to show that 𝐿(𝐺) = {𝑎𝑛𝑏𝑚𝑐𝑚𝑑𝑛| 𝑛, 𝑚 ≥

1} ∉ SREG. By contradiction, suppose that 𝐿(𝐺) can be 

generated by a static WK regular grammar 𝐺′ =

(𝑁′, {𝑎, 𝑏, 𝑐, 𝑑}, 𝜌, 𝑆, 𝑃′). Without loss of generality, assume 

that 𝐺′ is in 1-normal form. Let 𝑤 = 𝑎𝑗𝑏𝑘𝑐𝑘𝑑𝑗  be a string 

in 𝐿(𝐺). Then, the grammar 𝐺′ can generate the complete 

sequences [𝑎𝑗𝑏𝑘𝑐𝑘𝑑𝑗

𝑎𝑗𝑏𝑘𝑐𝑘𝑑𝑗
] as follows: 

Case 1:  In the derivation of the string, the first 𝑏 can 

occur in the upper (or lower) strand if  𝑎𝑗 has already been 

generated in the upper (or lower) strand. Then, some of 

the possible derivations are: 

𝑆 ⇒∗ [𝑎𝑖

𝑎𝑖
] (𝑎𝑝

𝜆
) (

𝑏
𝜆

);    or 
(5) 

𝑆 ⇒∗ [𝑎𝑗

𝑎𝑗
] (

𝑏
𝜆

)   or  𝑆 ⇒∗ [𝑎𝑗𝑏
𝑎𝑗𝑏

] , 
(6) 

where 𝑖 + 𝑝 = 𝑗. For derivation (5), we can    continue the 

derivation by using the lower strand of 𝑎 and upper 

strand of 𝑏 to generate the upper strand of 𝑏𝑘: 

𝑆 ⇒∗ [𝑎𝑖

𝑎𝑖
] (𝑎𝑝

𝜆
) (

𝑏
𝜆

) ⇒∗ [𝑎𝑗

𝑎𝑗
] (𝑏𝑘

𝜆
). 

(7) 

Following that, derivation (7) is continued by generating 

the first 𝑐 in the upper strand and use the lower strand of 

𝑏 to control their number of occurrences:  

𝑆 ⇒∗ [𝑎𝑗

𝑎𝑗
] (𝑏𝑘

𝜆
)   ⇒∗ [𝑎𝑗𝑏𝑘

𝑎𝑗𝑏𝑘
] (𝑐𝑘

𝜆
). (8) 

Next, derivation (8) is continued by generating the first 𝑑 

in the upper strand and use the strand of 𝑐 to control their 

number of occurrences: 

𝑆 ⇒∗ [𝑎𝑗𝑏𝑘

𝑎𝑗𝑏𝑘
] (𝑐𝑘

𝜆
) ⇒∗ [𝑎𝑗𝑏𝑘

𝑎𝑗𝑏𝑘
𝑐𝑘

𝑐𝑘] (𝑑𝑙

𝜆
). (9) 

 The derivation can be completed by generating the lower 
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strand of 𝑑. Thus,  [𝑎𝑗𝑏𝑘𝑐𝑘𝑑𝑗

𝑎𝑗𝑏𝑘𝑐𝑘𝑑𝑗
]  where 𝑙 ≠ 𝑗. For derivation 

(6), we can continue the derivation by using the same idea 

as in (5) and get the possible derivation as in (7) until (9). 

Case 2:  The number of 𝑎 in the lower strand is controlled 

by the upper strand of 𝑐. In this case, the number of 𝑐′s 

cannot be related to the number of 𝑏 such 

that 𝑆 ⇒∗ [𝑎𝑗

𝑎𝑗
] (𝑏𝑘𝑐𝑗

𝜆
). Thus, we can conclude that 𝐿(𝐺) ∉

 SREG since the number of 𝑏, 𝑐 and 𝑑 are difficult to 

control at the same time using SREG rules.  

 
 

IV. CONCLUSION 
 
 

In this paper, the 1-normal form for static WK regular 

and linear grammars are defined. We show that for each 

grammar, there exists the equivalent grammars by using 

the concept of 1-normal form. In addition, the 

implementation of 1-normal form has been shown in 

Lemma 3 to investigate the computational properties 

between the static WK regular and linear grammars. It 

has been found that there exist a static WK linear 

language which cannot be generated by static WK 

regular grammar. There are some interesting topic that 

can be explored in the future research such as to study 

the computational properties for the static WK 

grammars, define static WK context-free grammar and 

introduce the normal forms for static WK context-free 

grammar. 
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