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Non-abelian group public key cryptography is a relatively new and exciting research field. As a result, 

we choose to work over a non-abelian group called Miller group in which its automorphism group is 

abelian. In this paper, we construct two new encryption schemes: we first propose a basic encryption 

scheme, which then we modified by adding a hash function in the second scheme. Both schemes are 

based on the hardness of solving the conjugacy search problem. Our proposed schemes resist the 

quantum attacks since there are no known efficient polynomial algorithms that can solve the conjugacy 

search problem. Furthermore, we prove that our schemes are semantically secure against 

indistinguishable chosen ciphertext attack. 
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I. INTRODUCTION 
 
 
The security is an important issue in cryptography. We need 

a secure cryptosystem because a lot of transaction 

happening through internet such as internet shopping and 

electronics financial transfer which rely on the security of 

the system. Most common public key cryptosystems in use, 

such as the RSA algorithm (Rivest et al., 1978), El-Gamal 

scheme (El-Gamal, 1985)) and Diffie-Hellman scheme 

(Diffie & Hellman, 1976) are dependent on the structure of 

abelian groups. Since computing machinery and quantum 

computer has made this technique less secure, hence there 

has been some research to analyse new cryptosystems based 

on non-abelian groups. Constructing encryption schemes 

using a non-abelian group can be viewed as a generalization 

for most conventional schemes which is defined over abelian 

groups, refer to (Anshel et al., 1999; Mullan, 2011). One of 

the generalizations of discrete logarithm problem is called 

conjugacy search problem (CSP). There are several group-

based public key protocols used the hardness of this 

problem in some particular groups for instance braid 

groups, refer (Hasapis et al., 2015; Ko et al., 2000; 

Myasnikov et al., 2008; Paeng et al., 2001) for more 

information. Anshel et al. (1999) proposed a protocol and 

shown that the conjugacy problem is unsolvable, and no 

known polynomial time algorithm can solve this problem. 

After that Ko et al. [7,8] proposed a one-way function, key 

agreement scheme which is based on the difficulty of 

conjugacy search problem. Wang et al. [15] proposed a 

cryptosystem based on a self-distributive system. Conjugacy 

search problem in non-abelian groups defines this 

cryptosystem. We formally stated the CSP as follows: 

Conjugacy search problem. Given a recursive 

presentation of a group 𝐺 and randomly pick two elements 

𝑔, ℎ ∈ 𝐺. Find an element 𝑥 ∈ 𝐺 such that 𝑥−1𝑔𝑥 = ℎ.  

The remainder of the paper is organized as follows. We 

describe some preliminary concepts which will be needed 

later in Section II. We discuss our basic encryption schemes 

in Section III and analyse its security. In Section IV, we 

propose an encryption scheme by adding a hash function. 

We discuss the comparison with various encryption schemes 
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in Section V. Finally, the summary will be given in Section 

VI. 

 
 

II. PRELIMINARIES 
 
 

A. Public Key Encryption  
 
 
Definition II.1 A (Gen, Enc, Dec) – public key encryption 

scheme is a tuple of probabilistic polynomial-time (PPT) 

algorithms such that 

1. The randomized key generation algorithm Gen 

inputs the security parameter 1𝑘  and outputs a pair 

of keys which are public key, 𝑝𝑘 and secret key, 𝑠𝑘; 

written as (𝑝𝑘, 𝑠𝑘) ←  𝐺𝑒𝑛 (1𝑘). 

2. The randomized encryption algorithm 𝐸𝑛𝑐inputs a 

key 𝑝𝑘 and a plaintext message 𝑚 ∈  {0,1}∗, and 

outputs a ciphertext 𝑐. We written this as 𝑐 ←

 𝐸𝑛𝑐𝑝𝑘(𝑚).  

3. The decryption algorithm 𝐷𝑒𝑐 inputs a key 𝑠𝑘 and a 

ciphertext 𝑐, and outputs a message 𝑚 or ⊥. We 

written this as 𝑚 ← 𝐷𝑒𝑐𝑠𝑘(𝑐). 

We say that for all (𝑝𝑘, 𝑠𝑘) outputs by Gen, all 𝑚 ∈

{0,1}∗, 𝐷𝑒𝑐𝑠𝑘(𝐸𝑛𝑐𝑝𝑘(𝑚)) = 𝑚. 

Next, below is the standard definition of security 

against adaptive chosen ciphertext attack. 

 A public key encryption scheme is secure against 

adaptive chosen ciphertext attack (CCA secure) if the 

advantage of adversary 𝐴 in the following game is negligible: 

1. 𝐺𝑒𝑛(1𝑘) outputs (𝑝𝑘, 𝑠𝑘).Challenger gives1𝑘  and 𝑝𝑘 

to the adversary 𝐴. 

2. Adversary can make polynomial many queries to a 

decryption oracle, Dec(). 

3. 𝐴 outputs two messages 𝑚0 , 𝑚1. Challenger 

randomly choose a bit b and gives the challenge 

ciphertext,𝑐∗ ←  𝐸𝑛𝑐𝑝𝑘(𝑚𝑏) to the adversary. 

4. 𝐴 continue to query its decryption oracle 𝐷𝑒𝑐() 

except that it may not request the decryption of 𝑐∗. 

5. Finally, 𝐴 outputs a guess 𝑏′. 

We say that 𝐴 win the game if 𝑏′ = 𝑏. We denote the 

probability of this game by 𝑃𝑟𝐴[𝑆𝑢𝑐𝑐]. The advantage of the 

adversary win this game is defined to be|𝑃𝑟𝐴[𝑆𝑢𝑐𝑐] − 1/2|. 

 

B. Notations of Group Theory 

In this section, we state several results from group theory which 

will be needed later. Let 𝐺 be a group and𝑎, 𝑏 ∈  𝐺. Then, 𝑎 is 

said to be the conjugate of 𝑏 ∈  𝐺 if there exists 𝑔 ∈  𝐺 such that 

𝑎 = 𝑔𝑏𝑔−1. The conjugacy class of any element 𝑏 ∈  𝐺 is 

denoted by 𝑐𝑙(𝑏) and is defined as𝑐𝑙(𝑏) = {𝑔𝑏𝑔−1: 𝑔 ∈  𝐺}. It is 

clear from the property of commutativeness of an abelian 

group, every conjugacy class of every element in an abelian 

group is a singleton set. 

Definition 1. Let 𝐺 be a group. An isomorphism of groups 

from 𝐺 to 𝐺 is called an automorphism. The set of 

automorphisms of 𝐺 forms a group under composition is 

called the automorphism group of 𝐺 and written as 𝐴𝑢𝑡(𝐺). 

Definition 2. A group 𝐺 is called a Miller group if it has an 

abelian automorphism group, in other words, if 𝐴𝑢𝑡(𝐺) is 

commutative then the group 𝐺 is Miller. 

Han and Ma (2010) constructed an authentication scheme and 

signature scheme from Miller group. More details of Miller 

group can refer to (Earnley, 1976; Miller, 1913).  Next, we state 

some facts that are important in the Miller group. We prove the 

following Corollary.  

Corollary 1. Suppose 𝐺 is a Miller group and 𝑥, 𝑔, ℎ ∈  𝐺. Then, 

𝑥𝑔ℎ = 𝑥ℎ𝑔 . 

Proof Suppose 𝜙𝑔 , 𝜙ℎ  ∈  𝐼𝑛𝑛(𝐺),  then 𝜙𝑔ℎ=𝜙ℎ𝑔. Thus, we see 

that 𝜙𝑔ℎ(𝑥) = 𝜙ℎ𝑔(𝑥) for all 𝑥 ∈  𝐺. It follows that 𝑥 𝑔ℎ = 𝑥ℎ𝑔 .

     

III. BASIC ENCRYPTION SCHEME 
 
 
We proposed a basic encryption scheme in this section. We 

defined the scheme by describing the three algorithms: Key 

Generation, Encryption and Decryption.  Suppose 𝑟 ∈  𝐺, 

we use 𝑟 in the encryption algorithm to ensure that the 

scheme is probabilistic.  

1. Key Generation. Let 𝐺 be a Miller group. Choose 

𝑔, 𝑥 ∈ 𝐺 and form 𝑔𝑥 = ℎ ∈ 𝐺. The public key is (𝑔, ℎ) 

and the private key is 𝑥. 
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2. Encryption. To encrypt a plaintext 𝑚 ∈ 𝐺, we first 

randomly pick 𝑟 ∈ 𝐺 and then 𝐸𝑛𝑐(𝑚) = (𝑔𝑟 , ℎ𝑟𝑚). 

3. Decryption. To decrypt the ciphertext(𝑐1, 𝑐2) ∈ 𝐺 × 𝐺,

𝐷𝑒𝑐(𝑐1, 𝑐2) = (𝑐1
𝑥)−1𝑐2 . 

 

By using Corollary 1, the correctness of the scheme is 

shown as follows: 

𝐷𝑒𝑐(𝐸𝑛𝑐(𝑚))  = 𝐷𝑒𝑐(𝑔𝑟 , ℎ𝑟𝑚) 

= [(𝑔𝑟)𝑥]−1ℎ𝑟𝑚 

= [(𝑔𝑟)𝑥]−1(𝑔𝑥)𝑟𝑚 

   = 𝑚 

 

Security. Next, we study the security of the basic scheme. 

The IND-CPA model is same as IND-CCA model but without 

decryption oracle. 

 

Theorem 1. The basic encryption scheme is IND-CPA 

secure. 

 

Proof Let 𝐴 be an IND-CPA adversary.  Define the following 

experiment. 

Query: 𝐴 randomly pick 𝑟∗ and send to the challenger, 𝐶. 

Upon received𝑟∗, 𝐶 run the encryption algorithm and send 

the partial ciphertext 𝑔𝑟∗
 to 𝐴. 

Challenge: 𝐴 outputs two plaintexts 𝑚0 and 𝑚1 to 𝐶. 𝐶 will 

produce the following ciphertexts by running the encryption 

algorithm: 𝐸𝑛𝑐(𝑚0) = (𝑔𝑟∗
, 𝑋) and 𝐸𝑛𝑐(𝑚1) = (𝑔𝑠, 𝑌). 

Then 𝐶 send 𝑔𝑟∗
 or 𝑔𝑠 to 𝐴. 

Guess:𝐴 upon received 𝑔𝑟∗
 or 𝑔𝑠, need to guess whether 

𝑔𝑟∗
correspond to 𝑚0 or 𝑚1(respectively, whether 𝑔𝑠 

correspond to 𝑚0 or 𝑚1). 

 

Pr[𝐴 𝑤𝑖𝑛] = Pr[𝐸𝑛𝑐(𝑚0) = 𝑔𝑟∗
| 𝐴 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑔𝑟∗

] 

  = Pr[𝐸𝑛𝑐(𝑚1] = 𝑔𝑠| 𝐴 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑔𝑠]. 

 

 Consider the experiment, instead of giving ℎ𝑟∗
𝑚0, we give 

𝐴 𝑋, where 𝑋 = 𝑥𝑚0, where 𝑥 is a uniform element.  Since 

𝑥, ℎ are given, then solving 𝑥 = ℎ𝑟∗
 is equivalent to solve the 

CSP to obtain 𝑟∗. As we assume CSP is hard, then by looking 

at ℎ𝑟∗
𝑚0 and 𝑥𝑚0, we obtain no information on 𝑟∗. Consider 

𝐸𝑛𝑐(𝑚0) = (𝑔𝑟∗
, ℎ𝑟∗

𝑚0) and 𝐸𝑛𝑐(𝑚1) = (𝑔𝑠, ℎ𝑠𝑚1), if 

ℎ𝑟∗
𝑚0  = ℎ𝑠𝑚1 and 𝑔𝑟∗

= 𝑔𝑠, then from both equations we 

know that 𝑟∗ = 𝑠.  This implies that 𝑚0 = 𝑚1, which is 

absurd.If we assume ℎ𝑟∗
𝑚0 ≠  ℎ𝑠𝑚1and 𝑔𝑟∗

≠ 𝑔𝑠 then we 

let𝑔𝑟∗
𝑔−𝑠 = 𝛼, where 𝛼 ∈  𝐺. If 𝑟∗ = 𝑠, then we have 𝛼 = 1 

which is absurd. This implies that 𝑚0 ≠ 𝑚1. Since A cannot 

guess the way ℎ𝑟∗
is computed from𝑟∗. The only way A 

distinguished 𝑟∗  and 𝑠is if he 𝑟∗queries to 𝐶 and sees that 

the answer is different from the answer he queries s to 𝐶. 

 

Pr (𝐴 queries 𝑟∗ in experiment) 

= Pr (𝐴 queries 𝑟∗ in actual attack) 

= Pr (𝐴 get 𝑟∗|𝐶 provide 𝑔𝑟∗ ) 

= Pr (𝐴 does not get 𝑚  ) 

= Pr (𝐴 guesses 𝑚0 or 𝑚1 ) 

= Pr [𝐸𝑛𝑐(𝑚0) = 𝑔𝑟∗
|𝐴  received 𝑔𝑟∗

] 

= Pr [𝐴 win]      

 

IV. ENCRYPTION SCHEME II 
 
 
In this section, we generalized from the basic encryption 

scheme to construct an IND-CCA secure scheme. We added 

hash function in this scheme, it is because hash function is 

irreversible. The following algorithm gives our proposed 

encryption scheme. 

1. Key generation. Randomly select 𝑔, 𝑥 ∈ 𝐺 and 

from 𝑔𝑥 = ℎ ∈ 𝐺 and choose two cryptographic hash 

functions 𝐻1: 𝐺 → {0,1}∗ and 𝐻2: 𝐺 × {0,1}∗ → {0,1}∗ 

which will be viewed as random oracle in our security 

proof. The public key is (𝑔, ℎ, 𝐻1, 𝐻2) and private key 

is 𝑥. 

2. Encryption. To encrypt a plaintext 𝑚 ∈ {0,1}∗, we 

first randomly pick 𝑟 ∈ 𝐺, then 𝐸𝑛𝑐(𝑚) =

(𝑔𝑟 , 𝐻1(ℎ𝑟) ⊕ 𝑚, 𝐻2(𝑚, 𝑔𝑟)). 

3. Decryption. To decrypt the ciphertext 𝑐1, 𝑐2, 𝑐3 ∈

𝐺 × {0,1}∗ × {0,1}∗, compute 𝑚′ = 𝐻1(𝑐1
𝑥) ⊕ 𝑐2 . Check 

𝑐3 = 𝐻2(𝑚′, 𝑐1) if so return 𝑚, else return ⊥. 

The correctness of the scheme is shown as follows: 

𝑚′ = 𝐻1(𝑐1
𝑥) ⊕ 𝑐2 

= 𝐻1((𝑔𝑟)𝑥) ⊕ 𝐻1(ℎ𝑟) ⊕ 𝑚 

= 𝐻1(ℎ𝑟) ⊕ 𝐻1(ℎ𝑟) ⊕  𝑚 

= 𝑚 

Since 𝑚′ = 𝑚, then 𝑐3 = 𝐻2(𝑚, 𝑐1), so return 𝑚. 
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Theorem 2. The encryption scheme II is IND-CCA secure. 

From the definition, a scheme is IND-CCA secure if 

adversary has a negligible advantage in winning the above 

game. 

 

Proof Let 𝐴 be an IND-CCA adversary. Define the following 

experiment. 

Key generation: Challenger, 𝐶 gives 𝐴 the Miller group 

system parameter (𝑔, ℎ, 𝑟). 

Phase 1 decryption query:  The adversary queries the 

decryption oracle. Let 𝑐1𝑖 , 𝑐2𝑖 , 𝑐3𝑖
 be decryption query and 

send to the challenger, 𝐶. 𝐶 run the decryption algorithm 

and compute 𝑚′ = 𝐻1(𝑐1
𝑥) ⊕ 𝑐2, check whether 𝑐3 =

𝐻2(𝑚′, 𝑐1) if yes return 𝑚′ else return ⊥. The resulting 

decryption is given to 𝐴 which is 𝑚′ or ⊥. 

 

Challenge: 𝐴 outputs two plaintexts 𝑚0 and 𝑚1 to 𝐶. 𝐶 

choose a bit 𝑏 ∈ {0,1}∗and produce the following ciphertexts 

by running the encryption algorithm.  𝐸𝑛𝑐(𝑚𝑏) =

(𝑔𝑟′
, 𝐻1(ℎ𝑟′

) ⊕ 𝑚𝑏 , 𝐻2(𝑚𝑏, 𝑔𝑟′
)).  Then 𝐶 send 𝑐∗ =

(𝑔𝑟′
, 𝐻1(ℎ𝑟′

) ⊕ 𝑚𝑏 , 𝐻2(𝑚𝑏, 𝑔𝑟′
)) to 𝐴. 

 

Phase 2 decryption query: We answer as the decryption 

query in phase 1 except that it may not request the 

decryption of 𝑐∗. 

 

Consider the experiment, adversary compute 𝑚′ =

𝐻1((𝑔𝑟𝑖)𝑥 ⊕ 𝐻1(ℎ𝑟𝑖) ⊕ 𝑚𝑖) then check 𝐻2(𝑚𝑖 , 𝑔𝑟𝑖) =

𝐻2(𝑚′, 𝑔𝑟𝑖). If true, then return 𝑚𝑖 = 𝑚′. To obtain 𝑚′ = 𝑚𝑖, 

it is equivalent to have 𝐻1((𝑔𝑟𝑖)𝑥) = 𝐻1(ℎ𝑟𝑖). Noted that 

𝐻𝑖: 𝐺 → {0,1}∗ and 𝐻1(𝑦) ∈ {0,1}∗. We have 2𝑛 of hash values 

for some 𝑛 ∈ 𝑍 and it can be done in 2𝑛 ways. By comparing 

the hash values, adversary have 

(𝑔𝑟𝑖)𝑥 = ℎ𝑟𝑖  

𝑥(𝑔𝑟𝑖)𝑥−1 = 𝑟𝑖ℎ 𝑟𝑖
−1 

𝑥𝑟𝑖𝑔𝑟𝑖
−1𝑥−1 = 𝑟𝑖ℎ 𝑟𝑖

−1 

𝑟𝑖
−1𝑥𝑟𝑖𝑔𝑟𝑖

−1𝑥−1𝑟𝑖 = ℎ 

(𝑟𝑖
−1𝑥𝑟𝑖)𝑔(𝑟𝑖𝑥𝑟𝑖

−1)
−1

= ℎ 

𝑥𝑟𝑖
−1

𝑔(𝑥𝑟𝑖
−1

)
−1

= ℎ 

𝑔𝑥𝑟𝑖
−1

= ℎ. 

 

Since 𝑔, ℎ ∈ 𝐺 are given to adversary, knowing 𝑔, ℎ to solve 

𝑔𝑥𝑟𝑖
−1

= ℎ for  𝑥𝑟𝑖 −1
 is equivalent to solve CSP which is 

impossible. Suppose adversary get 𝑥𝑟𝑖
−1 = 𝛼𝑖 for some 𝛼𝑖 ∈

𝐺, then if CSP is solvable, knowing 𝑥 and 𝛼𝑖 can recover the 

randomly chosen 𝑟𝑖 . It is because by solving CSP we can 

obtain the master secret key, and use it to recover the 

randomly chosen element in encryption. However, all these 

can't happen as CSP is computationally infeasible to solve. 

Thus, the advantage of the adversary win the game is 

negligible. According to the definition, since the adversary 

has a negligible advantage in winning the above game, thus 

the scheme is secure under IND-CCA attack.     

   

V. COMPARISON WITH VARIOUS 
TYPES OF ENCRYPTION SCHEME 

 

We list out the security model and the hardness problem for 

different types of encryption schemes in the table below. 

Table I: Comparison between the encryption schemes 

Public key encryption 
scheme 

Security 
model 

Hardness 
problem 

El-Gamal cryptosystem 
[4] 

IND-CPA DLP 

MOR cryptosystem [9] Central 
commutator 
attack 

DLP 

Ko-Lee et al. encryption 
scheme [7] 

Brute force 
attack 

Conjugacy 
problem 

Wang et al. encryption 
scheme [15] 

IND-CCA CSP 

 
In the El-Gamal cryptosystem, the encryption algorithm 

requires two exponentiations. However, these 

exponentiations are independent of the message and can be 

computed ahead of time if need be. In decryption algorithm 

it only requires one exponentiation. It depends on the 

hardness of discrete logarithm problem and is IND-CPA 

secure. MOR cryptosystem is a generalization of El-Gamal 

cryptosystem. It is using automorphism instead of 

exponential. The security model is central commutator 

attack based on the discrete logarithm problem (DLP). El-

Gamal can be defined in any cyclic group but for MOR 

cryptosystem it is using group of unitriangular matrix. 

Conjugacy problem is to determine whether there exists an 
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element 𝑧 of 𝐺 such that 𝑦 = 𝑧𝑥𝑧−1. However, for CSP is to 

find out the 𝑧 such that that 𝑦 = 𝑧𝑥𝑧−1. The conjugacy 

problem can be described as a decision version and a 

computational version, CSP is an example of a 

computational version. The decision version is known as 

conjugacy decision problem (CDP). In Ko-Lee scheme, braid 

group is used to construct the scheme. It involved a hash 

function and two inversions in encryption algorithm, 

however in decryption algorithm involved a hash function 

and one inversion. The security model used in this scheme is 

the brute force attack based on the hardness of conjugacy 

problem. We know that there are not many researchers 

using CSP to construct their scheme. One of the researchers 

using this hardness problem is Wang et al. (2009). They are 

using braid group to construct the scheme. In the encryption 

algorithm involved one inversion while in decryption 

algorithm involved two inversions. However, we are using 

CSP together with the Miller group. Note that our scheme is 

resisting quantum attacks since there are no known efficient 

polynomial algorithms that can solve the CSP.  

 

VI. CONCLUSION 

 

In this paper, we have proposed two encryption schemes by 

using the Miller group whose security is based on the 

hardness of conjugacy search problem. As a realization of 

the Miller group is proposed, whose allows us to carry out a 

detailed analysis showing the cryptosystem. The results 

shown in Theorem IV.1 stated that the adversary has a 

negligible advantage in winning the game, as desired, imply 

that the encryption scheme is secure against the attacks of 

chosen ciphertext. 
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