### **Exponential Sums for Seventh Degree Polynomial**

Low Chee Wai<sup>1\*</sup>, Siti Hasana Sapar<sup>2</sup> and Mohamat Aidil Mohamat Johari<sup>3</sup>

1,2,3 Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

<sup>2,3</sup>Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

Let f(x,y) be a seventh-degree polynomial with two variables in with complete dominant terms. Suppose p>7 is a prime, the exponential sums of polynomial f(x,y) is defined by  $S(f;p^{\alpha})=\sum_{x,y\bmod p}e^{\frac{2\pi i f(x,y)}{p^{\alpha}}}$ , where the sum is taken over a complete set of residue modulo p. In order to get the value of  $S(f;p^{\alpha})$ , the cardinality  $N(g,h;p^{\alpha})$  must be obtained first. In this paper, we discuss the Newton Polyhedron technique in finding the p-adic sizes of common zeros of the partial derivative polynomials  $f_x$  and  $f_y$  which derive from f(x,y). Then, the estimation of the cardinality and exponential sums of polynomial f(x,y) will be determined accordingly. For  $\alpha>1$ , the exponential sums of f(x,y) is given by  $|S(f;p^{\alpha})| \leq \min\{p^{2\alpha}, 36p^{\alpha+1+36\delta+6\omega_0+12q}\}$  where  $\delta, \omega_0, q \geq 0$ .

**Keywords:** *p*-adic sizes, Newton polyhedron, cardinality, exponential sums

### I. INTRODUCTION

In this paper,  $Z_p$  denotes as the field of p-adic integer.  $\Omega_p$  denotes as the completion of algebraic closure of the field of rational p-adic numbers  $Q_p$ . The highest power of p which divides x is denoted by  $ord_p x$ .

Loxton & Smith (1982) estimated the cardinality  $N(f,p^{\alpha})$  by the p-adic sizes of common zeros of partial derivative polynomials associated with f in the neighborhood of points in the product space  $\Omega_n^n$ , n > 0.

Loxton & Vaughan (1985) studied the estimation of exponential sums by using the number of common zeros of partial derivative polynomials with respect to x modulo q.

Mohd. Atan & Loxton (1986) used the Newton polyhedral method to obtain the p-adic sizes of polynomials in  $\Omega_p[x,y]$  which is an analogue of Newton polygon in Koblitz (1977). They estimated the cardinality for certain lower-degree polynomials f(x,y) over  $Z_p$ .

The estimations with Newton polyhedron technique for lower degree two-variable polynomials are also found

in Mohd. Atan (1986), Chan & Mohd. Atan (1997), Heng & Mohd. Atan (1999) as well as Sapar & Mohd. Atan (2002). However, the results for the higher degree polynomials are less complete.

Then, Sapar & Mohd. At an (2009) gave the p-adic sizes of common zeros of partial derivative polynomials associated with a quintic form for prime p > 5.

Yap et al. (2011) showed that the p-adic sizes of common zeros of partial derivative polynomials associated with a cubic form can be found explicitly on the indicator diagrams by using Newton polyhedron technique.

Sapar et al. (2013) also investigated the estimation of p-adic sizes of common zeros of degree nine polynomial.

Aminudin et al. (2014) continued the research of Yap et al. (2011) on a complete cubic form polynomial. They found that the result is different due to different form of the cubic polynomials. This means different form of polynomials will result different *p*-adic sizes although both of them are cubic polynomials.

Next, Sapar et al. (2014) studied the estimation of *p*-adic sizes of an eighth-degree polynomial. Lasaraiya et al. (2016a) and Lasaraiya et al. (2016b) researched on the

<sup>\*</sup>Corresponding author's e-mail: alexlowcheewai@gmail.com

cardinality  $N(f_x, f_y; p^{\alpha})$  of twelfth- and eleventh-degree polynomials respectively.

In this paper, we apply the Newton polyhedron technique to determine the p-adic sizes of the partial derivative polynomials of f(x,y) in  $Z_p[x,y]$  of a degree seven. Then, we obtain the estimation of cardinality and the exponential sums of the polynomial

$$f(x,y) = ax^7 + bx^6y + cx^5y^2 + dx^4y^3 + ex^3y^4 + kx^2y^5 + mxy^6 + ny^7 + rx + sy + t.$$

# II. P-ADIC SIZE OF COMMON ZERO OF POLYNOMIAL

Sapar & Mohd. Atan (2002) proved that every point of intersection of the Indicator diagrams, there exist common zeros of both polynomials in  $Z_p[x,y]$  which p-adic sizes correspond to point  $(\mu_1,\mu_2)$  as in the following.

**Theorem 1** Let p be a prime. Suppose f and g are polynomials in  $Z_p[x,y]$ . Let  $(\mu_1,\mu_2)$  be a point of intersection of the Indicator diagrams associated with f and g at the vertices or simple points of intersections. Then there are  $\xi$  and  $\eta$  in  $\Omega_p^2$  satisfying  $f(\xi,\eta)=g(\xi,\eta)=0$  and  $ord_p \xi=\mu_1, ord_p \eta=\mu_2$ .

The following theorem gives the *p*-adic size of common zero of polynomial that we consider.

**Theorem 2** Let  $f(x,y) = ax^7 + bx^6y + cx^5y^2 + dx^4y^3 + ex^3y^4 + kx^2y^5 + mxy^6 + ny^7 + rx + sy + t$  be a polynomial in  $Z_p[x,y]$  and  $(x_0,y_0)$  be a point in  $\Omega_p^2$  with p > 7 is a prime. Let  $\alpha > 0$ ,

 $\delta = \max\{ord_pa, ord_pb, ord_pc, ord_pd, ord_pe, \\ ord_pk, ord_pm, ord_pn\}.$  If  $ord_pf_x(x-x_0, y-y_0), \\ ord_pf_y(x-x_0, y-y_0) \geq \alpha > \delta,$  then there exists  $(\xi, \eta)$  such that  $f_x(\xi, \eta) = 0$ ,  $f_y(\xi, \eta) = 0$ . The p-adic sizes are given by

$$ord_p(\xi - x_0) \ge \frac{1}{6}(\alpha - 34\delta) - \varepsilon_1,$$
  
$$ord_p(\eta - y_0) \ge \frac{1}{6}(\alpha - 22\delta) - \varepsilon_2$$

for  $ord_p(35cn-ek)^2 \neq ord_p4(21dn-3em)$ (5cm-kd), and

$$ord_p(\xi - x_0) \ge \frac{1}{6}(\alpha - 34\delta) - \varepsilon_3 - \frac{1}{2}\omega_0,$$
  
$$ord_p(\eta - y_0) \ge \frac{1}{6}(\alpha - 22\delta) - \varepsilon_4 - \frac{1}{2}\omega_0$$

 $\text{for } ord_p(35cn-ek)^2 = ord_p4(21dn-3em)$ 

(5cm - kd), where  $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4, \omega_0 \ge 0$ .

In order to prove Theorem 2, we take a linear combination of  $g = f_x(x, y)$  and  $h = f_y(x, y)$  as  $g + \lambda h$ .

Then, we do a transformation by letting  $U=(X+x_0)+\frac{1}{6}\alpha_1(Y+y_0)$  and  $V=(X+x_0)+\frac{1}{6}\alpha_2(Y+y_0)$  where  $\alpha_1=\frac{6b+2\lambda_1c}{6(7a+\lambda_1b)}$  and  $\alpha_2=\frac{6b+2\lambda_2c}{6(7a+\lambda_2b)}$  that we needed in the following lemma

**Lemma 1** Let  $\lambda_1, \lambda_2$  be the zeros of quadratic function  $z(\lambda)$  in the form  $z(\lambda) = (21dn - 3em)\lambda^2 + (35cn - ek)\lambda + (5cm - kd)$ . Suppose p is a prime and a, b, c, d, e, k, m, n in  $Z_p$ , then

$$ord_{p}(\alpha_{1} - \alpha_{2}) =$$

$$\tfrac{1}{2} ord_p [(35cn-ek)^2 - 4(21dn-3em)(5cm-kd)]$$

$$-ord_p(21dn-3em)+ord_p(14ac-6b^2)$$

$$-ord_n(7a + \lambda_1 b) - ord_n(7a + \lambda_2 b).$$

*Proof.*  $\alpha_1 - \alpha_2 = \frac{(\lambda_1 - \lambda_2)(14ac - 6b^2)}{6(7a + \lambda_1 b)(7a + \lambda_2 b)}$ . Take  $ord_p$  on both sides

and substitute the expression of  $\lambda_1 - \lambda_2 = \frac{\sqrt{(35cn-ek)^2 - 4(21dn-3em)(5cm-kd)}}{\sqrt{(35cn-ek)^2 - 4(21dn-3em)(5cm-kd)}}$ 

$$\frac{\sqrt{(35cn-ek)^2-4(21dn-3em)(5cm-kd)}}{(21dn-3em)}$$
, we obtain:

$$ord_p(\alpha_1 - \alpha_2)$$

$$= \frac{1}{2} ord_p [(35cn - ek)^2 - 4(21dn - 3em)]$$

$$(5cm - kd)] - ord_p(21dn - 3em)$$

$$+ord_p(14ac - 6b^2) - ord_p(7a + \lambda_1 b)$$
  
 $-ord_p(7a + \lambda_2 b).$ 

**Lemma 2** Let p > 7 be a prime and a, b, c, d, e,

k, m, n, r, s in  $Z_p$ . Suppose  $(X + x_0, Y + y_0)$  in  $\Omega_p^2$ ,  $\delta = max\{ord_pa, ord_pb, ord_pc, ord_pd, ord_pe$ ,

 $ord_p k$ ,  $ord_p m$ ,  $ord_p n$ } and  $ord_p r$ ,  $ord_p s \ge \alpha > \delta$ .

If  $ord_p U = \frac{1}{6} ord_p \left( \frac{r + \lambda_1 s}{7 \alpha + \lambda_1 b} \right)$  and  $ord_p V = \frac{1}{6} ord_p \left( \frac{r + \lambda_2 s}{7 \alpha + \lambda_2 b} \right)$  with the condition  $ord_p (35cn - ek)^2 \neq ord_p 4(21dn - 3em)(5cm - kd)$  where  $= x + \alpha_1 y$  and  $V = x + \alpha_2 y$ , then

$$ord_p(X + x_0) \ge \frac{1}{6}(\alpha - 34\delta)$$
 and  $ord_p(Y + y_0) \ge \frac{1}{6}(\alpha - 22\delta)$ .

*Proof.* Let  $x = X + x_0$  and  $y = Y + y_0$ . Substitute into  $U = x + \alpha_1 y$  and  $V = x + \alpha_2 y$ , we have

$$(X + x_0) = \frac{\alpha_1 V - \alpha_2 U}{\alpha_1 - \alpha_2},\tag{1}$$

$$(Y + y_0) = \frac{U - V}{\alpha_1 - \alpha_2}.$$
 (2)

From (2),

$$ord_p(Y + y_0) \ge \min\{ord_p U, ord_p V\}$$
  
 $-ord_p(\alpha_1 - \alpha_2).$  (3)

By Lemma 1, we have

$$ord_p(Y+y_0)$$

$$\geq \min \{ ord_p U, ord_p V \} - \frac{1}{2} ord_p [(35cn - ek)^2 \\ - 4(21dn - 3em) (5cm - kd)] + ord_p \\ (21dn - 3em) - ord_p (14ac - 6b^2) + ord_p \\ (7a + \lambda_1 b) + ord_p (7a + \lambda_2 b).$$

Since  $ord_p(35cn - ek)^2 \neq ord_p4(21dn - 3em)$ 

(5cm - kd), we consider two cases.

Case (i):  $ord_p(35cn - ek)^2 > ord_p4(21dn - 3em)(5cm - kd)$ ,

Case (ii):  $ord_p(35cn - ek)^2 < ord_p 4(21dn - 3em)(5cm - kd)$ .

For Case (i), equation (3) becomes

$$ord_{p}(Y + y_{0}) \ge \min\{ord_{p}U, ord_{p}V\} - \frac{1}{2}ord_{p}$$

$$(5cm - kd) + \frac{1}{2}ord_{p}(21dn$$

$$-3em) - ord_{p}(14ac - 6b^{2})$$

$$+ ord_{p}(7a + \lambda_{1}b)(7a + \lambda_{2}b). \quad (4)$$

We continue with another two cases which are  $\min\{ord_pU, ord_pV\} = ord_pU$  and  $\min\{ord_nU, ord_nV\} = ord_nV$ .

For both cases, we have

$$ord_{p}(Y + y_{0}) \geq \frac{1}{6} \min\{ord_{p}r, ord_{p}\lambda_{i}s\}$$

$$-\frac{1}{2} \min\{ord_{p}cm, ord_{p}kd\}$$

$$-\min\{ord_{p}ac, ord_{p}b^{2}\}$$

$$-\frac{1}{3} \min\{ord_{p}dn, ord_{p}em\}$$

$$(5)$$

where i = 1, 2.

By hypothesis, we substitute  $\alpha$  and  $\delta$ , we have

$$ord_p(Y+y_0) \ge \frac{1}{6}(\alpha - 22\delta). \tag{6}$$

For Case (ii), equation (3) becomes  $ord_p(Y + y_0)$ 

$$\geq \min\{ord_{p}U, ord_{p}V\} - \frac{1}{2}ord_{p}(5cm - kd)$$

$$+ \frac{1}{2}ord_{p}(21dn - 3em) - ord_{p}(14ac - 6b^{2})$$

$$+ ord_{p}(7a + \lambda_{1}b)(7a + \lambda_{2}b).$$

It is same as (4). As a result, we will get (6). Now, we need to obtain the p-adic size of  $(X+x_0)$ . By Lemma 1, equation (1) becomes  $ord_p(X+x_0)$ 

$$\geq \min\{ord_{p}\alpha_{1}V, ord_{p}\alpha_{2}U\} - \frac{1}{2}ord_{p}[(35cn - ek)^{2} - 4(21dn - 3em)(5cm - kd)] + ord_{p}$$

$$(21dn - 3em) - ord_{p}(14ac - 6b^{2}) + ord_{p}$$

$$(7a + \lambda_{1}b) + ord_{p}(7a + \lambda_{2}b). \tag{7}$$

Since  $ord_p(35cn - ek)^2 \neq ord_p4(21dn - 3em)$ 

(5cm - kd), we consider two cases.

Case (iii):  $ord_p(35cn - ek)^2 > ord_p4(21dn - 3em)(5cm - kd)$ ,

Case (iv):  $ord_p(35cn - ek)^2 < ord_p4(21dn - 3em)(5cm - kd)$ .

For Case (iii), equation (7) becomes

$$ord_{p}(X + x_{0}) \ge \min\{ord_{p}\alpha_{1}V, ord_{p}\alpha_{2}U\} - \frac{1}{2}ord_{p}$$

$$(5cm - kd) + \frac{1}{2}ord_{p}(21dn - 3em)$$

$$-ord_{p}(14ac - 6b^{2}) + ord_{p}$$

$$(7a + \lambda_{1}b)(7a + \lambda_{2}b). \tag{8}$$

We continue with another two cases which are  $\min\{ord_p\alpha_1V, ord_p\alpha_2U\} = ord_p\alpha_1V \qquad \text{and}$   $\min\{ord_p\alpha_1V, ord_p\alpha_2U\} = ord_p\alpha_2U.$ 

For both cases, we obtain

$$ord_p(X + x_0) \ge$$

$$\begin{split} &\frac{1}{6}\min\{ord_pr,ord_p\lambda_is\}-\frac{1}{2}\min\{ord_pcm,ord_pkd\}\\ &-\min\{ord_pac,ord_pb^2\}-\frac{4}{3}\min\{ord_pdn,ord_pem\}\\ &\text{where }i=1,2. \end{split}$$

By hypothesis, we obtain

$$ord_p(X + x_0) \ge \frac{1}{6}(\alpha - 34\delta). \tag{9}$$

For Case (iv), equation (7) becomes

$$ord_p(X+x_0)\geq$$

$$\begin{split} \min & \{ ord_p \alpha_1 V, ord_p \alpha_2 U \} - \frac{1}{2} ord_p [4(21dn - 3em) \\ & (5cm - kd)] + ord_p (21dn - 3em) - ord_p \\ & (14ac - 6b^2) + ord_p (7a + \lambda_1 b) + ord_p (7a + \lambda_2 b). \end{split}$$

That is,

$$\begin{split} ord_p(X+x_0) &\geq \min\{ord_p\alpha_1V, ord_p\alpha_2U\} - \frac{1}{2}ord_p \\ &+ ord_p(5cm-kd) + \frac{1}{2}ord_p \\ &(21dn-3em) - ord_p(14ac-6b^2) \\ &+ ord_p(7a+\lambda_1b)(7a+\lambda_2b). \end{split}$$

It is same as (8). As a result, we will get (9).

In order to see the validity of our result and by Bezout's Theorem, we have  $\alpha > (n-1)^2 \delta$ . Then, we have  $\alpha > 36\delta$  in which  $\alpha - 36\delta$  is the minimum value that we can get. In Lemma 2, we have  $\alpha - 34\delta$  and  $\alpha - 22\delta$  are greater than the minimum value. Thus, our lemma is valid.

**Lemma 3** Let p > 7 be a prime and a, b, c, d, e, k, m, n, r, s in  $Z_p$ . Suppose  $(X + x_0, Y + y_0)$  in  $\Omega_p^2$ ,  $\delta = \max\{ord_p a, ord_p b, ord_p c, ord_p d, ord_p e$ ,  $ord_p k, ord_p m, ord_p n\}$  and  $ord_p r, ord_p s \ge \alpha > \delta$ .

If  $ord_p U = \frac{1}{6} ord_p \left( \frac{r + \lambda_1 s}{7a + \lambda_1 b} \right)$  and  $ord_p V = \frac{1}{6} ord_p \left( \frac{r + \lambda_2 s}{7a + \lambda_2 b} \right)$  with the condition  $ord_p (35cn - ek)^2 = ord_p 4(21dn - 3em)(5cm - kd)$  where  $U = x + \alpha_1 y$  and  $V = x + \alpha_2 y$ , then  $ord_p (X + x_0) \geq \frac{1}{6} (\alpha - 34\delta) - \frac{1}{2} \omega_0$  and  $ord_p (Y + y_0) \geq \frac{1}{6} (\alpha - 22\delta) - \frac{1}{2} \omega_0$  for some  $\omega_0 \geq 0$ .

*Proof.* From Lemma 2, we have  $ord_n(Y + y_0)$ 

$$\geq \min\{ord_{p}U, ord_{p}V\} - \frac{1}{2}ord_{p}[(35cn - ek)^{2} - 4(21dn - 3em)(5cm - kd)] + ord_{p}(21dn - 3em) - ord_{p}(14ac - 6b^{2}) + ord_{p}(7a + \lambda_{1}b) + ord_{p}(7a + \lambda_{2}b).$$

If  $\min\{ord_pU, ord_pV\} = ord_pU$ , then we obtain  $ord_p(Y + y_0) \ge$ 

$$\frac{1}{6}ord_p\left(\frac{r+\lambda_1 s}{7a+\lambda_1 b}\right) - \frac{1}{2}ord_p[(35cn-ek)^2 - 4(21dn - 3em)(5cm-kd)] + ord_p(21dn-3em) - ord_p$$

$$(14ac-6b^2) + ord_p(7a+\lambda_1 b) + ord_p(7a+\lambda_2 b).$$

Now, let  $ord_p(35cn - ek)^2 = ord_p 4(21dn - 3em)(5cm - kd) = \gamma$ , we have  $(35cn - ek)^2 = Ap^{\gamma}$  and  $4(21dn - 3em)(5cm - kd) = Bp^{\gamma}$  where  $ord_p A = ord_p B = 0$ . Then,  $ord_p[(35cn - ek)^2 - 4(21dn - 3em)(5cm - kd)]$ 

$$= ord_n(Ap^{\gamma} - Bp^{\gamma}) = \gamma + \omega_0$$

where  $\omega_0 = ord_p(A - B) \ge 0$ .

Now, we choose  $\gamma = ord_p 4(21dn - 3em)(5cm - kd)$  and substitute the expression of  $\lambda_1$ ,  $\lambda_2$ . Then,

$$ord_p(Y + y_0) \ge$$

$$\begin{split} &\frac{1}{6}ord_{p}(r+\lambda_{1}s)-\frac{1}{2}ord_{p}(5cm-kd)-\frac{1}{3}ord_{p}\\ &(21dn-3em)-ord_{p}(14ac-6b^{2})-\frac{1}{2}\omega_{0}. \end{split}$$

By using the hypothesis, we have

$$ord_p(Y + y_0) \ge \frac{1}{6}(\alpha - 22\delta) - \frac{1}{2}\omega_0$$

for some  $\omega_0 \geq 0$ .

If  $\min\{ord_pU, ord_pV\} = ord_pV$ , then we obtain  $ord_n(Y + v_0) \ge$ 

$$\begin{split} &\frac{1}{6}ord_p\left(\frac{r+\lambda_2s}{7a+\lambda_2b}\right) - \frac{1}{2}ord_p[(35cn-ek)^2\\ &-4(21dn-3em)(5cm-kd)] + ord_p(21dn\\ &-3em) - ord_p(14ac-6b^2) + ord_p(7a+\lambda_1b)\\ &+ ord_p(7a+\lambda_2b). \end{split}$$

By substituting the expression of  $\lambda_1$ ,  $\lambda_2$  and using the hypothesis, we have

$$ord_p(Y + y_0) \ge \frac{1}{6}(\alpha - 22\delta) - \frac{1}{2}\omega_0$$

for some  $\omega_0 \geq 0$ .

Also, from Lemma 2, we have

$$ord_p(X + x_0) \ge$$

$$\min\{ord_{p}\alpha_{1}V, ord_{p}\alpha_{2}U\} - \frac{1}{2}ord_{p}[(35cn - ek)^{2} - 4(21dn - 3em)(5cm - kd)] + ord_{p}(21dn - 3em) - ord_{p}(14ac - 6b^{2}) + ord_{p}(7a + \lambda_{1}b)$$

$$+ord_n(7a + \lambda_2 b).$$

If  $\min\{ord_p\alpha_1V, ord_p\alpha_2U\} = ord_p\alpha_1V$ . By using the same argument, we obtain

$$ord_{p}(X + x_{0}) \ge \frac{1}{6}ord_{p}(r + \lambda_{2}s) - \frac{1}{2}ord_{p}(5cm - kd)$$

$$-\frac{4}{3}ord_{p}(21dn - 3em)$$

$$-ord_{p}(14ac - 6b^{2}) - \frac{1}{2}\omega_{0}.$$

For the case  $\min\{ord_p\alpha_1V, ord_p\alpha_2U\} = ord_p\alpha_2U$ . By using the similar manner, we have

$$\begin{split} ord_p(X+x_0) &\geq \frac{1}{6} ord_p(r+\lambda_1 s) - \frac{1}{2} ord_p(5cm-kd) \\ &- \frac{4}{3} ord_p(21dn-3em) \\ &- ord_p(14ac-6b^2) - \frac{1}{2} \omega_0. \end{split}$$

By hypothesis, we have the following result:

$$ord_p(X+x_0) \geq \frac{1}{6}(\alpha-34\delta) - \frac{1}{2}\omega_0$$

for some  $\omega_0 \ge 0$  as asserted.

Now, we will prove the Theorem 2.

Proof of Theorem 2.

Let  $g = f_x$  and  $h = f_y$ . Suppose  $x = X + x_0$  and  $y = Y + y_0$ . By completing the sixth degree,

$$\frac{g + \lambda h}{7a + \lambda b} = \left[ (X + x_0) + \frac{1}{6} \left( \frac{6b + 2\lambda c}{7a + \lambda b} \right) (Y + y_0) \right]^6 + \left( \frac{r + \lambda s}{7a + \lambda b} \right)$$
(10)

with

$$\left(\frac{6b+2\lambda c}{7a+\lambda b}\right)^2 - \frac{36}{15}\left(\frac{5c+3\lambda d}{7a+\lambda b}\right) = 0 \tag{11}$$

$$\left(\frac{6b+2\lambda c}{7a+\lambda b}\right)^3 - \frac{54}{5}\left(\frac{4d+4\lambda e}{7a+\lambda b}\right) = 0 \tag{12}$$

$$\left(\frac{6b+2\lambda c}{7a+\lambda b}\right)^4 - \frac{432}{5}\left(\frac{3e+5\lambda k}{7a+\lambda b}\right) = 0 \qquad (13)$$

$$\left(\frac{6b + 2\lambda c}{7a + \lambda b}\right)^5 - 6^4 \left(\frac{2k + 6\lambda m}{7a + \lambda b}\right) = 0 \tag{14}$$

$$\left(\frac{6b+2\lambda c}{7a+\lambda b}\right)^6 - 6^6 \left(\frac{m+7\lambda n}{7a+\lambda b}\right) = 0.$$
 (15)

By solving (11), (12), (13), (14) and (15) simultaneously, we obtain a quadratic equation

$$(21dn - 3em)\lambda^{2} + (35cn - ek)\lambda + (5cm - kd) = 0.$$

Let

$$U = (X + x_0) + \frac{1}{6} \left( \frac{6b + 2\lambda_1 c}{7a + \lambda_1 b} \right) (Y + y_0)$$
 (16)

$$V = (X + x_0) + \frac{1}{6} \left( \frac{6b + 2\lambda_2 c}{7a + \lambda_2 b} \right) (Y + y_0), \tag{17}$$

we have

$$g + \lambda_1 h = (7a + \lambda_1 b)U^6 + r + \lambda_1 s \tag{18}$$

$$g + \lambda_2 h = (7a + \lambda_2 b)V^6 + r + \lambda_2 s. \tag{19}$$

We let  $F(U,V) = g + \lambda_1 h$  and  $G(U,V) = g + \lambda_2 h$ .

The combination of the indicator diagrams associated with the Newton polyhedron of (18) and (19) as shown in Figure 1. There exists a point (U,V) such that F(U,V)=0 and G(U,V)=0 where  $(\mu_1,\mu_2)$  is the point of intersection in the indicator diagrams of F(U,V) and G(U,V).



Figure 1. The indicator diagrams for the polynomials of F(U,V) (dash line) and G(U,V) (solid line).

Let  $U = \hat{U}$  and  $V = \hat{V}$ . From (16) and (17), there exists  $(\hat{X} + \hat{x}_o)$  and  $(\hat{Y} + \hat{y}_o)$  in such a way that:

$$(\hat{X} + \hat{x}_0) = \frac{\alpha_1 \hat{V} - \alpha_2 \hat{U}}{\alpha_1 - \alpha_2}, (\hat{Y} + \hat{y}_0) = \frac{\hat{U} - \hat{V}}{\alpha_1 - \alpha_2}$$

where  $\alpha_1=\frac{6b+2\lambda_1c}{6(7a+\lambda_1b)}$ ,  $\alpha_2=\frac{6b+2\lambda_2c}{6(7a+\lambda_2b)}$  and  $\lambda_1,\lambda_2$  are the zeros of  $z(\lambda)$  in Lemma 1. Next, we find  $ord_p\hat{X}$  and  $ord_p\hat{Y}$ . From Lemma 2, we have

$$ord_p(\hat{X} + \hat{x}_0) \ge \frac{1}{6}(\alpha - 34\delta),$$
  
$$ord_p(\hat{Y} + \hat{y}_0) \ge \frac{1}{6}(\alpha - 22\delta).$$

By the following property,

$$ord_p(A \pm B) \ge \min \{ ord_p A, ord_p B \}$$
, we have 
$$ord_p(\hat{X} + \hat{x}_0) \ge ord_p \hat{X} + \varepsilon_1$$
 
$$ord_p(\hat{Y} + \hat{y}_0) \ge ord_p \hat{Y} + \varepsilon_2$$

for some  $\varepsilon_1, \varepsilon_2 \ge 0$ . Thus, we will have

$$ord_{p}\hat{X} \geq \frac{1}{6}(\alpha - 34\delta) - \varepsilon_{1},$$

$$ord_{p}\hat{Y} \geq \frac{1}{6}(\alpha - 22\delta) - \varepsilon_{2}.$$
We let  $\xi = \hat{X} + \hat{x}_{o}$  and  $\eta = \hat{Y} + \hat{y}_{o}$ , then
$$ord_{p}(\xi - \hat{x}_{o}) \geq \frac{1}{6}(\alpha - 34\delta) - \varepsilon_{1},$$

$$ord_{p}(\eta - \hat{y}_{o}) \geq \frac{1}{6}(\alpha - 22\delta) - \varepsilon_{2}.$$

By back substitution, we have

$$g(\xi,\eta) = f_x(\xi,\eta) = o$$
 and  $h(\xi,\eta) = f_y(\xi,\eta) = o$ .

From Lemma 3, we have

$$ord_p(\hat{X} + \hat{x}_o) \ge \frac{1}{6}(\alpha - 34\delta) - \frac{1}{2}\omega_o$$
$$ord_p(\hat{Y} + \hat{y}_o) \ge \frac{1}{6}(\alpha - 22\delta) - \frac{1}{2}\omega_o.$$

By the same property, we have

$$\begin{aligned} & ord_p\big(\hat{X} + \hat{x}_0\big) \geq ord_p\hat{X} + \varepsilon_3 \\ & ord_p\big(\hat{Y} + \hat{y}_0\big) \geq ord_p\hat{Y} + \varepsilon_4 \end{aligned}$$

for some  $\varepsilon_3$ ,  $\varepsilon_4 \ge 0$ . Thus, we will obtain

$$\begin{split} & ord_p \hat{X} \geq \frac{1}{6}(\alpha - 34\delta) - \varepsilon_3 - \frac{1}{2}\omega_0, \\ & ord_p \hat{Y} \geq \frac{1}{6}(\alpha - 22\delta) - \varepsilon_4 - \frac{1}{2}\omega_0. \end{split}$$

We let  $\xi = \hat{X} + \hat{x}_o$  and  $\eta = \hat{Y} + \hat{y}_o$ , then

$$ord_p(\xi - \hat{x}_0) \ge \frac{1}{6}(\alpha - 34\delta) - \varepsilon_3 - \frac{1}{2}\omega_0,$$

 $ord_p(\eta - \hat{y}_0) \ge \frac{1}{6}(\alpha - 22\delta) - \varepsilon_4 - \frac{1}{2}\omega_0.$ 

By back substitution, we have

$$g(\xi, \eta) = f_{\chi}(\xi, \eta) = 0$$
 and  $h(\xi, \eta) = f_{\chi}(\xi, \eta) = 0$ .

### III. ESTIMATION OF CARDINALITY

$$N(f_x, f_y; p^{\alpha})$$

From Loxton & Smith (1982), we can get the  $N(f_x, f_y; p^{\alpha})$  from the p-adic size of  $ord_p(x - \xi_i)$  and  $ord_p(y - \eta_i)$  by the following theorem.

**Theorem 3** Let p be a prime and g(x,y) and h(x,y) are polynomials in  $Q_p[x,y]$ . Let  $\alpha > 0$ ,  $(\xi_i, \eta_i)$ ,  $i \ge 0$  be common zeros of g and h, and  $\gamma_i(\alpha) = \inf_{x \in H(\alpha)} \{ ord_p(x - \xi_i), ord_p(y - \eta_i) \}$  where  $H(\alpha) = \bigcup_i H_i(\alpha)$ . If  $\alpha > \gamma_i(\alpha)$ , then  $N(g,h;p^{\alpha}) \le \sum_i p^{2(\alpha-\gamma_i(\alpha))}$ .

Next, we can prove the following theorem.

**Theorem 4** Let  $f(x,y) = ax^7 + bx^6y + cx^5y^2 + dx^4y^3 + ex^3y^4 + kx^2y^5 + mxy^6 + ny^7 + rx + sy + t$  be a polynomial in  $Z_p[x,y]$  with p > 7 is a prime. Let  $\alpha > 0$ ,  $\delta = \max\{ord_pa, ord_pb, ord_pc,$ 

 $ord_pd$ ,  $ord_pe$ ,  $ord_pk$ ,  $ord_pm$ ,  $ord_pn$ }, then

$$N(f_x, f_y; p^{\alpha}) \le \begin{cases} p^{2\alpha} & \text{if } \alpha \le \delta \\ 36p^{68\delta + 12q} & \text{if } \alpha > \delta \end{cases}$$

where  $q = \max \left\{ \varepsilon_1, \ \varepsilon_3 + \frac{1}{2} \omega_0 \right\}$ .

*Proof.* If  $\alpha \le \delta$ , then  $N(f_x, f_y; p^{\alpha}) \le p^{2\alpha}$  since  $\gamma_i(\alpha) = 0$ . If  $\alpha > \delta$ , from Theorem 3, we have

$$ord_p(\xi - x_0) \ge \frac{1}{6}(\alpha - 34\delta) - q$$

where  $q = \max \left\{ \varepsilon_1, \ \varepsilon_3 + \frac{1}{2}\omega_0 \right\}$ . We obtain

$$\alpha - 6\gamma_i(\alpha) \le 34\delta + 6q.$$

From Bezout's Theorem, the product of the degrees of  $f_x$  and  $f_y$  is the maximum number of the common zeros. Therefore,

$$N(f_x, f_y; p^\alpha) \le 36p^{68\delta + 12q}$$

for  $\alpha > \delta$  and  $q = \max \left\{ \varepsilon_1, \, \varepsilon_3 + \frac{1}{2} \omega_0 \right\}$ .

## IV. ESTIMATION OF EXPONENTIAL SUMS $S(f; p^{\alpha})$

The exponential sums can be estimated by using the theorems in Mohd. Atan (1984).

**Theorem 5** Let p be a prime and f(x,y) be a polynomial in  $Z_p[x,y]$ . For  $\alpha > 1$ ,  $\theta = \frac{\alpha}{2}$ , let

$$S(f; p^{\alpha}) = \sum_{x,y \bmod p} e^{\frac{2\pi i f(x,y)}{p^{\alpha}}}.$$

Then,  $|S(f; p^{\alpha})| \leq p^{2(\alpha-\theta)} N_{f_{\alpha}f_{\alpha}}(p^{\theta}).$ 

If  $\alpha$  is odd, then we use the next theorem.

**Theorem 6** Let p be a prime and f(x, y) be a polynomial in  $Z_p[x, y]$ . Let  $\alpha = 2\beta + 1$ , where  $\beta \ge 1$  and

$$S(f; p^{\alpha}) = \sum_{x, y \bmod p} e^{\frac{2\pi i f(x, y)}{p^{\alpha}}},$$

then  $|S(f; p^{\alpha})| \leq p^{2\beta+2} N_{f_{\gamma} f_{\gamma}}(p^{\beta}).$ 

By using the above two theorems, we have the following result.

**Theorem 7** Let  $f(x,y) = ax^7 + bx^6y + cx^5y^2 + dx^4y^3 + ex^3y^4 + kx^2y^5 + mxy^6 + ny^7 + rx + sy + t$  be a polynomial in  $Z_p[x,y]$ . Suppose p > 7 is a prime and  $\alpha > 1$ . Let  $\delta = \max\{ord_pa, ord_pb,$ 

 $ord_n c$ ,  $ord_n d$ ,  $ord_n e$ ,  $ord_n k$ ,  $ord_n m$ ,  $ord_n n$ }, then

$$|S(f; p^{\alpha})| \le \min\{p^{2\alpha}, 36p^{\alpha+1+68\delta+12q}\}$$

where  $q = \max \left\{ \varepsilon_1, \ \varepsilon_3 + \frac{1}{2} \omega_0 \right\}$ .

Proof. From Theorem 4, we have

$$N(f_x, f_y; p^{\alpha}) \le \min\{p^{2\alpha}, 36p^{68\delta + 12q}\}$$

where 
$$\theta = \frac{\alpha}{2}$$
 and  $q = \max \left\{ \varepsilon_1, \ \varepsilon_3 + \frac{1}{2}\omega_0 \right\}$ .

Suppose  $\alpha$  is even. If  $\alpha > 1$  and  $\alpha = 2\theta$ . By using Theorem 5, we have

$$|S(f; p^{\alpha})| \le \min\{p^{2\alpha}, 36p^{\alpha+68\delta+12q}\}.$$

Suppose  $\alpha$  is odd. If  $\alpha > 1$  and  $\alpha = 2\beta + 1$ . By using Theorem 6, we have

$$|S(f; p^{\alpha})| \le \min\{p^{2\alpha}, 36p^{\alpha+1+68\delta+12q}\}.$$

### V. CONCLUSION

The exponential sums of the seventh-degree polynomial with two variables in the form

$$f(x,y) = ax^7 + bx^6y + cx^5y^2 + dx^4y^3 + ex^3y^4 + kx^2y^5 + mxy^6 + ny^7 + rx + sy + t$$

in  $Z_n[x, y]$  is given by

$$|S(f; p^{\alpha})| \le \min\{p^{2\alpha}, 36p^{\alpha+1+68\delta+12q}\}$$

where p, q,  $\alpha$  and  $\delta$  are defined in Theorem 7.

### VI. ACKNOWLEDGEMENT

We take this opportunity to express our gratitude for the financial support from Graduate Research Fellowship of UPM, grant UPM/700-2/1/GBP/2017/9597900 and those helps in this research to make it success.

#### VII. **REFERENCES**

- Aminudin, S. S., Sapar, S. H. & Mohd. Atan, K. A. (2014). Mohd. Atan, K. A. (1984). Newton polyhedral and estimates for method of estimating the p-adic sizes of common zeros of exponential sums. Ph.D. Thesis, University of New derivative polynomials associated with a complete South Wales, Kensington, Australia.
  - cubic form. International Conference on Mathematicalohd. Atan, K. A. Sciences and Statistics 2013, 205-212. Polvhedra Solutions of and Congruences.
- Chan, K. L. & Mohd. Atan, K. A. (1997). On the estimate to Proceeding solutions congruence equations associated with a quartic form. J. Phys. Sci., 8, 21-34.
- Heng, S. H. & Mohd. Atan, K. A. (1999). An estimation of determining p-adic orders of zeros common to two exponential sums associated with a cubic form. J. Phys. Sci., polynomials in  $Q_p[x, y]$ . Pertanika, 9(3), 375-380. 10, 1-21.
- p-adic Numbers, p-adic Analysis and Koblitz, N. (1977). Zeta-Functions. New York, Second Edition (Springer-Verlag), 89-99.
- Lasaraiya, S., Sapar, S. H. & Johari, M. A. M. (2016a). cardinality of the twelfth-degree polynomial. In Conference Proceedings, 020008, AIP Publishing.
- Lasaraiya, S., Sapar, S. H. & Johari, M. A. M. (2016b). On tleapar, S. H., Mohd. Atan, K. A. & Aminuddin, S. H. (2013). An Proceedings, 050015, AIP Publishing.
- Loxton, J. H. & Smith, R. A. (1982). Estimate for multiple exponential sums. J. Aust. Math. Soc., 33, 125-134.
- Loxton, J. H. & Vaughan, R. C. (1985). The estimate of complete exponential sums. Canad. Math. Bull., 28(4), 440-454.

- Loxton, J. H. (1986). Newton Analysis, Cambridge of Diophantine University Press, 67-82. Mohd. Atan, K. A. (1986). Newton polyhedral method of
- Sapar, S. H. & Mohd. Atan, K. A. (2002). Estimate for the
- cardinality of the set of solution to congruence equations. J. Technology, 36(C), 13-40.
- Sapar, S. H. & Mohd. Atan, K. A. (2009). A method of On the estimating the p-adic sizes of common zeros of partial AIP derivative polynomials associated with a quintic form. World Scientific, 5, 541-554.
- cardinality of the set of solutions to congruence equation estimating the p-adic sizes of common zeros of partial associated with polynomial of degree eleven. In P Conference derivative polynomials. New Trends in Mathematical Sciences, 1(1), 38-48.
  - Sapar, S. H., Aminudin, S. S. & Mohd. Atan, K. A. (2014). A method of estimating the p-adic sizes polynomial. International Journal of Pure Mathematics, 1, 22-29.
  - Yap, H. K., Sapar, S. H. & Mohd. Atan, K. A. (2011). Estimation of p-adic sizes of common zeros of partial derivative associated with a cubic form. Sains Malaysiana, 40(8), 921-926.