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Let f(x,y) be a seventh-degree polynomial with two variables in with complete dominant terms.

Suppose p > 7 is a prime, the exponential sums of polynomial f(x,y) is defined by S(f;p*) =

2mi f(x,y)
a
Zx,y mod p e p

, where the sum is taken over a complete set of residue modulo p. In order to get the

value of S(f;p%), the cardinality N(g,h; p%) must be obtained first. In this paper, we discuss the

Newton Polyhedron technique in finding the p-adic sizes of common zeros of the partial derivative

polynomials f, and f, which derive from f(x,y). Then, the estimation of the cardinality and

exponential sums of polynomial f(x,y) will be determined accordingly. For a > 1, the exponential

sums of f(x,y) is given by |S(f; p*)| < min {p?%,36p*+1+368+6wo+12a} where §, w,, q = 0.
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I. INTRODUCTION

In this paper, Z,, denotes as the field of p-adic integer. Q,,
denotes as the completion of algebraic closure of the field
of rational p-adic numbers Q,. The highest power of p
which divides x is denoted by ord,, x.

Loxton & Smith (1982) estimated the cardinality
N(f,p%) by the p-adic sizes of common zeros of partial
derivative polynomials associated with f in the
neighborhood of points in the product space Qy, n > 0.

Loxton & Vaughan (1985) studied the estimation of
exponential sums by using the number of common zeros
of partial derivative polynomials with respect to x modulo
q.

Mohd. Atan & Loxton (1986) used the Newton
polyhedral method to obtain the p-adic sizes of
polynomials in Q,[x,y] which is an analogue of Newton
polygon in Koblitz (1977). They estimated the cardinality
for certain lower-degree polynomials f (x,y) over Z,.

The estimations with Newton polyhedron technique

for lower degree two-variable polynomials are also found

*Corresponding authot’s e-mail: alexlowcheewai@gmail.com

in Mohd. Atan (1986), Chan & Mohd. Atan (1997), Heng &
Mohd. Atan (1999) as well as Sapar & Mohd. Atan (2002).
However, the results for the higher degree polynomials are
less complete.

Then, Sapar & Mohd. Atan (2009) gave the p-adic sizes
of common zeros of partial derivative polynomials
associated with a quintic form for prime p > 5.

Yap et al. (2011) showed that the p-adic sizes of
common zeros of partial derivative polynomials associated
with a cubic form can be found explicitly on the indicator
diagrams by using Newton polyhedron technique.

Sapar et al. (2013) also investigated the estimation of
p-adic sizes of common zeros of degree nine polynomial.

Aminudin et al. (2014) continued the research of Yap
et al. (2011) on a complete cubic form polynomial. They
found that the result is different due to different form of
the cubic polynomials. This means different form of
polynomials will result different p-adic sizes although both
of them are cubic polynomials.

Next, Sapar et al. (2014) studied the estimation of p-
adic sizes of an eighth-degree polynomial. Lasaraiya et al.

(2016a) and Lasaraiya et al. (2016b) researched on the
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cardinality N(f, f,;p®) of twelfth- and eleventh-degree
polynomials respectively.

In this paper, we apply the Newton polyhedron
technique to determine the p-adic sizes of the partial
derivative polynomials of f(x,y) in Z,[x,y] of a degree
seven. Then, we obtain the estimation of cardinality and
the exponential sums of the polynomial

f(x,y) = ax” + bx®y + cx5y? + dx*y® + ex3y*
+kx%y® + mxy® + ny” + rx + sy + t.

II. P-ADIC SIZE OF COMMON ZERO
OF POLYNOMIAL

Sapar & Mohd. Atan (2002) proved that every point of
intersection of the Indicator diagrams, there exist common
zeros of both polynomials in Z,[x,y] which p-adic sizes
correspond to point (u, 4,) as in the following.
Theorem 1 Let p be a prime. Suppose f and g are
polynomials in Z,[x,y]. Let (u;,u;) be a point of
intersection of the Indicator diagrams associated with f and
g at the vertices or simple points of intersections. Then
there are £ and 7 in .Qf, satisfying f(&n) = g(&n) =0 and
ordy, &=y, ord, n= ps.

The following theorem gives the p-adic size of
common zero of polynomial that we consider.
Theorem 2 Let f(x,y) = ax” + bx®y + cx°y? + dx*y3 +
ex3y* + kx%yS + mxy® + ny” + rx + sy + t be a polynomial
in Z,[x,y] and (x,,¥,) be a point in % with p >7 is a
prime. Let a > 0,
6 = max{ord,a, ord,b, ordy,c, ord,d, ordye,
ordyk,ordym,ordyn}. If ordy fr(x — X0, ¥ — Yo)»
ord, fy(x —xg, y —yo) = a > §, then there exists (& 7)
such that f.(&7) =0, f,(£n) =0. The p-adic sizes are
given by

ord,(&—xp) = %(a —348) — &,
ord,(n—1yo) 2 %(a —226)— &,
for ord,(35cn — ek)? # ord,4(21dn — 3em)
(5¢m — kd), and
ord,(£—x) 2 é(a —348) — &3 — %wo,
ord, (1 —yo) = %(a —228) — &4 — %wo

for ord,(35cn — ek)? = ord,4(21dn — 3em)
(5¢m — kd), where ¢, €,, €3, €4, wg = 0.

In order to prove Theorem 2, we take a linear

combination of g = f,(x,y) and h=f,(x,y) as g+ Ah.

Then, we do a transformation by letting U = (X + x,) +

%al(Y'l‘yo) and V=(X+XO)+%a2(Y+y0) where a, =

6b+21;c _ 6b+2i;c . .
SGatiD) and a, = SCat b} that we needed in the following
lemma.

Lemma 1 Let 1, A, be the zeros of quadratic function z(1)

in the form z(A) = (21dn—3em)i*+ (35cn —ek) A+

(5¢m — kd). Suppose p is a prime and a,b,c,d, e, k,m,n in

Z then

D>
ordy(a; — az) =

%ordp[(BSCn —ek)? — 4(21dn — 3em)(5cm — kd)]
—ord,(21dn — 3em) + ord,(14ac — 6b?)
—ord,(7a + 41b) — ord,(7a + Ayb).

(A1—A2)(14ac—6b?)

Proof. a; —a, =
f. ay 27 6(7a+M1b)(7a+izb)

. Take ord, on both sides

and substitute the expression of 1; — 1, =

J(B5cn—ek)2—4(21dn-3em)(5cm—kd)
(21dn—3em)

, we obtain:
ordy(a; — az)
= %ordp[(350n —ek)? —4(21dn — 3em)

(5cm — kd)] — ord,(21dn — 3em)

+ord,(14ac — 6b?) — ord,(7a + 1, b)

—ord,(7a + Ab). 0

Lemma 2 Letp > 7 be aprime and a, b, ¢, d, e,
k,m,n,r,s in Z,. Suppose (X +x,,Y+y,) in 2, &=
max{ordpa, ordyb, ordyc,ord,d, ordye,

ordyk, ord,m,ord,n} and ord,r,ord,s = a > 4.

If ord,U = %ordp ( T”'ls) and ord,V = %ordp ( ’”'ZS) with

7a+21b 7a+A2b

the condition ord,(35cn — ek)? # ord,4(21dn —
3em)(5¢cm — kd)where = x + a,y and V=x+ay,
then

ordy (X +xp) = %(a — 346) and

1
ord,(Y +y0) = < (a — 226).
Proof. Let x =X +x, and y =Y + y,. Substitute into U =

x+a;yandV = x + a,y, we have

_ alV - OZZU
(X + xO) = o — a, ) (1)
W +y0) =2 2
Yo) = 0 —a, (@)
From (2),
ord,(Y + y,) = min{ord,U, ord,V}
—ord,(a; — a3). (3)

By Lemma 1, we have
ord, (Y + y,)
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> min{ord,U, ord,V} — %ordp [(35cn — ek)?
—4(21dn — 3em) (5cm — kd)] + ord,
(21dn — 3em) — ord,,(14ac — 6b?) + ord,
(7a + A1b)+ord,(7a + A;b).
Since ord, (35cn — ek)? # ord,4(21dn — 3em)
(5¢m — kd), we consider two cases.
Case (): ord,(35cn — ek)? > ord,4(21dn — 3em)(5¢cm —
kd),
Case (ii): ord,(35cn — ek)? < ord,4(21dn — 3em)(5cm —
kd).
For Case (i), equation (3) becomes

1
ord, (Y +y,) = min{ord,U, ord,V} — Sordy

(5cm — kd) +5 ord,,(21dn
—3em) — ord,(14ac — 6b%)
+ord,(7a + 41b)(7a + A,b). (4)
We continue with another two cases which are
min{ord,U, ord,V} = ord,U and
min{ord,U, ord,V} = ord,V.
For both cases, we have
ord,(Y +y,) = % min{ord,r, ord,A;s}
—% min{ord,cm, ord,kd}
- min{ordpac, ord,b?}
—§ min{ord,dn, ord,em} (5
wherei = 1, 2.
By hypothesis, we substitute @ and §, we have
ordy (Y +yp) = ¢ (a — 226). 6)

For Case (ii), equation (3) becomes

ord, (Y + ¥,)

> min{ordp U, orde} — %ordp (5cm — kd)
+% ord,(21dn — 3em) — ord,(14ac — 6b?)
+ord,(7a + 41b)(7a + A;b).

It is same as (4). As a result, we will get (6). Now, we need

to obtain the p-adic size of
(X + xy). By Lemmai, equation (1) becomes

ord, (X + xo)

> min{ord,a,V, ord,a,U} — %ordp[(350n —ek)?
—4(21dn — 3em)(5¢cm — kd)] + ord,
(21dn — 3em) — ord,(14ac — 6b?) + ord,
(7a + A1b)+ord,(7a + Ab). )

Since ord,, (35cn — ek)? # ord,4(21dn — 3em)

(5¢m — kd), we consider two cases.

Case (iii): ord,(35cn — ek)? > ord,4(21dn — 3em)(5cm —
kd),

Case (iv): ord,(35cn — ek)* < ord,4(21dn — 3em)(5cm —
kd).

For Case (iii), equation (7) becomes
1
ord,(X + x,) = min{ord,a,V, ord,a,U} — 3 ord,

(5¢cm —kd) + %ordp(Zldn — 3em)

—ord,(14ac — 6b?) + ord,

(7a + 4,1b)(7a + A,b). (8)
We continue with another two cases which are
min{ord,a,V, ord,a,U} = ord,a,V and
min{ordpal V,ord,a, U] = ord,a,U.
For both cases, we obtain

ord,(X + xp) =
1 1
3 min{ord,r, ord,A;s} — 5 min{ord,cm, ord,kd}

4
- min{ordpac, ordpbz] -3 min{ordpdn, ordpem}
where i = 1,2.
By hypothesis, we obtain
ordy (X + xo) = %(a — 346). (9)
For Case (iv), equation (77) becomes

ord, (X +xp) =
1
min{ordpa1 V,ord,a;, U} —3 ord,[4(21dn — 3em)

(5cm — kd)] + ord,(21dn — 3em) — ord,,
(14ac — 6b*) + ord,(7a + 41 b)+ord,(7a + A;b).
That is,

1
ord,(X + x,) = min{ord,a,V,ord,a,U} — Sordy

+ord,(5cm — kd) +% ord,

(21dn — 3em) — ord, (14ac — 6b?)

+ord,(7a + A1b)(7a + Ab).
It is same as (8). As a result, we will get (9). O

In order to see the validity of our result and by Bezout’s

Theorem, we have a > (n — 1)?8. Then, we have a > 366 in
which a — 366 is the minimum value that we can get. In
Lemma 2, we have « — 346 and a — 22§ are greater than
the minimum value. Thus, our lemma is valid.
Lemma 3 Letp > 7be aprimeand a, b, ¢, d, e,
k,m,n,r,s in Z,. Suppose (X +x,,Y+y,) in sz” 6=
max{ordpa, ordpb, ordpc, ordpd, ordpe,

ordyk, ord,m,ord,n} and ord,r,ord,s = a > §.



ASM Science Journal, Volume 13, 2020

If ord,U = %ordp ( T“ls) and ord,V = %ordp ( r”?s) with

7a+21b 7a+iz2b

the condition ord,(35cn — ek)* = ord,4(21dn —
3em)(5¢cm — kd) where U = x + a;y and V = x + a,y, then

ord,(X + x¢) = i(a —346) — %wo and ord,(Y +yp) =

%(a —226)— iwo for some w, = 0.
Proof. From Lemma 2, we have

ord, (Y + ¥,)

> min{ord,U, ord,V} — %ordp [(35cn — ek)?
—4(21dn — 3em)(5¢cm — kd)] + ord,(21dn —
3em) — ord,(14ac — 6b*) + ord,(7a + A, b)
+ord,(7a + A;b).

If min{ord, U, ord,V} = ord,U, then we obtain

ord,(Y +y,) =

Zor ( r+1.8
6 P \7a+1,b

—3em)(5cm — kd)] + ord, (21dn — 3em) — ord,

(14ac — 6b?) + ord,(7a + A1 b)+ord,(7a + A,b).

Now, let ord,(35cn — ek)? = ord,4(21dn — 3em)(5cm —
kd) =y, we have (35cn—ek)?=Ap”Y and 4(21dn-—
3em)(5cm — kd) = BpY where ord,A = ord,,B = 0. Then,
ord,[(35cn — ek)? — 4(21dn — 3em)(5¢cm — kd)]

= ord,(ApY — BpY) =y + w,

1
) - Eordp[(350n —ek)? —4(21dn

where wy = ord,(A —B) = 0.
Now, we choose y = ord,4(21dn —3em)(5cm — kd) and
substitute the expression of ,, 4,. Then,

ord,(Y +y,) =
1 1 1
gordp (r+ A4;s) — Eordp(Scm — kd) — §ordp
1

(21dn — 3em) — ord,(14ac — 6b*) — > @o-
By using the hypothesis, we have

1 1

ordy (Y +yo) 2 (@ = 228) =Sy

for some wy = 0.
If min{ord, U, ord,V} = ord,V, then we obtain
ord,(Y +y,) =

1 1
gordp ( T4 ) - Eordp[(356n — ek)?

7a+2,b
—4(21dn — 3em)(5¢cm — kd)] + ord,(21dn
—3em) — ord,(14ac — 6b?) + ord,(7a + 1, b)
+ord,(7a + A;b).
By substituting the expression of 4,, 1, and using the

hypothesis, we have

1 1
ordy (Y +y5) = E(a— 228) —5®o

for some w, = 0.
Also, from Lemma 2, we have

ord,(X + xp) =

1
mm{ord a,V,ord azU} - —ord »[(35¢cn — ek)?

—4(21dn — 3em)(5cm — kd)] + ord,(21dn

—3em) — ordy(14ac — 6b?) + ord,(7a + A1b)

+ord,(7a + A;b).

If min{ordpalV, ordpazU} = ord,a;V. By using the same

argument, we obtain

1 1
ord,(X +xp) == ord p (T + 225) — ord »(5cm — kd)

4
- §ordp(21dn — 3em)

1
—ord,(14ac — 6b?) — 5 @o-

For the case min{ord,a,V,ord,a,U} = ord,a,U. By using

the similar manner, we have

1 1
ord, (X +xp) = gordp(r + 448) — Eordp(Scm — kd)
4
- §ordp(21dn — 3em)

1
—ord,(14ac — 6b?) — 5 @o-
By hypothesis, we have the following result:
1 1
ord, (X +xp) = z (a —346) — 5 @o

for some w, = 0 as asserted. 0
Now, we will prove the Theorem 2.
Proof of Theorem 2.
Let g = f, and h = f,,. Suppose x = X + x5 and y =Y + y,.
By completing the sixth degree,

g+h 1 6b + 24c 6
v~ X0+ 5 (Garap) 0+
r+ As
+ (7a + ib) 10
with
(6b + 2/10) (Sc + BAd) 0 an
7a + Ab 7a + Ab
6b + 24c\> 54 /4d + 4Je
Germ) ~sGarm)-0 @@
7a + Ab 7a + Ab
(6b + 2/14:) 432 (3e + 5/1k) 0 (13)
7a+ Ab 7a+ Ab
(6b + 2/1c> (Zk + 6/1m) 0 14
7a+ Ab 7a+ Ab
(6b + 2/14:) 6 (m + 7/1n) —0 (15)
7a+ Ab 7a+ Ab

By solving (11), (12), (13), (14) and (15) simultaneously, we

obtain a quadratic equation

(21dn — 3em)A* + (35¢cn — ek) A+ (5cm — kd) = 0.
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Let
U=+ )+1(6b+2’116)(y+ ) 16
ST\ Ta b Yo 16
1/6b + 245¢
V=(0X+x)+ g(m) Y +yo), a7
we have

g+ A4h=Ta+2,b)UC +7+ As (18)

g+ h=(Ta+ A4,b)V + 1+ Ays. (19)
Welet F(U,V) =g+ 4hand G(U,V) = g + L,h.
The combination of the indicator diagrams associated with
the Newton polyhedron of (18) and (19) as shown in Figure
1. There exists a point (U,V) such that F(U,V) =0 and
G(U,V) = 0 where (u4, i) is the point of intersection in the
indicator diagrams of F(U,V) and G (U, V).

v

‘r+f,15)

1
dU=-ord (—
Y T % \Ta+ b

'r—l—f.:s)

1
ord,V = ordy (725

(#4,05)

Figure 1. The indicator diagrams for the polynomials of
F(U,V) (dash line) and G (U, V) (solid line).

Let U = U and V = V. From (16) and (17), there exists (X +
%,) and (Y + 9,) in such a way that:

~ ~ a1]7 - a2U ~ ~ U - 17
(X+XQ)=7_ ,(Y‘l’yO): —
a; — a; —
where a, = Gb+ad,c = bt2%C and A, Ao are the zeros

6(7a+i;b)° 2 " 6(7a+isb)
of z(2) in Lemma 1. Next, we find ord,X and ord, Y. From

Lemma 2, we have

- 1
ordp(X + 20) > g(a — 346),

- 1
ord,( Y +9,) = g(a —226).
By the following property,
ord,(A £ B) = min {ord,A, ord,B}, we have
ord,(X + %) = ord,X + &
ord, (17 + 90) = ordp? + &

for some ¢y, &, = 0. Thus, we will have

[u=y

ord,X = —(a — 346) — ¢,

6

[EnN

ordp}7 > g(a' —2268) — &,
Welet E=X +%,and =Y + §,, then
1
ordy(§— %) 2 2 (a = 346) — &,

1
ord,(n—73,) = Z (a — 226) — ¢,.

By back substitution, we have

g&m=fi(&nm) =o0and h(&n) =f,(&n) =o.

From Lemma 3, we have

PO 1 1
ordp(X + xo) > g(a' — 346) _§w°

ord, (Y +79,) = %(a — 226) — éwo.
By the same property, we have
ordp()? + 9?0) > ordp)? + &3
ord,(Y + 9,) = ord,Y + &,

for some &3, £, = 0. Thus, we will obtain

~ 1 1
ordyX = g(a —346) — & — 5o,

L1 1
ord,Y = E(“ —226)— ¢, — 5 @o-
Welet £=X +%,and =7 + 9§, , then
1 1
ord,(&— %) = 5(05 —346) — &4 — 5%

1 1
ordy (= 90) = ¢ (@ = 226) — &4, = S wo.

By back substitution, we have

g&m=f(Em=0andh(&n) = f,(&n =0.1]

II1. ESTIMATION OF CARDINALITY
N (f of ¥ pa)

From Loxton & Smith (1982), we can get the N(f, f; p%)
from the p-adic size of ord,(x —¢&) and ord,(y — n,) by
the following theorem.

Theorem 3 Let p be a prime and g(x,y) and h(x,y) are
polynomials in Q,[x,y]. Let « > 0, (&, 77,), i = 0 be common
zeros of g and h, and (@) = infrenf ord,(x —
&), ordy(y — n,)} where H(a) = U; H;(a). If a > y;(), then
N(g,h;p®) < Z;p?@ i@,

Next, we can prove the following theorem.

Theorem 4 Let f(x,y) =ax” + bx®y + cx>y? + dx*y3 +
ex3y* + kx?y® + mxy® + ny” + rx + sy + t be a polynomial
in Z,[x,y] with p>7 is a prime. Let a>0, §=

max{ordya, ord,b, ordyc,
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ordy,d, ord,e,ord,k, ord,m, ord,n}, then
2a )
i p ifa<é
N(fo fyip®) < {36p688+12q ifa>6
where ¢ = max {51 , &3+ éwo}.
Proof. If a < 8, then N(fi, f,; p®) < p?* since y;(a) = 0. If

a > &, from Theorem 3, we have
1
ordy,(&—xo) = g(a —348)—¢q

where g = max {51 , &3+ éwo}. We obtain

a — 6y;(a) < 346 + 64.
From Bezout's Theorem, the product of the degrees of f,
and f, is the maximum number of the common zeros.
Therefore,

N(fx,fy;p“) < 36p686+12q

for a>6andq:max{sl,s3 +%wo}. 0

IV.  ESTIMATION OF EXPONENTIAL
SUMS S(f; p%)

The exponential sums can be estimated by using the
theorems in Mohd. Atan (1984).
Theorem 5 Let p be a prime and f(x,y) be a polynomial
inZ,[x,y]. Fora > 1,6 = %’ let
2mif (x,y)
S(f;pM) = Z e P°
x,y mod p

IS(F; P9 < p* @ ONg g (p°).

If a is odd, then we use the next theorem.

Then,

Theorem 6 Let p be a prime and f(x, y) be a polynomial in
Zp[x,y]. Leta = 2 + 1, where § > 1 and

2mif (x,y)
S(f;pM) = Z e P,

x,y mod p
ISCF;p9)| < p?P*2Ny 1 (pF).

By using the above two theorems, we have the

then

following result.
Theorem 7 Let f(x,v) = ax” + bx®y + cx°y? + dx*y3 +
ex3y* + kx%y® + mxy® + ny” + rx + sy + t be a polynomial
in Z,[x,y]. Suppose p > 7 is a prime and « > 1. Let § =
max{ordya, ordy,b,
ordyc,ord,d,ord,e, ordyk, ord,m, ord,n}, then

IS(f; p®)] < min{p?®, 36pe+1+688+12a)
where g = max {81 , &3+ %wo}.
Proof. From Theorem 4, we have

N(fx'fy; Pa) < min{pza, 36p688+12q}

where 6 = %and q= max{sl, &+ %wo}.
Suppose «a is even. If @ > 1 and a = 26. By using Theorem 5,
we have
IS(f; p®)| < min{p?®, 36p+68o+12a},
Suppose a is odd. If a >1 and a =28+ 1. By using

Theorem 6, we have

Is(f;pa)l < min{pZa’36pa+1+686+12q}. 0

V. CONCLUSION

The exponential sums of the seventh-degree polynomial
with two variables in the form
flx,y) = ax” + bx®y + cx5y? + dx*y® + ex3y*
+kx?y5 + mxy® +ny” +rx+sy +t
in Z,[x, y] is given by
IS(F;p®)| < min{pz"‘, 36pa+1+686+12q}

where p, ¢, « and § are defined in Theorem 7.
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