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Autistic Spectrum Disorder (ASD) is a variant of neurodevelopment and behavioural impairments 

that mostly affected the children and adolescence. The screening of ASD in adulthood is regularly 

more challenging as it may overlap with the mental-health disorder symptoms. In this paper, 3-

Satisfiability data mining approach with hybrid clonal selection algorithm in Hopfield neural 

network is proposed. The core impetus of this research is to investigate the feasibility and 

effectiveness of the proposed model in the task of Autistic Spectrum Disorder detection. The 

performance of the proposed approach will be compared with the state-of-the-art 3-Satisfiability 

data mining with exhaustive search algorithm in Hopfield neural network. The simulations were 

carried out on the Autistic Spectrum Disorder (ASD) among adults’ data sets provided by UCI 

machine learning repository. The comparison results depicted overall improvements of accuracy and 

robustness by the proposed model in Autistic Spectrum Disorder (ASD) diagnosis. This research will 

provide the useful insight as it can be further applied in the diagnosis of more vigilant diseases.   

Keywords: 3-Satisfiability, Autistic Spectrum Disorder, Data Mining, Clonal Selection 
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I. INTRODUCTION 
 

 

Disease detection analytics have attracted prolific works 

since the era of industrial revolution 4.0 in recent years. 

The machine learning and neural network approach 

became a staple in assisting the health professional to do 

earlier screening before pursuing with the conventional 

clinical diagnosis. Thus, the screening of Autistic 

Spectrum Disorder (ASD) among adult via 3-Satisfiability 

data mining and metaheuristic algorithm with Hopfield 

network will set the tone of this research.  

The research on ASD screening has been flourishing 

starting from Ahmadlou (2010), who proposed a wavelet-

chaotic neural network as a paradigm to process the EEG 

signal of ASD. Recently, Thabtah et al. (2018) inaugurated 

the variable analysis paradigm in early ASD screening 

process via “feature to class” correlation approach with 

acceptable accuracy. Thus, we require a logic extraction 

method to understand the behaviour of the data to 

facilitate the ASD screening process.  

Precisely, 3-Satisfiability is a variant of Boolean logic 

that can utilized to translate a specific value into the 

binary decision system (Mansor et al., 2017).Hence, the 

flexibility of 3-Satisfiability to map the real data into 
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logical form is our core impetus of using 3-Satisfiability 

reverse analysis paradigm in ASD data mining. 

Hopfield neural network (HNN) is well known as a 

standard computing model that impersonates the way of 

human brain processing the information (Hopfield, 1982). 

Theoretically, the Hopfield neural network is a powerful 

network due to the flexibility of the network to works with 

metaheuristics and data mining approach (Kasihmuddin 

et al., 2018). The capabilities of the Hopfield neural 

network to truncate the outliers and store the data 

effectively via Content Addressable Memory are essential 

in knowledge discovery or logic mining (Sathasivam, 

2010).However, on the theoretical side, Cabrera and Sossa 

(2018) have enhanced the stable states of HNN to be a 

robust network.  

The research on the clonal selection algorithm (CSA) is 

motivated by the capability of the optimization operator in 

performing faster computational and searching task 

(Layeb, 2012). CSA is a class of evolutionary algorithm and 

metaheuristic method, inspired by the mechanism in the 

immune system fighting the pathogen (Dasgupta et al., 

2011). 

In this paper, we will propose a 3-Satisfiability data 

mining technique namely 3-Satisfiability reverse analysis 

paradigm (3-SATERAP) incorporated with hybrid HNN 

models in training and testing ASD screening data. The 

hybrid RDASHNN model with clonal selection algorithm 

is abbreviated as RDASHNN-3SATCSA and being 

compared with hybrid HNN with exhaustive search, 

RDASHNN-3SATES.The RDASHNN-3SATCSA is 

developed due to the capability of clonal selection 

algorithm in improving the convergence of the existing 

reverse analysis data mining technique in Hopfield neural 

network as proposed by Sathasivam (2010). 

II. 3-SATISFIABILITY PROBLEM 

 
3-Satisfiability (3-SAT) can be defined as a Boolean 

algebra based logical rule, each clause containing strictly 3 

literals or variables (Brueggemann and Kern 2004). For 

example: 

( ) ( ) ( )R S T U V W X Y ZP        =  (1) 

Equation (1) shows a 3-SAT formula, P with 3 clauses 

associated by AND operators. Therefore, each clause 

containing 3 different literals connected by OR operators. 

Henceforth, the number of neurons corresponds to the 

total number of literals involved in a 3-SAT logic 

programming (Fu et al., 2018).  

Therefore, Aiman and Asrar (2015) introduced the 

generalized form of 3-SAT formula is shown in Equation 

(2). 

1

n

ii
P T

=
=  (2) 

whereby T symbolizes the clause and I denote the number 

of clauses involved in 3-SAT formula P. In this research, 

the attributes of ASD data set will be represented by the 

literals of each 3-SAT clause.  

III. HOPFIELD NEURAL NETWORK 

 
Hopfield neural network (HNN) is classified as a 

recurrent neural network, extensively being implemented 

on logic programming and data mining. The fundamental 

neuron updating rule in HNN is given as follows: 

 

1 if

1 Otherwise

ij j i

j
i

W S
S

 


= 
−


  (3)                 

where 
ijW   is the synaptic weight from unit j to i. S

i
  is 

the state of unit I and i  is the threshold of unit i. The 

important features are the connection in the HNN has no 

connection with itself, 0jj iiW W= = and connections are 

symmetrical or bidirectional (Sathasivam & Abdullah, 

2011). The neurons in HNN are bipolar and can be 

denoted as  1, 1iS  − as the states. The spin points of the 

neuron flip until equilibrium is reached (Kasihmuddin et 

al., 2018). In terms of 3-SAT representation, each variable 

in 3-SAT formula will be represented in terms of N 

neurons. The synaptic weight resembles the connection 

between the variable and the clauses in 3-SAT formula 

(Pinkas, 1991). The connection model can be generalized 

to embrace higher order connection. Hence, the local field 
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function of HNN for 3-SAT logic is given:

( ) ( ) ( )3 2 1
...i ijk j k ij j i

j j

h W S S W S W= + + +   

   (4) Following that, the updating rule maintains as 

follows:   

 ( ) ( )1 sgni iS t h t + =     (5)        

where ih  is the local field of the network. The final state 

of the neurons will be examined by using Lyapunov 

energy function 
3 SATPH
−

 which is given: 

( )

( ) ( )

3

3

2 1

1
..

3

1

2

SATP ijk i j k

i j k

ij i j i j

i j i

H W S S S

W S S W S

−
= − −

−



 
(6)          

The updating rule in Equation (5) guarantees the energy 

function in Equation (6) will decrease monotonically with 

the network (Mathias & Rech, 2012). The synaptic weight 

of the network is computed by using Wan Abdullah 

Method (Abdullah, 1993). 

IV. CLONAL SELECTION ALGORITHM 

 
The clonal selection algorithm (CSA) is a variant of 

artificial immune system algorithm (AIS), enthused by the 

process of clonal selection and hypermutation in B-cells in 

biological immune system. Hence, Layeb (2012) has 

inaugurates the systematic CSA as a searching mechanism 

regardless of the complexities. Therefore, the CSA 

algorithm has been proven to work well in 3-Satisfiability 

logic programming due to the robustness of somatic 

hypermutation operator (Mansor et al., 2017).  

 

INPUT 

100 strings of 3-SAT interpretation. 

 

Step 1 (Initialization of B-Cells) 

Initialize 100 B-cells (interpretations). 

 

Step 2 (Affinity Calculation) 

The affinity can be calculated by using: 

1 2 3( ) ( ) ( )..... ( )affinity total NCf c x c x c x c x= + + +  (7) 

where c represents the number of clauses during learning 

phase and NC symbolizes the number of clauses 

embedded into the 3-SAT formula.  

 

Step 3 (B-cells Selection) 

Select the best 5 B-cells with the highest value of affinity.  

 

Step 4 (Cloning) 

The cloning begins by replicating the selected B-cells by 

using the conventional roulette wheel selection to the 

system (Layeb, 2012). Moreover, the number of cloned B-

cells can be computed as follows: 

 
The number of 

clone allowed

iaffinity

affinity


 
=  

  
 (8)            

 

where iaffinity denotes to the initial affinity observed by 

the system and  is the number of population clone that 

is introduced to the system. By taking the parameter from 

the work of Layeb (2012), 200 = is selected.  

 

 

Step 5 (Normalization) 

The normalization of the B-cells is also termed maturation 

of the immune response. The ordinary formulation for B-

cells normalization is shown in Equation (9). 

 
min

max min

i
i

affinity affinity
affinity N

affinity affinity

−
=

−
 (9)   

where affinity iN refersthe normalized affinity. 

 

Step 6 (Somatic Hypermutation) 

Somatic hypermutation operator will enhance B-cells to 

achieve the maximum affinity that will converge towards a 

feasible solution. Specifically, the B-cells (interpretation) 

flipping will enhance the solution to obtain the maximum 

affinity values (Ulutas & Kulturel-Konak, 2011). That 

mechanism works by randomly flipping the one or more 

string of the B-cells from -1 to 1 or vice versa. The number 

of mutations can be determined by Equation (10). 

( ) ( )( )

Number of 1

Mutation (Nb) Number of variable

1 0.01i iaffinity N affinity N

  
=  

   

+ −

(10)                     
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Next, the affinity of the new generation of B-cells will be 

calculated. Consequently, if a particular of B-cells fails to 

attain the required affinity, Step 1 until Step 6 will be 

repeated until f
affinity

= NCwhere NC  is the number of 

clauses. 

OUTPUT 

The best interpretation with f
affinity

= NC  to be stored in 

HNN memory. 

 

V. EXPERIMENTAL SETUP 
 

RDASHNN-3SAT hybrid models will be simulated in Dev 

C++ Version 5.11 as a platform and carried out on 

Windows 10.1, Intel Core i7, 3.0 GHz processor with 8GB 

of RAM.  

In this study, we will use the Autistic Spectrum 

Disorder (ASD) obtained from UCI machine learning 

repository, contributed by Thabtah et al. (2018). In every 

execution, 60% of the data instances are entrenched as the 

training data and the remaining 40% of the data points are 

utilized as testing data. The implementations are: 

 

Step 1 

Transform 3-SAT clauses into Boolean algebra form and 

assign the neuron to each of variable. Select 422 data 

points as the training data and 282 as the testing data of 

ASD data set. Convert all binary data set to bipolar form 

where 0 transforms as -1 and 1 remains as 1.  

Step 2 

Assign the bipolar value to the neuron state and segregate 

the collection of k neurons per clause 1 2{ , ... }nc c c that 

lead to 1trainingP = . 

Step 3 

Generate the best logic BestP  as an ideal representation of 

the ASD data set. Enumerate the variables of the best logic 

with neurons. Find the cost function of the optimum logic, 

BestPE . 

Step 4 

Check the clause satisfaction of 0
BestPE = . The 

RDASHNN-3SATES will be trained by ES and the 

RDASHNN-3SATCSA will be trained by CSA. The data 

pattern will be stored in Hopfield CAM.  

Step 5 

Derive a cost function the best logic,
BestPE by considering 

( )
1

1
2

XX S= +  and ( )
1

1
2

XX S= − . Henceforth, the 

states of the neurons can be classified as 1XS =  (True) 

and 1XS = −  (False).  

Step 6 

Derive the best cost function to be compared with the 

energy function. The synaptic weights of BestP are 

computed by Wan Abdullah method. 

Step 7 

The states of the neurons are randomized. The network 

undergoes sequences of network relaxation. Calculate the 

corresponding local field ( )ih t of the state by using 

Equation (4). 

Step 8 

Induce all possible 3-SAT logic from the neuron states to 

retrieve the induced logic,
B

iP . By employing test dataset, 

examine all the induced logic 
B

iP  by comparing the 

outcome of the induced logic with the actual outcome. 

Step 9 

Compute the corresponding learning and testing RMSE, 

MAE and SSE of the network including the computational 

time. 

 

The control experiment in this research is the number of 

trials per execution is set to 1000. In order to avoid bias, 

the simulations are conducted by using similar computer. 

 

VI. RESULTS AND DISCUSSIONS 

 

A. Training Error  

 
In this paper, the root mean square error (RMSE), mean 

absolute error (MAE) and sum of squared error (SSE) for 

the training phase deployed by RDASHNN models are 

recorded from NN=9 until NN=90.  
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Figure 1. Training RMSE of RDASHNN models. 

 

 

Figure 2. Training MAE of RDASHNN models. 

 

 

Figure 3. Training SSE of RDASHNN models. 

 

Figure 1 depicts the RMSE recorded by RDAHNN 

models during training phase in generating the best logic 

to represent the ASD dataset. From the simulations, 

RDASHNN-3SATCSA has consistently smaller RMSE 

compared to RDASHNN-3SATES. The deviation of error 

in RDASHNN-3SATCSA is less significant because of less 

iterations needed to complete the training phase. On the 

contrary, RDASHNN-3SATES requires more iteration 

before generating the best logic resulting in massive error 

accumulations. In this aspect, the mechanism of ES which 

is the “generate and enumerate” procedures will consume 

time to achieve the convergence. Figure 2 demonstrates 

that the magnitude of MAE for RDASHNN-3SATCSA are 

significantly lesser than the other counterpart even 

though the number of neurons (NN) have been increased. 

Figure 3 portrays the value of SSE recorded by both 

models. The RDASHNN-3SATES recorded the highest 

accumulated errors especially during training phase. The 

proposed approach, RDASHNN-3SATCSA is less prone 

towards error due to somatic hypermutation that reduce 

iterations during training to generate the best logic. 

B. Testing Error  
 

The testing error for RDASHNN-3SATES and RDASHNN-

3SATCSA were consistently similar for each of NC=1 until 

NC=8. 

 

Table 1. Testing Error for RDASHNN models. 

Models Testing 

RMSE 

Testing 

MAE 

Testing 

SSE 

RDASHNN-

3SATES 

6.2526 0.3723 11025.00 

RDASHNN-

3SATCSA 

2.7988 0.1667 2209.00 

 

Table 1 manifests the accuracy of our proposed 3-

Satisfiability data mining paradigm, 3-SATERAP 

incorporated with RDASHNN-3SATCSA and the 

conventional method, RDASHNN-3SATES in generating 

the best logic for ASD data set. The training errors 

recorded by RDASHNN-3SATCSA were consistently 

smaller that ease the retrieval during testing phase. The 

testing RMSE, testing MAE and testing SSE are superior 

performance indicator to indicate the accuracy and 

sensitivity of out proposed approach. It shown that 

RDASHNN-3SATCSA outperformed RDASHNN-3SATES 

in generating the best logic from ASD data set. The results 

obtained by RDASHNN-3SATES were still satisfactory, 

but the higher RMSE, MAE and SSE recorded during 

training indicated that the network produce a moderate 

logic.  

C. Computation Time 
 
The robustness of the models in logic mining can be 

determined by analysing the computational time (CPU 

time) taken by the models during training and testing 
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phase of RDASHNN models under different complexities. 

 

Figure 4. Computational Time of RDASHNN models. 

 

Figure 4 manifests the computational time recorded 

by RDASHNN-3SATES and RDASHNN-3SATCSA during 

comprehensive simulation by manipulating different 

number of neurons (NN) and complexities. In this 

investigation, the computational time were basically less 

than 500 seconds. Based on Figure 4, RDASHNN-

3SATCSA generates and computes the best logic faster as 

compared to RDASHNN-3SATES. The capability of CSA 

to reduce the iterations during training and retrieve the 

best logic for a minimal testing error is due to the somatic 

hypermutation operator. Henceforth, RDASHNN-3SATES 

requires a substantial amount of time due to neuron 

oscillations during testing phase resulting in more 

iterations. Thus, more time are required to generate the 

best logic and complete one execution of training and 

testing phase.   

VII. CONCLUSION 
 

In this paper, we have investigated the performance of 3-

Satisfiability data mining technique namely 3-SATERAP 

with RDASHNN-3ATCSA and RDASHNN-3SATES in 

training and testing the autistic spectrum disorder data 

set. The proposed method, RDASHNN-3SATCSA 

outperforms the other counterpart, RDASHNN-3SATES in 

term of training errors, testing errors and computational 

time. In addition, our proposed method can be applied in 

screening more vigilant diseases such as seizures and 

heart diseases. 
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