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I. INTRODUCTION 

Let  denote the class of functions of the form 

                                         (1) 

which are analytic in the open unit disk

.  For , we denote by 

 the subclasses of  of all analytic functions 

that are starlike of order  and convex of order  

respectively. In particular, the classes

.  

     Padamanabhan & Parvatham (1975) introduced a class 

 of functions  which are analytic in , satisfying 

the condition  and 

                            (2) 

where  and . For  the 

class  was introduced by Pinchuk (1971). Also, 

we note that  where  is the classes of 

functions with real part greater than  and, , 

where  is the class of positive real part. From (2) we can 

easily deduce that 

              (3) 

where  is a function with bounded variation on , 

such that 

 

From (2) and (3) it can be seen that  if and only 

if there exist  such that 

         (4) 

For more details in deriving (4), one can refer to Noor et al., 

(2012). 

If  of the form (1) and  are 
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two functions in , then the Hadamard product (or 

convolution)  is defined by 

              (5) 

For  and , we define the function  by 

             (6) 

where  is the Pochhammer symbol (or the shifted 

factorial) defined (in terms of the Gamma function) by 

(7) 

 

and  is the incomplete beta function defined by 

 such that  

is the well‐known Gaussian hypergeometric function given 

by the series 

 

For ,  and 

 the authors  in (Oshah & Darus, 2014)  have 

defined a function  as follows: 

 (8) (7) 

where 

 (8) 

 

Now to get the integral operator, we follow methods by 

Noor (1999) and define a function  

in terms of Hadamard product (or convolution) by 

 (9) 

         (9) 

where 

 

Then we have the integral operator  

 as follows: 

 

       (10) 

 

where,  

 

 

. 

 

For a function  given by (1), it is easy to see 

from equation (10) that 

 

                  

 

 , (11) 

 and 

 

Next, we define an operator  

 by 

      
(12) 

 

such that  is given by (10) and   is 

given by (6) with ,  and 

. 

Note that  and 

 which are 

Ruscheweyh and Carlson‐Shaffer derivative operators, 

respectively (Ruscheweyh, 1982;  Carlson & Shaffer, 1984). 

It is readily verified from (12) that 
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For  and , we introduce the 

following subclasses by using the integral operator 

, 

 

Note that 

 

(1)  where the class 

 is defined by Noor (1999). 

(2)  where the class  is  

 

defined by Loewner (1917) which is the class of bounded 

boundary rotation, and studied by Paatero  

(Paatero,1931;1932). 

(3) . 

(4) . 

 

In the present paper, by using the same techniques of 

previous work, we extend the results of Lucyna (2013) 

which are also an extension of the work done by Noor 

(1999). 

 

 

 

 

 

 

II. MAIN RESULTS 

 

The following lemmas will be used in our investigation. 

 

Lemma 1 (Ruscheweyh & Sheil-Small, 1973) Let , 

and , then for each analytic function H, 

,  

where  denotes the closed convex hull of . 

 

Lemma 2 (Ruscheweyh 1982) Let  If  or 

, then the function  belongs to the class 

K of convex functions. 

 

Lemma 3 (Noor 1999) Let   

 for  Then 

, where  

  

Theorem 4 Let 

 ,  we have: 

(i) If  then  

 

(ii)  If  or , then  

 

 

Proof. (i) Let  and we set  

 

 

 

i=1,2. 

  

From the definition of , we have 

, then from definition of 

subordination there exists an analytic function  in  with 

 and  such that . 

Since we can write  

, then 

we have  
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where 

 

 

It follows from Lemma 2  that the function  is 

convex, and it follows from the definition of 

 that 

  

that is  is starlike function of order . 

 

Therefore, applying Lemma 1 we get

 

since  is convex univalent, thus , or equivalently, 

, which completes the proof of part 

(i). 

 (ii) We omit the details of proof for part (ii) since it is 

similar to part(i). Theorem 4 is proven. 

 

Theorem 5  Let , and 

 If   or  , then 

 

 

Proof. Let  and we set 

 

From the definition of  , we have 

. Setting  

, 

where , then we have 

 

 

   . 
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Here 

 

 

It follows from Lemma 2 that the function  is 

convex, and it follows from the definition of  

  that 

, 

 that is  is starlike function of order . Therefore, 

applying Lemma II.1, we get 

 

  

 

Since  is convex univalent, thus , or equivalently, 

. This completes the proof of 

Theorem 5. 

 

Theorem 6. For , then  

 

 

Proof. Let  and we set 

 

i=1,2.  

From the definition of , we have 

 Setting  

, 

where , then we have 

 

 

that is  

 

Here 

 

 

It follows from Lemma 2  that the function  is 

convex, and it follows from the definition of 

  

that  that is  is 

starlike function of order . Therefore, applying Lemma 1 

we get 

 

Since  is convex univalent, thus , or equivalently, 

. This completes the proof of 

Theorem 6. 

 

Remark 7 If we put  

 in Theorem 5 and 

Theorem 6, we notice that Al-Abbadi and Darus in (Al-

Abbadi & Darus, 2010) obtained the same result, for 

   and  

 

 

Theorem 8 Let  , then we 

have  

(1)  Let  then we 

have 

. 

(2)  Let  . If   or  , then 

we have  
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Proof. Let , and let us define 

 

then from the definition of  we have 

, or equivalently 

 

where  . We note that 

 

 

 

 

By Lemma 2,  we have that  and by using 

the established relation 

, and by 

definition of  we obtain . Since 

, then from Lemma 3 with  

we get , where 

, what means that 

 , hence . We omit the 

details of proofs here since it is similar to that of the first 

part. Thus, the proof of Theorem 8 is complete. 

 

Theorem 9 Let   and  

  for . Then

 

 

Proof. First we assume that ,  

and , and we define 

 

and 

 

From the definition of , we get 

 

where . Note that 

 

since  and . Then putting 

 in Lemma 3, we conclude that 

. The proof of Theorem 9 is complete. 

 

Remark 10  We remark that the class of functions in  

with  is known to be equal to the closed 

convex hull of the convex functions (Hallenbeck & 

MacGregor, 1984). 

Thus in the last theorem we showed that the class 

 is invariant under the convolution with 

functions of  

 

Now by applying the relation 

,  

we get the following corollary: 

 

Corollary 11 Let  . Then  



ASM Science Journal, Volume 13, 2020 
 

7  

(1)  

(2) . 

 

Next, we consider results related to Miller & Mocanu 

(2000) as follows. 

Remark 12 Let a and c be the complex numbers with 

  

We consider the function defined by 

. 

The function M (a, c; z) is called the confluent (or Kummer) 

hypergeometric function.  

If Re (c)> Re(a)>0, M (a, c; z) can be represented as an 

integral 

 

 

 

Miller & Mocanu (2000) showed that for  

 
 

      (13)                                                                                                  

 

and the function zM(a, c; z) is starlike of order 1/2 in .  

 

Thus, we immediate obtain the following: 

 

Corollary 13  If   and , where  is 

given by (13), then 

 

 

Corollary 14  Let  f  be given by  and 

for . Let   

 If  then  

  where 

  (14) 

                                                                          

Proof. Let  Putting 

, we can write
 

 

Thus from (14) we get , for 

. Then by applying Theorem 9, we get  

 

 

 

III. CONCLUSION 

 

In this work we discussed on properties of inclusion and 

convolution for classes of analytic functions defined by 

integral operator through the method of Noor (1999). It is 

based on subordination method of the inverse functions. 

Many other interesting results can be achieved by 

introducing other subclasses. 
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