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Modelling real life phenomena in the area of fluid dynamics, biological models and chemical kinetics 

give rise to Volterra integro-differential equations. As most of these equations cannot be solved 

analytically, efficient numerical methods are sought in approximating the solutions accurately. 

Trapezoidal, as well as extended trapezoidal methods are known to be efficient and accurate methods in 

solving many types of differential equations. These methods can be efficiently adapted to solve Volterra 

integro-differential equations to achieve required accuracy. In this research, new development on the 

extended trapezoidal method for solving first order linear Volterra integro-differential equations is 

considered. Previous numerical results are compared with the new development and it is shown that the 

extended trapezoidal method is efficient and suitable in solving the integro-differential equations. 

Keywords: Volterra integro-differential equations; mathematical models; numerical methods; 

extended Trapezoidal method; accuracy 

 

 

I. INTRODUCTION 
 
 

In this paper, we focus on numerical solutions for Volterra 

integro-differential equations (VIDEs) of the form: 

          (1) 

where the given functions and 

in (1) satisfy Lipschitz conditions in their arguments such 

that the solution exists. The value  is the given 

initial condition. It is well known that VIDEs play 

important roles in modelling real life phenomena in various 

areas of applications such as heat transfer, diffusion process 

in general, neutron diffusion and many more, see (Wazwaz, 

1997). Finding solutions for these models is becoming very 

important and for decades it has attracted scientists and 

engineers in looking for various solutions approaches. 

Because of the complexity in VIDEs, analytical solutions 

are very hard and at times impossible to obtain. As an 

alternative, scientists and engineers seek numerical 

solutions that can be made as accurately as possible. 

Conventionally, numerical methods for solving 

ordinary differential equations (ODEs) are adapted to 

solve VIDEs where an integral part of the equations is 

approximated using quadrature formulas. Runge-Kutta 

type of methods and linear multistep methods are the 

most common methods for solving VIDEs. See, for 

example the implementations proposed by Day (1967); 

Linz (1969); Van der Houwen & Riele (1985); Maleknejad 

& Shahrezaee (2004); Gachpazan (2009); Vanani & 

Aminataei (2011); Mazzia & Nagy(2014); Filiz (2014);  and 

Agbolae & Anake (2017). 

In this paper, we extend the work that was proposed 

by (Ishak & Ahmad, 2016) in solving VIDEs using 
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extended one-step trapezoidal method. In (Ishak & Ahmad, 

2016), an integral part of (1) was solved using a lower order 

method than the method used for differential part. Solving 

both the integral and differential parts using the same 

method and of the same order will produce better results in 

terms of its accuracy. The extended method with higher 

order of convergence and improved stability conditions is 

suitable for solving many types of differential equations. 

Previous research has shown extensive implementations of 

extended one-step methods in solving various types of 

differential equations including ODEs and delay differential 

equations. The extended methods are also implemented in 

combination scheme for solving stiff and non-stiff 

differential equations. Please refer to published work on 

various implementations of extended one-step methods for 

numerical solutions of differential equations, see for 

example (Usmani & Agarwal, 1985); (Chawla, Al-Zanaidi & 

Al-Aslab, 1995); (Ibrahim et al., 2014); (Ibrahin, Salama & 

Turek, 2015); (Ibrahim, Rihan & Turek, 2014).The 

motivation for this research is due to existing limitation in 

the implementation of extended one-step trapezoidal 

method for solving VIDEs.  The extended trapezoidal 

method has been first developed by (Usmani & Agarwal, 

1985) to solve ODEs with third order convergence while 

preserving the property of A-stability of the classical 

trapezoidal method. As cited in (Usmani & Agarwal, 1985), 

Dahlquist stated in 1963 that a method is to be A-stable if 

the numerical solution of differential equation   

where  approaches zero as step size 

approaches zero. 

The organization of this paper is as follows. In section 2, 

we discuss the development of the proposed method. 

Numerical results and related discussions are presented in 

section 3. Section 4 highlights the summary.  

 

II. MATERIALS AND METHODS 
 
 
We consider the initial value problem (IVP) for VIDEs as the 

following: 

    (2) 

where the interval  is divided into N subintervals 

with step size  The notation  refers to 

the approximate solution for where y is the solution 

for the IVP in (2). The grids 

represent N equal 

subintervals. It is assumed that approximate solutions have 

been obtained up to  The immediate task is to evaluate 

 The formulae pair and  where is 

the approximate solution for  and is the 

predicted value for  are implicit and being 

implemented in PECE mode where P stands for predict, E 

stands for function evaluation and C is for correct. 

We derive the formulae by integrating the differential 

equation in(2) on both sides with limit of integration from 

 to  to obtain 

 

where 

                                           (3) 

and 

  (4) 

The integral in (3) is solved by first interpolating 

by  using interpolation points 

 and  The 

polynomial  is given by  

 

and for each  

 

Here, we denote 

 and  
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The notations  and  refer to predicted values for 

 and  respectively. Using we have  

 

which the coefficients are as given in (Usmani & Agarwal, 

1985) and (Jacques, 1989). Since the formula for is 

implicit, we predict the values for and using the 

formulae suggested in (Usmani & Agarwal, 1985) as follows: 

 

 

In similar manner we obtain the integral  Let 

                 (5) 

The notation   means The 

integral in (4) is solved by first interpolating  in (5) 

by  using interpolation points 

 and  The polynomial  is 

given by  

 

and for each  

 

Using we have  

 

 

For simplicity, we write  

 

where 

 

and  

 

and 
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The derivatives are evaluated as follows, 

 

 

The development of the algorithm is shown in the following 

Figure 1. 

Step 1 : Begin. Initialize all given values. 

Step 2 : Calculate  and  

Step 3 : Solve for  

Step 4 : Solve for  

Step 5 : Calculate  

Step 6 : Calculate error. 

Step 7 : Calculate  and  for the next iteration. 

Step 8 : Update x. 

Step 9 : Go to Step 2 if the endpoint is not reached. Else 

go to Step 10. 

Step 10 : Stop. 

Figure 1. Algorithm for solving VIDEs 

 

To analyse the accuracy of the method, the above algorithm 

is tested with test problems having exact solutions. For 

illustrative purposes, the results of Test Problem 1 and Test 

Problem 2 are given in the next section. 

 

Test Problem 1 (Source, Day (1967)) 

 

Exact solution is
 

 
Test Problem 2 (Source, Day (1967)) 

 

Exact solution is  

 

III. RESULTS AND DISCUSSIONS 
 

 
In this section, numerical results for Test Problem1 and 

Test Problem 2 are given in Table 1 – Table 6. The results 

are displayed in terms of absolute errors between 

approximate and exact solutions at different grid points 

using various stepsizes. We also compare the numerical 

results of the method described in the previous section 

with Trapezoidal method and Extended Trapezoidal in 

(Ishak & Ahmad, 2016). Results for Test Problem 1 for 

stepsizesh=0.1, h=0.025,  and h=0.01 are given in 

Table 1, Table 2 and Table 3 respectively. Moreover, 

results for Test Problem 2 for stepsizesh=0.1,

h=0.025,  and h=0.01 are given in Table 4, Table 5 

and Table 6 respectively. The abbreviations TM refers to 

Trapezoidal method, ETM refers to extended Trapezoidal 

method implemented in (Ishak & Ahmad, 2016), NETM 

refers to the implementation method described in the 

previous section, and 5.4983e-04 is the same as 

5.4983´10-4.  

 

Table 1. Results for Test Problem 1,  

x TM ETM NETM 

0.1 8.4317e-05 8.2792e-05 1.2502e-07 

0.2 1.6558e-04 1.6310e-04 7.301e5-07 

0.3 2.4402e-04 2.3848e-04 2.5669e-06 

0.4 3.1661e-04 3.0657e-04 6.4301e-06 

0.5 3.8012e-04 3.6514e-04 1.3074e-05 

0.6 4.3328e-04 4.1210e-04 2.3195e-05 

0.7 4.7376e-04 4.4558e-04 3.7422e-05 

0.8 4.9978e-04 4.6392e-04 5.6296e-05 

0.9 5.0976e-04 4.6571e-04 8.0264e-05 

1.0 5.0243e-04 4.4985e-04 1.0966e-04 

 

Table 2. Results for Test Problem 1,  

x TM ETM NETM 

0.1 5.1916e-06 5.1818e-06 6.3815e-09 

0.2 1.0247e-05 1.0208e-05 5.8198e-08 
0.3 1.5012e-05 1.4926e-05 2.0634e-07 

0.4 1.9339e-05 1.9187e-05 4.9983e-07 

0.5 2.3086e-05 2.2852e-05 9.8478e-07 

0.6 2.6120e-05 2.5790e-05 1.7034e-06 

0.7 2.8323e-05 2.7883e-05 2.6932e-06 

0.8 2.9588e-05 2.9027e-05 3.9860e-06 

0.9 2.9825e-05 2.9136e-05 5.6073e-06 

1.0 2.8961e-05 2.8139e-05 7.5758e-06 
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Table 3. Results for Test Problem 1,  

x TM ETM NETM 

0.1 8.2978e-07 8.2916e-07 1.2051e-09 

0.2 1.6359e-06 1.6334e-06 1.0290e-08 

0.3 2.3938e-06 2.3883e-06 3.5392e-08 

0.4 3.0799e-06 3.0702e-06 8.4328e-08 

0.5 3.6715e-06 3.6565e-06 1.6443e-07 

0.6 4.1478e-06 4.1266e-06 2.8242e-07 

0.7 4.4897e-06 4.4615e-06 4.4421e-07 

0.8 4.6805e-06 4.6447e-06 6.5484e-07 

0.9 4.7061e-06 4.6620e-06 9.1831e-07 

1.0 4.5551e-06 4.5025e-06 1.2375e-06 

 

Table 4. Results for Test Problem 2,  

x TM ETM NETM 

0.1 5.4983e-04 1.9968e-04 4.7572e-04 

0.2 1.1757e-03 5.0620e-04 5.0519e-04 

0.3 1.9220e-03 9.2292e-04 5.6263e-04 

0.4 2.8533e-03 1.4871e-03 6.5502e-04 

0.5 4.0648e-03 2.2602e-03 7.9663e-04 

0.6 5.6984e-03 3.3398e-03 1.0067e-03 

0.7 7.9682e-03 4.8800e-03 1.3124e-03 

0.8 1.1201e-02 7.1225e-03 1.7533e-03 

0.9 1.5901e-02 1.0450e-02 2.3883e-03 

1.0 2.2855e-02 1.5471e-02 3.3067e-03 

 

Table 5. Results for Test Problem 2,  

x TM ETM NETM 

0.1 3.3444e-05 1.3122e-05 5.9860e-06 

0.2 7.1899e-05 3.2014e-05 6.5272e-06 

0.3 1.1815e-04 5.7857e-05 7.3872e-06 

0.4 1.7631e-04 9.2945e-05 8.6529e-06 

0.5 25246e-04 1.4108e-04 1.0380e-05 

0.6 3.5577e-04 2.0834e-04 1.2552e-05 

0.7 5.0017e-04 3.0426e-04 1.5012e-05 

0.8 7.0700e-04 4.4386e-04 1.7348e-05 

0.9 1.0094e-03 6.5081e-04 1.8701e-05 

1.0 1.4593e-03 9.6284e-04 1.7435e-05 

 

Table 6. Results for Test Problem 2,  

x TM ETM NETM 

0.1 5.3182e-06 2.0968e-06 3.6613e-07 

0.2 1.1445e-05 5.1090e-06 4.0079e-07 

0.3 1.8827e-05 9.2335e-06 4.5246e-07 

0.4 2.8121e-05 1.4837e-05 5.1900e-07 

0.5 4.0308e-05 2.2526e-05 5.8592e-07 

0.6 5.6862e-05 3.3270e-05 6.1545e-07 

0.7 8.0026e-05 4.8595e-05 5.2893e-07 

0.8 1.1324e-04 7.0898e-05 1.7754e-07 

0.9 1.6186e-04 1.0396e-04 7.0676e-07 

1.0 2.3428e-04 1.5382e-04 2.5949e-06 

 

From the tabulated results, it is clearly seen that the 

extended Trapezoidal method as described in the previous 

sections achieves more than 100% of the desired accuracy. 

As the stepsize gets smaller, the errors at the respective 

grid points become smaller as well. Thus, it can be 

concluded that NETM is suitable for solving VIDEs. 

Moreover, the methods give better accuracy as compared 

with Trapezoidal and extended Trapezoidal as in (Ishak & 

Ahmad, 2016). 

 

IV. SUMMARY 
 

We have presented the new development of extended 

Trapezoidal method for solving VIDEs. The implicit 

formulae adapted from extended Trapezoidal method for 

solving ODEs are implemented in PECE mode for both 

differential and integral parts. 

Absolute errors between exact and approximate 

solutions are presented at selected grid points with 

different stepsizes. The errors indicate that the new 

implementation of the method achieves the desired 

accuracy as the errors become smaller when the stepsize 

becomes smaller. The extended formulae used in solving 

an integral part of the VIDEs also improve the 

performance of the method in terms of its accuracy.  

From the numerical results and comparison between 

the existing methods, the new development of the 

extended Trapezoidal method is suitable for solving 

VIDEs numerically since the errors become smaller 

when the stepsize is getting smaller. Thus, the extended 

implementation of the method produces accurate 

approximate solutions as the approximate solution 

approaches exact solution as stepsize tends to zero. 

 

 

 

 

 

 

 

h=0.01

h=0.1

h=0.025

h=0.01
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