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HP(a, ) is a class of functions harmonic and univalent defined in the open unit disc U . Sufficient

conditions for a hypergeometric function and an integral operator related to hypergeometric function,

to be in the class HP(a, /) are derived. Harmonic functions with negative coefficients are also

considered in this investigation.
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I INTRODUCTION

The basic theory of harmonic mappings was initiated in
the seminal works of Clunie and Sheil-Small (1984) and
Sheil-Small (1990). Since then harmonic univalent
functions have been intensively investigated from the
point of view of geometric function theory. See for
example (Ahuja, 2005; Duren, 2004; Liu & Ponnusamy,
2018; Kayumov & Ponnusamy, 2018; Silverman, 1998)
and references therein. In the well-established theory of
analytic univalent functions, there are several studies on
hypergeometric functions associated with classes of
analytic functions (See for example Carlson & Shaffer,
1984; Miller & Mocanu, 1990; Kwon & Cho, 2008; Owa &
Srivastava, 1987; Ponnusamy & Ronning, 1998;
Ruscheweyh & Singh, 1986; Silverman, 1993;
Swaminathan, 2004a, 2004b) investigating univalence,
starlikeness and other properties of these functions. On
the other hand, only some corresponding studies on
connections of hypergeometric functions with harmonic
mappings have been done (Ahuja, 2008, 2007;

Murugusundaramoorthy & Raina, 2009). Pursuing this

line of study, results that bring out connections of
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hypergeometric functions with a class of harmonic
univalent functions considered in (Yalcin & Oztiirk, 2004)

are established.
Let H be the class of continuous, complex-valued

harmonic functions f(Z)=U+1V which map the unit
disk U ={zeC:|z|<1} onto a domain D C. In

fact U and V are real harmonic in U. It is well-known

(Clunie and Sheil-Small, 1984) that such a harmonic

function f can be written as f =h+ @, when h and
g are analytic in U . It is also known (Clunie and Sheil-
Small, 1984) that a sufficient condition for f =h+ g to
be locally univalent and sense preserving in U is that
Ih(@)>9'(2) | mU.

Denote by SH the class of functions f =h+Q

which are harmonic univalent and sense preserving in the

unit disk U and f

f(0)=h(0) = f,(0)-1=0.

normalized by
Thus, for

f=h+ Je SH we may express the analytic functions
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h and g as
h(z)=z+3 Az and g(z) =3 B, 2" @)
n=2 n=1

where | B, [<1. Note that S,; reduces to the class of
normalized analytic univalent functions if the co-analytic

part g of f isidentically zero. If ¢ and ¢, are analytic

and f=h+@ is in S, the convolution or the

Hadamard product is defined by
Fr(h+d)=h*g+g+4,

Let a,b and C be any complex numbers with

c#0,-1,—-2,-3,....Then the Gauss hypergeometric

function written as 2Fl(a, b;C;Z) or simply as

Fca,b (2) is defined by ®
1

oy (), ),
O3 @

where (/I)n is the Pochhammer symbol given by (ii)

1 (n=0);
(A)n =
AA+DY(A1+2)...(A+n-1), (n=N).

(3)

Since the hypergeometric series defined in (2) and (3)

converges absolutely in U, it follows that Fca’b(Z)

defines a function which is analytic in U , provided that

C is neither zero nor a negative integer. In fact, F.*” (1)

converges for Re(C—a—b >0) and is related to the

gamma

R =

function by
I'c)'(c—a-h)
I'(c—a)l'(c—b)

In particular, the incomplete beta function, related to the

,c#0,12,... )

Gauss hypergeometric (p(a, C; Z), is defined by

00

p(a,c;z) =F*(2) = Z%ZM (5)

n=0 n

where Z€elU and c#0,1L2,....

Throughout this paper, let G(z) = ¢,(z) +¢,(z) be

a function where ¢1(Z) and ¢2(Z) are the

hypergeometric functions defined by

$(2) = 2F2"(2) = +Z (?él))n 1(81)% 4,

(6)
and
a (@)0 (0)s
#,(2) = 2" (
’ Z (c,), (D),
(7)
where | 8.2b2 <] C, |. The following lemma is
needed to prove our results.
Lemma 1. (Ahuja, 2008) If a, b, c> 0, then
= (a),(b), ab a
—, c)n(l)n “c-a-b-1
ifc>a+b+1
S @00,
a (0.0,
— (a)z (b)z + ab Fca,b (1)
(c-a-b-2), c-a-b-1
(9)

ifc>a+b+2.

Based on the study in (Yalcin & Oztiirk, 2004), for o >0
HP(a, B) of

harmonic functions of the form (1) satisfying the

and 0< <1l we define a class

condition
Re{az[h"(z)+ 9" (2)]+[N'(2) + 9'(2)]}> B.
Lemma 2. If f =h+J is given by (1) and

Snle(n-1)+1( A |+|B,)<2-4 (0

n=1
where 0<|B, |<1-48,A =La>0 and 0< <1
then f is harmonic univalent and sense preserving in

U and f € HP(«, f).

Proof. The proof of this lemma is on lines similar to the

proof of Theorem 2.1 in (Yalcin & Oztiirk, 2004).
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1I. MAIN RESULTS @
(ZZ n n— 1) ((ai))n 1((?-1)
h If a,b,>0and c, >a, +b. +2 for "~ Wb
Theorem 1. D, . . .
_ o b o +a2n(n 1)(a)(b)
J =1 2, then a sufficient condition for G =¢ + ¢, to n=1 (c,), (),

. . . . c (al)n—l(bl n-1 (aZ)n(bZ)n
e armonic univalent in U an G H P 5 N 1S T — —_—
" o 4 6 hP(a.f) P )M(l)nf;”( e)n ),

_,3 (@)1 By

e, s oy “"nz[(” V) 0.,
(¢-a-b-2), ¢-a-b-1 |° +aZ (3,),(0),

@) b) b = (c)()

+[ TS }Fca”bz@) S OGRS CHNCY
(c,-a,-b,-2), ¢, b,-1] ™ +Zn —141) ALy Y g 2225

( 1)n 1(1)n 1 n=1 (Cz)n(l)n
5 (@), (), = (a),(b),
", ‘“1);”@1) ,

= (ay), bl) -
2000, zl 2) (1)

<2-p (11)

where ¢ 20 and 0< f<1.

n

Proof. When the condition (11) holds for the coefficients

of G = @, + @,, by using (10) it is enough to prove that

),(0),
3 n(a(n- 1)+1>{(a1)n1(b1)n1 (2,), (b)} aE ), 0,

n=1

P €)na@ny (€)@
<2-p. (12)
Write the left side of equality (12) as _ |: (a1)2 (bl)z + aibl :| F c?va (]_)
(Cl_al_bl_2)2 Cl_al_bl_l
albl &, &,
+(a+1)—cl—a1—bl—lF°l "O+FAQ)
+a{ (az)z(bz)z + azbz :|Fca2»bz (1)
(Cz_az_bz_z)z Cz_az_bz_l ‘
a,b, b
— _1 272 0 Fab
(a ) b, 1 Foo (D),

by an apphcatlon of equation (8) and (9). This yield (11).
In order to prove that G is locally univalent and sense-

preserving in U, it is sufficient to show that

#1212,
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(D)= 1+z (?1) _1(21)) vt

S (@)ps(0), s
1-5 (n-1
SR 2R
(3)na(B) 0y
Z (Cl)n 1(1)n -1
_ a1b1 Z (a1 +1)n—1(b1 +1)n—l
Cl n=1 (C1+1)n—1(1)n—1
(a),(by),
z (c), @),
a(a),(b),
(Cl - a1 - bl - 2)2
L ab@a+)
c,-a-b-1

>2-f-

X F;l’bl (N

a(a,),(b,),
> (Cz —a, bz - 2)2 Fcaz,bz (1)
azbz ’
a,—b, -1

S 30, T'(c, +DI'(c, —a, —b, -1)

+

- C, 1—‘(‘3 —a )r(cz_bz)

(a‘ )n+l(b )n+1
- z (C )n+l(1)

@,)0(0,),
z‘ (CYNOR

In fact, for | Z; |<| Z, |[<1, we have

(D).

| G(Zl)_G(Zz) |
2| ¢1(Z1) _¢1(Zz) | - | ¢2(21) _¢2(Zz) |

(Z _ 2) Z(al) —1(b1) —l( Z 2)

(C )n 1(l)n -1
(a) B)n (0 _
Z . (7' -12;)
1_a2_b2
C,
(ai)n—l(bl)”—l
Ha-nll L e Lm.
2" @), |
n=2 | 4 A%2/n"2/n
7 (Cz)n(l)n
:l 4, -1 |
- 2-p |
@)y (0)0y
X > (Cl)nfl(l)”’1
2O ) 6
_ (Cz)n(l)n

In view of (12), | G(Z,) —G(Z,) |> 0 which shows that
G is univalent in U . This completes the proof.
Denote by HT (&, ) = HP(«, ) ﬂTH where

T,, [16], is the class of harmonic functions f =h+J of

the form

h(z)=z-) Az"and g(z)=->_Bz" (3
n=2 n=1

where A ,B >0 for n=12,...and B, <1.
Lemma 3. If f=h+g is given by (13), then

fe HT(a,ﬂ) if and only if

0

D nfa(n-1)+1](A, +B))<2- 4

n=1

where @ >0,0< f<1 A =1and 0<B, <1-4.

The sufficiency of this result is from Lemma 2 and the
proof of necessity is on lines similar to the proof of

Theorem 2.2 in (Yalcin & Oztiirk, 2004). Define
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6.(2) - z[ 4(2 )j Xy
(al)n l(bl)n -1 n
Z (Cl)n 1(1)n -1

(@0 (0,),
Z (CYNOR

on using (6) and (7). Clearly Gl e TH . Theorem 2. Let

a>0,0<pB<Lla;b; >0,c; >a;+b; +2, for
j=12 and a,b, <c,. G, isin HT(, ) if and
only if (11) holds.

Proof. If Gl e HT (e, ), then G1 satisfies (12) by

Lemma 3 and hence (11) holds.

Let0< B <la;b; >0,c; >3,

Theorem 3.
+b; +1, for j=12 and a,b, <C,. A necessary and

sufficient condition such that

f (4 +¢,) € HT (o, B) for T € HT (e, B) is that
Fa%()+F2™ (1) <3 (14)
where ¢1, ¢2 are as defined, respectively, by (6) and (7).

Proof. Let f =h+geHT(a, ), where h and g

are given by (13). Then

(f (4, +4,))(2) =h(2) *(2) + 9 (2) * 6, (2)
Z AN

(Cl)n 1(1) -1
(@), (0:)n g
Z (c,), (D), o

In view of Lemma3, we need to prove that

(f = (¢ +4,)) € HT (, B) if and only if

@)ns(®)ny
in(a(n _1)+1) (Cl)n l( )n -1 A]
L(@),(0), 5
(Cz)n(l)n ’
<2-p. (15)
As an application of Lemma 3, we have
A<—rPB _n_23..

n(e(n-10)+1)’

and

< 1-p
" n(a(n-1)+1)
Therefore, the left side of (15) is bounded above by

Z( IB) (a1) —1(b1) = Z( ﬂ) (a ) (b )

,n=12....

TS WD ~ A TS WY
e @) < @0,
~4-9) % SO} ) ©). ),

=(1-AIF Q)+ FF* D) -2]

The last expression is bounded above by (1— ) if and

only if (14) is satisfied. This proves (15) and the results

follows.

Theorem 4. If a;,b; >0 and ¢; >a; +b; +1 for

j =1, 2, then a sufficient condition for a function

GAH:KE?WQM+ﬁF§@®—Hm
tobein HP(«, ) is that

a(ah) it

+( a(azbz) +1] Fcaz,bz (1)
c,—a,—bh,-1 ?

<3-p

where @ >0 and 0< <1,

Proof. In view of Lemma 2, the function

G (Z) — 74+ Z (al) —1(b1) -1 n

n=2 ( 1/n 1(1)
S (az)n—l(bz)n—l n
+; (CZ)n—l(l)n ‘
isin HP(«a, ) if
(al)n—l(bl)n—l
g (€)@,
A S
(€)n (@),
<1-p. (16)

By a simple computation we obtain
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(a'l)n—l (bl)n—l
. @,
e
©) s,
- @), , (3,0,
= 1
Z?“”*{<qnm ).,

The result follows from an application of Lemma 1.

a,b >-1c >0ab <0,
a, >0,b, >0, and C;>a;+b;+2,j=12, then

Theorem 5. If

Gy(2) = [ R (t)dt— [ [F™ (t) ~1d
tobein HT (&, ) if and only if
( a(ab)
¢ -3 -h-1

_ a(a,h,)
a,—b,-1

ay,by
+1an 0

+1j53%0)+12ﬁ

where o >0 and 0< S <1.
Proof. We write

&b [ (@ +D), (0 +1),, n
GO L0,
_OO (az)n—l(bz)n—l n
; (Cz)n—l(l)n -

In view of Lemma 3 it is sufficient to show that

| aibl | (ai +1)n—2 (bl +1)n—2

. Cl (Cl + 1)n—2 (1)n
2D ) B

(€)@,

1n2

<1-p.
(17)

By a routine computation (17) can be written as

o lab | (@+1), (b +1),,
Z‘ ¢ (C+D) Dy
o (85),(0,),
Z; (), (D),
+Z |2 | (& +1), (b +1), , +i (8,),(5,),

G (Cl +1)n—1 (1)n n=1 (Cz)n (1)n
<(1-f).

Or equivalently
o (41,0 +1),  ac & (3,).(0,),
L e,@, Tanl " )0,
(a, +1), (b, +1), > (3,),(by),
z (€ +1)n My |31|01|Z (c,), (D),
_6l-p)
lab, |
But, this is equivalent to
acl . (al)n(bl) acl N (az)n(bz)n
alblgn ©n0, Tabi%" @0,
(@), , & < (@),
Z (c), @), |a1bl|Z (c,), @),
) cl(l—m
b |
which yields
a(aibl) ap,by
(cl—ai—bl—lﬂJFc“ ®
—(——%S%%%:E+1ja?%a)2—1+ﬁ.
This completes the proof.

In particular, the results parallel to Theorems 3, 6, 7

and 8 may also be obtained for the incomplete beta

function ¢(a,C;Z) as defined by (4) and (5). Let

4(2) = pla,.¢:2) = z+z§a@ )

and

4,(2) = pla,0,2) -1 Z(a)

where | a, < C, |. Making use of

a,
c,—a,-1

al E and Fa2 @»-1=

C,— a1 -1
the following theorems are obtained.
Theorem 6. If &, >0 and C; >a, +3for =12,

then a sufficient condition for G=¢ +¢, to be

harmonic univalent in U with ¢, + ¢72 e HP(a, B), is

that
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[ 2a(a,), +2aa1+cl—2} c,—1
(Cl_a1_3)2 C1_a1_2 C1_a1_1
N 2a(a,), L% c,-1
(Cz_az_3)z Cz_az_z Cz_az_l
<2-p (18)

where @ >0 and 0< <1,

Note that the condition (18) is necessary and

sufficient for G = ¢ -I—¢_2 tobein HT (e, f).
Theorem 7. Let 0< f<1a; >0, ¢, >a; +2, for
j=12 and a, <C,. A necessary and sufficient

condition such that f *(g +¢_2) e HT (o, ) for

f e HT («x, ) is that

c,—-1 c,—1 <3-8
¢—-a-1 ¢,—-a,-1

Theorem 8. If a; >0 and c, >4 +2for =12,

then sufficient condition for

[ pla.citdt+ [ Tp(a,,cp5t) ~1dt
isin HP(O{,ﬂ) is

o8 4 ¢ -1 e c,-1
c,—a-2 ¢-a-1 \c,-a,-2 c,-a,-1

<3-f

where @ 20 and 0< f<1.

Theorem 9. If Q > -1 C > 0,31 <0, a, > 0, and

C;>a;+3,]=12, then

[ pla,cst)dt— [ [o(a,,c,5t) ~1ct
isin HT (a, ﬁ) if and only if

[ o, +1] ¢-1 _[ aa, +1j c,-1 1
¢-4-2 )c-a-1\c,-a,-2 Jc,-a,-1

>p

where & 20 and0 < f<1.

Note that Theorems 3.1 and 3.5 in (Al-Khal & Al-
Kharsani, 2006) are respectively obtained from Theorem

8 and Theorem 4.
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