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The paper aims to investigate the isomorphism classes of low dimensional filiform Leibniz algebras over 

some classes of finite field. There are two sources to get the isomorphism classes of filiform Leibniz 

algebras. The first of them is the naturally graded non-Lie filiform Leibniz algebras and the other one is 

the naturally graded filiform Lie algebras. This paper deals with the isomorphism classes of filiform 

Leibniz algebras appearing from the naturally graded non-Lie filiform Leibniz algebras called non-Lie 

filiform Leibniz algebras. The complete list of isomorphism classes in term of invariant functions of low-

dimensional non-Lie filiform Leibniz algebras over ℤ𝑝 for𝑝 ≤ 5 will be provided.  
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I. INTRODUCTION 

 

Leibniz algebras were introduced by J-L Today as a "non-

antisymmetric" generalization of Lie algebras (Loday, 

1993). Leibniz algebras appear to be related in a natural 

way to several topics such as classical algebraic topology, 

quantum physics, homological algebra and many more 

(Albeverio et al., 2006).  

Isomorphism criteria of any class of algebras are very 

theoretical and difficult to solve. The classification of any 

class of algebras is important in order to study the 

structure of a member of the class itself. For the case of 

complex Leibniz algebras, the problems of classification 

have been solved for dimension up to ten (Albeverio et al., 

2006; Ayupov & Omirov, 1999; Rikhsiboev and 

Rakhimov, 2012; Khudoyberdiyevet et al., 2014; 

Rakhimov and Said Husain, 2011; Said Husain, 2011; 

Sozan et al., 2010; Mohamed et al., 2014; Deraman et al., 

2011; Mohd Kasim et al., 2014; Rakhimov & Said Husain, 

2011; Said Husain et al., 2010; Abdulkareem et al.,2015). 

Some of the classifications are based on solvability 

(Khudoyberdiyevet et al., 2014), nilpotentcy (Albeverio et 

al., 2006) and filiform (Rakhimov and Said Husain, 2011; 

Said Husain, 2011; Sozan et al., 2010; Mohamed et al., 

2014; Deraman et al., 2011; Mohd Kasim et al., 2014; 

Rakhimov & Said Husain, 2011; Said Husain et al., 2010; 

Abdulkareem et al., 2015). 

Besides the classification of algebras over complex 

field, there are also classifications over a special field 

which is p-adic (has zero characteristic). The 

classifications of filiform Leibniz algebras over p-adic 

have been done for the dimension up to eight (Ayupov and 

Kurbanbaev, 2010; Ladra et al., 2013; Khudoyberdiyev et 

al., 2010). Other than that Rakhimov et al., (2018) 

classified three dimensional Leibniz algebras over 

arbitrary field 𝕂 where 𝕂 =  ℝ, ℤ3, ℤ5and ℤ7. In this 
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paper,classification of four and five dimensional non-Lie 

filiform Leibniz algebras over ℤ𝑝where 𝑝 = 2, 3, 5 will be 

describe. In section II, basic concept of Leibniz algebras 

will be given. In section III, we give the isomorphism 

criteria and complete classification for low dimensional 

non-Lie filiform Leibniz algebras over ℤ𝑝. 

 

II. PRELIMINARIES 

 

In this section, definitions and theorems will be given and 

used to deal with the classification problem. 

Definition 1.(Said Husain et al., 2010)A Leibniz algebra 

is a vector space over 𝔽, equipped with a 𝔽-bilinear map 

[⋅,⋅]: 𝐿 ×  𝐿 → 𝐿 satisfying the Leibniz identity [[𝑥, 𝑦], 𝑧]  =

 [[𝑥, 𝑧], 𝑦]  + [𝑥, [𝑦, 𝑧]] for all 𝑥, 𝑦, 𝑧 ∈ 𝐿. 

Let L be a Leibniz algebra. The lower central series is 

defined as L1 = L and L𝑘+1 = [Lk, L] where k ∈  ℕ. Then, 

descending series can be written as L1 ⊃ L2 ⊃ ⋯ ⊃ Lr ⊃

⋯ . A Leibniz algebra L is said to be nilpotent if there 

exists an integer r ∈  ℕ such that Lr = {0}. 

Definition 2.(Mohamed et al., 2014)An n-dimensional 

Leibniz algebra L is said to be filiform if 𝑑𝑖𝑚𝐿𝑖  =  𝑛 − 𝑖, 

where 2 ≤  𝑖 ≤  𝑛. 

Filiform Leibniz algebras appeared from two sources 

which are naturally graded non-Lie filiform Leibniz 

algebras and naturally graded filiform Lie algebras. In this 

paper, the class of non-Lie filiform Leibniz algebras which 

is arising from naturally graded non-Lie filiform Leibniz 

algebras is considered. From the definition and theorem 

in  (Rakhimov and Said Husain, 2011; Said Husain, 2011; 

Ayupov and Kurbanbaev 2010) we have the following 

definition and theorem in the field of ℤ𝑝. 

Theorem 1.In an arbitrary n-dimensional non-Lie 

filiform Leibniz algebra over ℤ𝑝, there exists a basis 

{ 𝑒1, 𝑒2, ⋯ , 𝑒𝑛} such that the multiplication in this basis 

has one of thefollowing forms: 

1. 𝐹𝐿𝑏𝑛,𝑝: 

[𝑒1, 𝑒1] =  𝑒3, [𝑒𝑖 , 𝑒1] =  𝑒𝑖+1,              2 ≤ 𝑖 ≤ 𝑛 − 1, 

[𝑒1, 𝑒2] = 𝛼4𝑒4 + 𝛼5𝑒5 +⋯+ 𝛼𝑛−1𝑒𝑛−1 + 𝜃𝑒𝑛 , 

[𝑒𝑗 , 𝑒2] = 𝛼4𝑒𝑗+2 + 𝛼5𝑒𝑗+3 +⋯+ 𝛼𝑛+2−𝑗𝑒𝑛,               2 ≤ j 

≤ n − 2, 

2. 𝑆𝐿𝑏𝑛,𝑝: 

 
[𝑒1, 𝑒1] =  𝑒3, [𝑒𝑖 , 𝑒1] =  𝑒𝑖+1,               3 ≤ 𝑖 ≤ 𝑛 − 1, 

[𝑒1, 𝑒2] = 𝛽4𝑒4 + 𝛽5𝑒5 +⋯+ 𝛽𝑛𝑒𝑛, 

[𝑒2, 𝑒2] = 𝛾𝑒𝑛, 

[𝑒𝑗 , 𝑒2] = 𝛽4𝑒𝑗+2 + 𝛽5𝑒𝑗+3 +⋯+ 𝛽𝑛+2−𝑗𝑒𝑛 ,                3 ≤ j 

≤ n − 2, 

 

where 𝛼𝑖 , 𝜃, 𝛽𝑖 , 𝛾 ∈  ℤ𝑝and the omitted products are 

being zero. 

An adapted transformation can be represented as a 

product of the elementary basis changing. Definition 3 

below will be used in order to get the basis change. Basis 

transformation ϑwill be used for 𝐹𝐿𝑏𝑛 while δ will be used 

for 𝑆𝐿𝑏𝑛. 

Definition 3.Define the following types of basis 

transformation: 

𝜗(𝑎, 𝑏) =

{
 

 
𝑓(𝑒1) = 𝑎𝑒1 + 𝑏𝑒2,

𝑓(𝑒2) = (𝑎 + 𝑏)𝑒2 + 𝑏(𝜃 − 𝛼𝑛)𝑒𝑛−1,

𝑓(𝑒𝑖+1) = [𝑓(𝑒𝑖), 𝑓(𝑒1)] , 2 ≤ 𝑖 ≤ 𝑛 − 1,

𝑓(𝑒3) = [𝑓(𝑒1), 𝑓(𝑒1)] , 𝑎(𝑎 + 𝑏) ≠ 0,

 

𝛿(𝑎, 𝑏, 𝑑) =

{
 
 

 
 

𝑓(𝑒1) = 𝑎𝑒1 + 𝑏𝑒2,

𝑓(𝑒2) = 𝑑𝑒2 − 
𝑏𝑑 𝛾

𝑎
𝑒𝑛−1,

𝑓(𝑒𝑖+1) = [𝑓(𝑒𝑖), 𝑓(𝑒1)] , 3 ≤ 𝑖 ≤ 𝑛 − 1,

𝑓(𝑒3) = [𝑓(𝑒1), 𝑓(𝑒1)], 𝑎𝑑 ≠ 0,

 

where𝑎, 𝑏, 𝑑 ∈  ℤ𝑝. 

 

III. RESULTS AND DISCUSSIONS 

 

This section is divided into two subsections. For the 

first subsection, the isomorphism criteria for four and five 

dimensional non-Lie filiform Leibniz algebras over ℤ𝑝will 

be provided while for the second subsection, the complete 

isomorphism classes for four and five dimensional 

filiform Leibniz algebras over ℤ𝑝where 𝑝 = 2, 3, 5 will be 

described. 

 

 



ASM Science Journal, Volume 13, 2020 
 

3 
 

A. Isomorphism Criteria for non-Lie 

filiform Leibniz algebras over ℤ𝑝.  

 

The following theorems show the isomorphism criterion 

for 𝐹𝐿𝑏𝑛 and 𝑆𝐿𝑏𝑛 for dimensions four and five. 

Theorem 2.  

1. Algebras 𝐿1and 𝐿2 from 𝐹𝐿𝑏4,𝑝 are isomorphic if 

and only if there exist 𝑎, 𝑏 ∈ ℤ𝑝such that 

𝑎(𝑎 + 𝑏) ≠ 0 and satisfies the following 

relations: 

𝛼4
′  =  

(𝑎 + 𝑏)𝛼4
𝑎2

and𝜃′ = 
𝑎𝜃 +  𝑏𝛼4

𝑎2
. 

(1) 

2. Algebras 𝐿1and 𝐿2 from 𝑆𝐿𝑏4,𝑝 are said to be 

isomorphic if and only if there exist  𝑎, 𝑏, 𝑑 ∈ ℤ𝑝 

such that 𝑎𝑑 ≠  0, and the following conditions 

hold: 

𝛽4
′  =  

𝑑(𝑎𝛽4  +  𝑏𝛾)

𝑎3
and𝛾′ = 

𝑑2𝛾

𝑎3
.     (2) 

Proof of this theorem present in (Ariffin et al., 2018). 

Theorem 3. 

1. Two algebras 𝐿1and 𝐿2 from 𝐹𝐿𝑏5,𝑝 are 

isomorphic if and only if there exist 𝑎, 𝑏 ∈ ℤ𝑝 

such that 𝑎(𝑎 + 𝑏) ≠ 0 and satisfies the 

following relations: 

𝛼4
′ =  

(𝑎 + 𝑏)𝛼4
𝑎2

, 

𝛼5
′ =  

(𝑎 + 𝑏)𝛼5 − 2𝑎𝑏𝛼4
𝑎3

,                      (3) 

𝜃′ =  
𝑎2𝜃 +  𝑎𝑏𝛼5 − 2(𝑎 + 𝑏)𝑏𝛼4

2

𝑎4
. 

2. Two algebras 𝐿1and 𝐿2 from 𝑆𝐿𝑏5,𝑝 are 

isomorphic if and only if there exist 𝑎, 𝑏, 𝑑 ∈ ℤ𝑝 

such that 𝑎𝑑 ≠  0, and the following conditions 

hold: 

𝛽4
′ =  

𝑑𝛽4
𝑎2

, 

𝛽5
′ =  

𝑑(𝑎𝛽5  +  𝑏𝛾 − 2𝑏𝛽4
2)

𝑎4
,                  (4) 

𝛾′ =  
𝑑2𝛾

𝑎4
.  

Proof. For 𝐹𝐿𝑏5,𝑝, there exists a basis {e1, e2, e3, e4, e5} and 

from Theorem 1 we have the following algebras in 𝐹𝐿𝑏5,𝑝: 

[𝑒1, 𝑒1] =  𝑒3, [𝑒1, 𝑒2] = 𝛼4𝑒4 + 𝜃𝑒5, [𝑒2, 𝑒1] = 𝑒3,

[𝑒2, 𝑒2] = 𝛼4𝑒4 + 𝛼5𝑒5, [𝑒3, 𝑒1] =  𝑒4,

[𝑒3, 𝑒2] = 𝛼4𝑒5, [𝑒4, 𝑒1] = 𝑒5. 

Then, algebras from 𝐹𝐿𝑏5,𝑝 will undergo basis 

transformations 𝜗 from Definition 3 and have the 

following forms: 

𝑒1
′ =  𝑎𝑒1 + 𝑏𝑒2, 

𝑒2
′ =  (𝑎 + 𝑏)𝑒2 + 𝑏(𝜃 − 𝛼5)𝑒4, 

𝑒3
′ =  𝑎(𝑎 + 𝑏)𝑒3 + 𝑏(𝑎 + 𝑏)𝛼4𝑒4 + 𝑏(𝑎𝜃 + 𝑏𝛼5)e5, 

𝑒4
′ =  𝑎2(𝑎 +  𝑏)𝑒4 + 2𝑎𝑏(𝑎 + 𝑏)𝛼4𝑒5, 

𝑒5
′ = 𝑎3(𝑎 + 𝑏)𝑒5, 

where 𝑎3(𝑎 + 𝑏) ≠ 0 and 𝑎, 𝑏, 𝛼4, 𝛼5, 𝜃 ∈ ℤ𝑝. 

After these algebras undergo basis transformation, we 

compute them into a new table of multiplication respect 

to the new basis {e1
′ , e2

′ , e3
′ , e4

′ , e5
′ }and obtain the following 

system of equations: 

𝛼4
′ (𝑎2(𝑎 + 𝑏)) = 𝑎(𝑎 + 𝑏)𝛼4 + 𝑏(𝑎 + 𝑏)𝛼4, 

(𝑎 + 𝑏)2𝛼5 = 2𝑎𝑏(𝑎 + 𝑏)𝛼4 + 𝛼5
′ 𝑎3(𝑎 + 𝑏), 

 𝑎𝜃 + 𝑏𝛼5 = 2𝑎𝑏𝛼4𝛼4
′ + 𝜃′𝑎3, 

and can be expressed as follow 

𝛼4
′ =

(𝑎 + 𝑏)𝛼4
𝑎2

, 

𝛼5
′ =

(𝑎 + 𝑏)𝛼5 − 2𝑎𝑏𝛼4
𝑎3

, 

𝜃′ =
𝑎2𝜃 + 𝑎𝑏𝛼5 − 2𝑏(𝑎 + 𝑏)𝛼4

2

𝑎3
.   

Thus we proved Theorem 3 for 𝐹𝐿𝑏5,𝑝. 

Note that proof for 𝑆𝐿𝑏5,𝑝 in Theorem 3 is similar with 

𝐹𝐿𝑏5,𝑝.    ∎ 

We represent the algebras for four dimensional 𝐹𝐿𝑏4,𝑝 

as 𝐿(𝛼4, 𝜃) and 𝑆𝐿𝑏4,𝑝 as 𝐿(𝛽4, 𝛾). Meanwhile the algebras 

for 𝐹𝐿𝑏5,𝑝 and 𝑆𝐿𝑏5,𝑝 of five dimensional will be written as 

𝐿(𝛼4, 𝛼5, 𝜃) and 𝐿(𝛽4, 𝛽5, 𝛾)respectively. 
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B. Isomorphism Classes of Low 

Dimensional Non-Lie Filiform Leibniz 

Algebras over ℤ𝑝 

In this subsection, the isomorphism classes of non-Lie 

filiform Leibniz algebras over ℤ𝑝in dimensions four and 

five are provided. 

Theorem 4. Let L be an element of𝐹𝐿𝑏4,𝑝 or 𝑆𝐿𝑏4,𝑝. Then 

L is said to be isomorphic to one of the following 

pairwise nonisomorphic Leibniz algebras: 

 ℤ𝑝 Representative  

𝐹𝐿𝑏4,𝑝 

𝑝 = 2 
𝐿1(1, 𝜆) 

𝜆 ∈ ℤ2 
𝐿2(0, 𝜆) 

𝑝 = 3 

𝐿1(1, 𝜆) 

𝜆 ∈ ℤ3 𝐿2(2, 𝜆) 

𝐿3(0, 𝜆) 

𝑝 = 5 

𝐿1(0, 𝜆) 

𝜆 ∈ ℤ5 

𝐿2(1, 𝜆) 

𝐿3(2, 𝜆) 

𝐿4(3, 𝜆) 

𝐿5(4, 𝜆) 

𝑆𝐿𝑏4,𝑝 

𝑝 = 2 
𝐿3(𝜆, 1) 

𝜆 ∈ ℤ2 
𝐿4(𝜆, 0) 

𝑝 = 3 

𝐿4(𝜆, 1) 

𝜆 ∈ ℤ3 𝐿5(𝜆, 2) 

𝐿6(𝜆, 0) 

𝑝 = 5 

𝐿6(𝜆, 0) 

𝜆 ∈ ℤ5 

𝐿7(𝜆, 1) 

𝐿8(𝜆, 2) 

𝐿9(𝜆, 3) 

𝐿10(𝜆, 4) 

 

Proving for this Theorem 4 can be referred in (Ariffin et 

al., 2018). 

Theorem 5.The isomorphism classes offive dimensional 

non-Lie filiform Leibniz algebras over ℤ𝑝 where 𝑝 =

2, 3, 5  can be represented in Table 1. 

Proof. Firstly, for 𝐹𝐿𝑏5,2. From Theorem 3, since the field 

is ℤ2, then from (3) we obtain the following isomorphism 

criteria. 

𝛼4
′ =  

(𝑎 + 𝑏)𝛼4
𝑎2

, 

𝛼5
′ =  

(𝑎 + 𝑏)𝛼5
𝑎3

,                                                         (5) 

𝜃′ =  
𝑎2𝜃 +  𝑎𝑏𝛼5

𝑎4
.  

Know that 𝑎(𝑎 + 𝑏) ≠ 0 and 𝑎 ≠ 0. Since {a, b} ∈ ℤ2 

then we have 𝑎 = 1 and 𝑏 = 0.  

From (5), we obtain 

𝛼4
′ = 𝛼4,   𝛼5

′ = 𝛼5,   𝜃
′ = 𝜃. 

Now we consider two cases where 𝛼4 = 0 and 𝛼4 ≠ 0 

and again two cases where 𝛼5 = 0 and 𝛼5 ≠ 0. As a result, 

we get 𝐿1(0,0, 𝜆), 𝐿2(0,1, 𝜆), 𝐿3(1,0, 𝜆) and 𝐿4(1,1, 𝜆) where 

𝜆 = 𝜃 ∈ ℤ2. 

Next, for 𝐹𝐿𝑏5,3 where the field is ℤ3. The system of 

equation (3) becomes: 

𝛼4
′  =  

(𝑎 + 𝑏)𝛼4
𝑎2

, 

𝛼5
′  =  

(𝑎 + 𝑏)𝛼5 + 𝑎𝑏𝛼4
𝑎3

,                                          (6) 

𝜃′ =  
𝑎2𝜃 +  𝑎𝑏𝛼5 + 𝑏(𝑎 + 𝑏)𝛼4

2

𝑎4
. 

Here, four cases are to be considered where (a, b)  =

 {(1,0), (1,1), (2,0), (2,2)}. 

For case(a, b)  =  (1,0). From (6), we have the 

following relation: 

𝛼4
′ = 𝛼4,   𝛼5

′ = 𝛼5,   𝜃
′ = 𝜃. 

As a result, nine algebras are obtained which are 

𝐿1(0,0, 𝜆), 𝐿2(0,1, 𝜆), 𝐿3(0,2, 𝜆), 𝐿4(1,0, 𝜆), 𝐿5(1,1, 𝜆),

𝐿6(1,2, 𝜆), 𝐿7(2,0, 𝜆), 𝐿8(2,1, 𝜆) and 𝐿9(2,2, 𝜆) where the 

value of 𝜆 ∈ ℤ3. 

For thesecond case where (a, b)  =  (1,1), system 

(6) becomes: 

𝛼4
′ = 2𝛼4,   𝛼5

′ = 2𝛼5 + 𝛼4,   𝜃
′ = 𝜃 + 𝛼5 + 2𝛼4

2. 

Then, we consider case by case and get the same 

algebras as in the case(a, b)  = (1,0). 

Next, the third case is (a, b)  =  (2,0). We get the 

following isomorphism criteria 
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𝛼4
′ = 2𝛼4,   𝛼5

′ = 𝛼5,   𝜃
′ = 𝜃. 

The algebras obtained from this case are equivalent to 

the case (a, b)  =  {(1,0), (1,1)}.  

Lastly for the case (a, b)  =  (2,1), we have: 

𝛼4
′ = 𝛼4,   𝛼5

′ =
𝛼5 + 𝛼4

2
,   𝜃′ = 𝜃 + 𝛼5 + 2𝛼4

2. 

In this case we only obtain six algebras since the 

values of 𝛼5 is limited as we need 𝛼5
′ ∈ ℤ3. The algebras 

𝐿1(0,0, 𝜆) where λ = θ ∈ ℤ3, 𝐿2(0,1, 𝜆) where λ = θ+ 2 ∈

ℤ3, 𝐿4(1,0, 𝜆) where λ = θ+ 1 ∈ ℤ3, 𝐿5(1,1, 𝜆) where λ =

θ ∈ ℤ3, 𝐿7(2,0, 𝜆) where λ = θ ∈ ℤ3 and 𝐿8(2,1, 𝜆) where 

λ = θ + 2 ∈ ℤ3 are obtained. 

Lastly, for 𝐹𝐿𝑏5,5, we get the isomorphism criteria as 

follows: 

𝛼4
′  =  

(𝑎 + 𝑏)𝛼4
𝑎2

, 

𝛼5
′  =  

(𝑎 + 𝑏)𝛼5 + 3𝑎𝑏𝛼4
𝑎3

,                                       (7) 

𝜃′ =  
𝑎2𝜃 +  𝑎𝑏𝛼5 + 3𝑏(𝑎 + 𝑏)𝛼4

2

𝑎4
. 

In 𝐹𝐿𝑏5,5, we consider four cases where(a, b)  =

 {(1, {0,1,2,3}), (2, {0,1,2,4}), (3, {0,1,3,4}), (4, {0,2,3,4})}. 

As usual, in order to obtain the algebras, we solve them 

case by case. Throughout the calculation, we observe that 

in ℤ5, we have a total of 25 algebras (see in Table 1). 

Secondly, proving for 𝑆𝐿𝑏5,𝑝 where 𝑝 =  2,3,5 is quite 

similar with 𝐹𝐿𝑏5,𝑝. The only differences are the condition 

in Theorem 5 where 𝑎𝑑 ≠ 0 and the isomorphism criteria 

for each ℤ𝑝.  

In 𝑆𝐿𝑏5,2, we get the isomorphism criteria as follow: 

𝛽4
′  =  

𝑑𝛽4
𝑎2

,  𝛽5
′  =  

𝑑(𝑎𝛽5  +  𝑏𝛾)

𝑎4
,𝛾′ = 

𝑑2𝛾

𝑎4
.  

Meanwhile in ℤ3, the following relations are obtain: 

𝛽4
′  =  

𝑑𝛽4
𝑎2

,  𝛽5
′  =  

𝑑(𝑎𝛽5  +  𝑏𝛾 + 𝛽4
2)

𝑎4
, 𝛾′ =  

𝑑2𝛾

𝑎4
.  

Lastly, in ℤ5, we have the following systems: 

𝛽4
′ =  

𝑑𝛽4
𝑎2
,  

𝛽5
′ =  

𝑑(𝑎𝛽5  +  3𝑏𝛾 + 3𝛽4
2)

𝑎4
,  

𝛾′ = 
𝑑2𝛾

𝑎4
.                                                          

 

IV. CONCLUSION 

 

As dimension increase, the number of algebras for 

each ℤ𝑝 also increase. 

Conjecture: The number of isomorphism classes of 

n-dimensional Leibniz algebra over ℤ𝑝 is 2𝑝𝑛−3where 𝑛 ≥

4. 
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TABLE 1: Isomorphism classes of five dimensional non-Liefiliform Leibniz algebras over ℤ𝑃. 

 

ℤ𝑝 
Representative  

𝐹𝐿𝑏5,𝑝 𝑆𝐿𝑏5,𝑝  

𝑝 = 2 
𝐿1(0,0, 𝜆) 𝐿2(0,1, 𝜆) 𝐿5(0, 𝜆, 0) 𝐿6(0, 𝜆, 1) 

𝜆 ∈ ℤ2 
𝐿3(1,0, 𝜆) 𝐿4(1,1, 𝜆) 𝐿7(1, 𝜆, 0) 𝐿8(1, 𝜆, 1) 

𝑝 = 3 

𝐿1(0,0, 𝜆) 𝐿2(0,1, 𝜆) 𝐿10(0, 𝜆, 0) 𝐿11(0, 𝜆, 1) 

𝜆 ∈ ℤ3 

𝐿3(0,2, 𝜆) 𝐿4(1,0, 𝜆) 𝐿12(0, 𝜆, 2) 𝐿13(1, 𝜆, 0) 

𝐿5(1,1, 𝜆) 𝐿6(1,2, 𝜆) 𝐿14(1, 𝜆, 1) 𝐿15(1, 𝜆, 2) 

𝐿7(2,0, 𝜆) 𝐿8(2,1, 𝜆) 𝐿16(2, 𝜆, 0) 𝐿17(2, 𝜆, 1) 

𝐿9(2,2, 𝜆) 𝐿18(2, 𝜆, 2) 

𝑝 = 5 

𝐿1(0,0, 𝜆) 𝐿2(0,1, 𝜆) 𝐿26(0, 𝜆, 0) 𝐿27(0, 𝜆, 1) 

𝜆 ∈ ℤ5 

𝐿3(0,2, 𝜆) 𝐿4(0,3, 𝜆) 𝐿28(0, 𝜆, 2) 𝐿29(0, 𝜆, 3) 

𝐿5(0,4, 𝜆) 𝐿6(1,0, 𝜆) 𝐿30(0, 𝜆, 4) 𝐿31(1, 𝜆, 0) 

𝐿7(1,1, 𝜆) 𝐿8(1,3, 𝜆) 𝐿32(2, 𝜆, 0) 𝐿33(3, 𝜆, 0) 

𝐿9(1,4, 𝜆) 𝐿10(2,0, 𝜆) 𝐿34(4, 𝜆,0) 𝐿35(1, 𝜆, 1) 

𝐿11(2,1, 𝜆) 𝐿12(2,3, 𝜆) 𝐿36(1, 𝜆, 2) 𝐿37(1, 𝜆, 3) 

𝐿13(2,4, 𝜆) 𝐿14(3,0, 𝜆) 𝐿38(1, 𝜆, 4) 𝐿39(2, 𝜆, 1) 

𝐿15(3,1, 𝜆) 𝐿16(3,3, 𝜆) 𝐿40(2, 𝜆, 2) 𝐿41(2, 𝜆, 3) 

𝐿17(3,4, 𝜆) 𝐿18(4,0, 𝜆) 𝐿42(2, 𝜆, 4) 𝐿43(3, 𝜆, 1) 

𝐿19(4,1, 𝜆) 𝐿20(4,3, 𝜆) 𝐿44(3, 𝜆, 2) 𝐿45(3, 𝜆, 3) 

𝐿21(4,4, 𝜆) 𝐿22(1,2, 𝜆) 𝐿46(3, 𝜆, 4) 𝐿47(4, 𝜆, 1) 

𝐿23(2,2, 𝜆) 𝐿24(3,2, 𝜆) 𝐿48(4, 𝜆, 2) 𝐿49(4, 𝜆, 3) 

𝐿25(4,2, 𝜆) 𝐿50(4, 𝜆, 4) 

 

 

 


