Some Coefficient Problems on Bi-univalent Functions

Andy Liew Pik Hern * and Aini Janteng

Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia.

In the open unit disk $D=\{z\epsilon\mathbb{C}\colon |z|<1\}$, we denote A be the class of all analytic functions $f\left(z\right)$. We consider conditions $f\left(0\right)=0$ and $f'\left(0\right)=1$ so called normalized condition and denote Σ as the class of bi-univalent functions defined in D. If both $f\left(z\right)$ and $f^{-1}\left(f\left(z\right)\right)$ are univalent in D, we say that a function $f\in A$ to be bi-univalent in D. In this paper, some subclasses of bi-univalent functions are introduced. Coefficient estimates on $|a_2|$ and $|a_3|$ are determined. In addition, the upper bounds of the Fekete-Szegő functional are also obtained.

Keywords: analytic functions, bi-univalent functions, coefficient estimates, Fekete-Szegő functional

I. INTRODUCTION

In this paper, the class of functions f(z) which are analytic in the open unit disk $D = \{z \in \mathbb{C} : |z| < 1\}$ in the form of

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (z \in D)$$
 (1)

is denoted by A. We denote $S \subset A$ which are univalent in D as well. According (Duren, 1983), the Koebe one-quarter theorem showed the image of D under every univalent functions f in S contains a disk of radius 1/4. So, an inverse for every univalent function f can be defined as

$$f^{-1}(f(z)) = z$$

and

$$f(f^{-1}(w)) = w$$
, $(|w| < r_o(f), r_o(f) \ge 1/4)$.

Thus, for a function $f \in A$, if both f and f^{-1} are univalent in D, this function is bi-univalent function. The notation of bi-univalent is Σ .

Motivated by the previous works, for example (Shanmugam & Sivasubramanian, 2005), (Janteng et al., 2006), (Aouf et al., 2013), (Zaprawa, 2014) and (Altinkaya & Yalcin, 2017),we consider the following subclasses of Σ .

Definition 1. A function $f(z) \in \sum \inf(1)$ is said to be in the class $A_{\Sigma}(\alpha,\lambda)$ with $0 < \alpha \le 1$ and $\lambda \ge 0$ if: $f \in \Sigma$ and

$$\left| \arg \left(\frac{\lambda z^2 f''(z)}{f(z)} + \frac{zf'(z)}{f(z)} \right) \right| < \frac{\alpha \pi}{2}, \quad z \in D$$
 (2)

and

$$\left| \arg \left(\frac{\lambda w^2 g''(w)}{g(w)} + \frac{w g'(w)}{g(w)} \right) \right| < \frac{\alpha \pi}{2}, \quad w \in D$$
 (3)

where

$$g(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \dots$$
(4)

Definition 2. A function $f(z) \in \Sigma$ in (1) is said to be in class $A_{\Sigma}(\beta, \lambda)$ with $0 \le \beta < 1$ and $\lambda \ge 0$ if:

$$\operatorname{Re}\left(\frac{\lambda z^{2} f''(z)}{f(z)} + \frac{zf'(z)}{f(z)}\right) > \beta \quad (5)$$

and

$$\operatorname{Re}\left(\frac{\lambda w^{2} g''(w)}{g(w)} + \frac{w g'(w)}{g(w)}\right) > \beta . (6)$$

Definition 3. A function $f(z) \in \sum \inf(1)$ is said to be in the class $B_{\Sigma}(\alpha, \lambda)$ with $0 < \alpha \le 1$ and $\lambda \ge 0$ if: $f \in \Sigma$ and

$$\left| \arg \left(\frac{\left(\lambda z^2 f''(z) + z f'(z) \right)'}{f'(z)} \right) \right| < \frac{\alpha \pi}{2}, \quad z \in D$$
 (7)

^{*}Corresponding author's e-mail: andyliew1992@yahoo.com

and

$$\left| \arg \left(\frac{\left(\lambda w^2 g''(w) + w g'(w) \right)'}{g'(w)} \right) \right| < \frac{\alpha \pi}{2}, \quad w \in D.(8)$$

Definition 4. A function $f(z) \in \Sigma$ in (1) is said to be in class $B_{\Sigma}(\beta, \lambda)$ with $0 \le \beta < 1$ and $\lambda \ge 0$ if:

$$\operatorname{Re}\left(\frac{\left(\lambda z^{2} f''(z) + z f'(z)\right)'}{f'(z)}\right) > \beta \quad (9)$$

and

$$\operatorname{Re}\left(\frac{\left(\lambda w^{2}g''(w)+wg'(w)\right)'}{g'(w)}\right)>\beta. \tag{10}$$

This paper obtained the upper bound for coefficients $|a_2|$ and $|a_3|$ and Fekete-Szegö functional for f in the subclasses of Σ .

II. METHODS

The following lemmas are required to get the main results.

Lemma 1. (Duren, 1983) If $p \in P$ then $|p_k| \le 2$ for each k, where P is the family of all functions p analytic in D, Re(p(z)) > 0, $p(z) = 1 + p_1 z + p_2 z^2 + p_3 z^3 + \cdots$ for $z \in D$.

Lemma 2. (Zaprawa, 2014) Let $k, l \in \mathbb{R}$ and $z_1, z_2 \in \mathbb{C}$. If $|z_1| < R$ and $|z_2| < R$ then

$$\left| (k+l)z_1 + (k-l)z_2 \right| \le \begin{cases} 2|k|R & \text{for } |k| \ge |l| \\ 2|l|R & \text{for } |k| \le |l| \end{cases}$$

III. RESULTS

The main result for $f \in A_{\Sigma}(\alpha, \lambda)$ is stated as follows.

Theorem 1. Let f in (1) be in the class $A_{\Sigma}(\alpha, \lambda)$ where $0 < \alpha \le 1$ and $\lambda \ge 0$. Then

$$|a_2| \le \frac{2\alpha}{\sqrt{4\lambda[\lambda(1-\alpha)+\alpha+1]+\alpha+1}}$$
 (11)

and

$$\left|a_{3}\right| \leq \frac{4\alpha^{2}}{\left(2\lambda+1\right)^{2}} + \frac{\alpha}{3\lambda+1}.$$
 (12)

$$\frac{\left(\lambda z^2 f''(z) + z f'(z)\right)'}{f'(z)} = \left[p(z)\right]^{\alpha} \tag{13}$$

and

$$\frac{\left(\lambda w^2 g''(w) + w g'(w)\right)'}{g'(w)} = \left[q(w)\right]^a \tag{14}$$

where p(z) and q(w) in P have the forms $p(z)=1+p_1z+p_2z^2+\dots$ and

$$q(w) = 1 + q_1 w + q_2 w^2 + q_3 w^3 + \dots$$
 respectively.

From (1), we may get

$$\frac{\lambda z^2 f''(z) + z f'(z)}{f(z)} = 1 + a_2 (2\lambda + 1) z + \left[2a_3 (3\lambda + 1) - a_2^2 (2\lambda + 1) \right] z^2 + \dots$$
(15)

$$=1+a_2(2\lambda+1)z+\lfloor 2a_3(3\lambda+1)-a_2^2(2\lambda+1)\rfloor z^2+\dots$$

and from (4) we can get

$$\frac{\lambda w^2 g''(w) + w g'(w)}{g(w)}$$

$$=1-a_{2}(2\lambda+1)w+\begin{bmatrix}2a_{3}(2a_{2}^{2}-a_{3})(3\lambda+1)\\-a_{2}^{2}(2\lambda+1)\end{bmatrix}w^{2}+\dots$$
(16)

Hence, equations (17) and (18) give

$$1 + a_{2}(2\lambda + 1)z + \left[2a_{3}(3\lambda + 1) - a_{2}^{2}(2\lambda + 1)\right]z^{2} + \dots$$

$$= 1 + \alpha p_{1}z + \left[\alpha p_{2} + \frac{\alpha(\alpha - 1)}{2}p_{1}^{2}\right]z^{2} + \dots$$
(17)

and

$$1 - a_{2}(2\lambda + 1)w + \begin{bmatrix} 2a_{3}(2a_{2}^{2} - a_{3})(3\lambda + 1) \\ -a_{2}^{2}(2\lambda + 1) \end{bmatrix}w^{2} + \dots$$

$$= 1 + \alpha q_{1}w + \left[\alpha q_{2} + \frac{\alpha(\alpha - 1)}{2}q_{1}^{2}\right]w^{2} + \dots$$
(18)

Next, by suitably comparing coefficients of z and z^2 in (17) and comparing coefficients of w and w^2 in (18), we get

$$a_2(2\lambda+1) = \alpha p_1, \tag{19}$$

$$2a_3(3\lambda+1) - a_2^2(2\lambda+1) = \alpha p_2 + \frac{\alpha(\alpha-1)}{2}p_1^2, \quad (20)$$

$$-a_2(2\lambda+1) = \alpha q_1, \qquad (21)$$

$$2(2a_2^2-a_3)(3\lambda+1)-a_2^2(2\lambda+1)$$

$$=\alpha q_2 + \frac{\alpha(\alpha-1)}{2}q_1^2 \tag{22}$$

By dividing (19) and (21), we get

$$p_1 = -q_1.$$

Next, by adding the square of equations (19) and (21), we may get

$$2a_2^2(2\lambda+1)^2 = \alpha^2(p_1^2 + q_1^2). \quad (23)$$

Now, by adding of equations (20) and (22), we find that

Proof. It follows from (2) and (3) that

$$2a_{3}(3\lambda+1)-a_{2}^{2}(2\lambda+1)+4\alpha_{2}^{2}(3\lambda+1)$$

$$-2a_{3}(3\lambda+1)-a_{2}^{2}(2\lambda+1)$$

$$=\alpha(p_{2}+q_{2})+\frac{\alpha(\alpha-1)}{2}(p_{1}^{2}+q_{1}^{2})$$
(24)

Then, from (23), by replacing $p_1^2 + q_1^2$ into equation (24), we obtain

$$a_2^2 = \frac{\alpha^2 (p_2 + q_2)}{4\lambda \left[\lambda (1 - \alpha) + \alpha + 1\right] + \alpha + 1}$$
 (25)

By applying triangle inequality and Lemma 1.1 for the coefficients p_2 and q_2 into equation (25), we finally get:

$$|a_2| \le \frac{2\alpha}{\sqrt{4\lambda[\lambda(1-\alpha)+\alpha+1]+\alpha+1}}$$
.

This gives the bound on $|a_2|$ in (11). Next, to find $|a_3|$, by subtracting (22) from (20), we get

$$4a_{3}(3\lambda+1)-4a_{2}^{2}(3\lambda+1)$$

$$=\alpha(p_{2}-q_{2})+\frac{\alpha(\alpha-1)}{2}(p_{1}^{2}-q_{1}^{2})$$

Since $p_1 = -q_1$ then $p_1^2 = q_1^2$. Next, we have

$$a_3 = a_2^2 + \frac{\alpha(p_2 - q_2)}{4(3\lambda + 1)} \tag{26}$$

From (23), we can get $a_2^2 = \frac{\alpha^2 (p_1^2 + q_1^2)}{2(2\lambda + 1)^2}$.

Thus, by substituting $a_2^2 = \frac{\alpha^2 (p_1^2 + q_1^2)}{2(2\lambda + 1)^2}$ into equation

(26), we obtain

$$a_{3} = \frac{\alpha^{2} (p_{1}^{2} + q_{1}^{2})}{2(2\lambda + 1)^{2}} + \frac{\alpha (p_{2} - q_{2})}{4(3\lambda + 1)}$$
 (27)

Once again, applying triangle inequality and Lemma 1.1 for the coefficients $\,p_1^{}$, $\,p_2^{}$, $\,q_1^{}$ and $\,q_2^{}$ into equation (27), we get:

$$|a_3| \leq \frac{4\alpha^2}{(2\lambda+1)^2} + \frac{\alpha}{3\lambda+1}.$$

Theorem 1 is completely proven.

Taking $\lambda = 0$ in Theorem 1, we obtain the following corollary.

Corollary 1 (Murugusundaramoorthy & Magesh, 2009)Let f(z) in (1) be in the class $SS_{\Sigma}^{*}(\alpha)$ and $0 < \alpha \le 1$. Then

$$|a_2| \leq \frac{2\alpha}{\sqrt{\alpha+1}}$$
,

and

$$|a_3| \le 4\alpha^2 + \alpha$$
.

Next, we obtained Theorem 2, Theorem 3 and Theorem4.

Theorem 2 Let f in (1) be in the class $A_{\Sigma}(\beta, \lambda)$ where $0 \le \beta < 1$ and $\lambda \ge 0$. Then

$$\left| a_2 \right| \le \sqrt{\frac{2(1-\beta)}{4\lambda + 1}} \tag{28}$$

and

$$|a_3| \le \frac{4(1-\beta)^2}{(2\lambda+1)^2} + \frac{1-\beta}{3\lambda+1}$$
. (29)

Taking $\lambda = 0$ in Theorem 2, we obtain the following corollary.

Corollary 2 (Murugusundaramoorthy & Magesh, 2009)Let f(z) in (1) be in the class $S_{\Sigma}^{*}(\beta)$ and $0 \le \beta < 1$. Then

$$|a_2| \leq \sqrt{2(1-\beta)}$$

and

$$|a_3| \le 4(1-\beta)^2 + 1 - \beta$$
.

Theorem 3 Let f in (1) be in the class $B_{\Sigma}(\alpha, \lambda)$ where $0 < \alpha \le 1$ and $\lambda \ge 0$. Then

$$\left|a_{2}\right| \leq \frac{\alpha}{\sqrt{\alpha(5\lambda+1)+\left(1-\alpha\right)\left(2\lambda+1\right)^{2}}}$$
 (30)

and

$$\left|a_{3}\right| \leq \frac{\alpha^{2}}{\left(2\lambda+1\right)^{2}} + \frac{\alpha}{3\left(3\lambda+1\right)} \tag{31}$$

Taking $\lambda = 0$ in Theorem 3, we obtain the following corollary.

Corollary 3 (Zaprawa, 2014) Let f(z) in (1) be in the class $B_{\Sigma}(\alpha)$ and $0 < \alpha \le 1$. Then

$$|a_2| \le \alpha$$

and

$$|a_3| \leq \alpha^2 + \frac{\alpha}{3}$$
.

Theorem 4 Let f in (1) be in the class $B_{\Sigma}(\beta, \lambda)$ where $0 < \alpha \le 1$ and $\lambda \ge 0$. Then

$$\left| a_2 \right| \le \sqrt{\frac{1-\beta}{5\lambda + 1}} \,, \tag{32}$$

and

$$|a_3| \le \frac{2(1-\beta)^2}{(2\lambda+1)^2} + \frac{1-\beta}{3(3\lambda+1)}.$$
 (33)

Taking $\lambda = 0$ in Theorem 4, we obtain the following corollary.

Corollary 4 Let f(z) in (1) be in the class $B_{\Sigma}(\beta)$ and $0 \le \beta < 1$. Then

$$|a_2| \leq \sqrt{1-\beta}$$

and

 \leq

$$|a_3| \le 2(1-\beta)^2 + \frac{1}{3}(1-\beta).$$

Our second main results for the classes $A_{\Sigma}(\alpha,\lambda)$, $A_{\Sigma}(\beta,\lambda)$, $B_{\Sigma}(\alpha,\lambda)$ and $B_{\Sigma}(\beta,\lambda)$ are given by Theorem 5, Theorem 6, Theorem 7 and Theorem 8.

If $f \in A_{\Sigma}(\alpha, \lambda)$, $0 < \alpha \le 1$, $\lambda \ge 0$ and Theorem 5 $\mu \in \mathbb{R}$, then $|a_3 - \mu a_2^2|$

$$\begin{cases} \frac{4\alpha^{2}}{2\alpha(4\lambda+1)-(\alpha-1)(2\lambda+1)^{2}} |1-\mu| & \text{for } 4\alpha(3\lambda+1)|(1-\mu)| \\ \frac{2\alpha(4\lambda+1)-(\alpha-1)(2\lambda+1)^{2}}{2\alpha(4\lambda+1)-(\alpha-1)(2\lambda+1)^{2}}, & +\left[h(\alpha,\lambda)(1-\mu)-\frac{\alpha}{4(3\lambda+1)}\right]q_{2} \\ \frac{\alpha}{3\lambda+1} & \text{for } 4\alpha(3\lambda+1)|(1-\mu)| \\ & \leq 2\alpha(4\lambda+1)-(\alpha-1)(2\lambda+1)^{2}. & |a_{3}-\mu a_{2}| \end{cases}$$
From Lemma 1 and Lemma 2, we obtain
$$\leq 2\alpha(4\lambda+1)-(\alpha-1)(2\lambda+1)^{2}. \qquad |a_{3}-\mu a_{2}|$$

$$(34) \qquad |a_{3}-\mu a_{2}|$$

Proof. Let f given by (1) be in $A_{\Sigma}(\alpha,\lambda)$, $0 < \alpha \le 1$, $\lambda \ge 0$ and $\mu \in \mathbb{R}$.

By adding of equations (20) and (22), we find that $2a_{2}^{2}(4\lambda+1)$

$$= \alpha (p_2 + q_2) + \frac{1}{2} \alpha (\alpha - 1) (p_1^2 + q_1^2)^{(35)}$$

Next, by subtracting of equations (22) from (20), we get

$$a_3 = a_2^2 + \frac{\alpha(p_2 - q_2)}{4(3\lambda + 1)} \tag{36}$$

From equation (23), we have

$$p_1^2 + q_1^2 = \frac{2a_2^2 (2\lambda + 1)^2}{\alpha^2}$$
 (37)

By substituting equation (37) into equation (35), yields

$$a_2^2 = \frac{\alpha^2}{2\alpha(4\lambda+1)-(\alpha-1)(2\lambda+1)^2}(p_2+q_2)$$
 (38)

By substituting equation (38) into equation (36),

$$a_3$$

$$= \left[\frac{\alpha^{2}}{2\alpha(4\lambda+1)-(\alpha-1)(2\lambda+1)^{2}}\right](p_{2}+q_{2})$$

$$+\frac{\alpha}{4(3\lambda+1)}(p_{2}-q_{2})$$
(39)

Thus, from equations (38) and (39), we obtain

$$\begin{split} & = \left[\frac{\alpha^{2}}{2\alpha(4\lambda+1) - (\alpha-1)(2\lambda+1)^{2}}\right](p_{2}+q_{2}) + \frac{\alpha}{4(3\lambda+1)}(p_{2}-q_{2}) \\ & -\mu\left[\frac{\alpha^{2}}{2\alpha(4\lambda+1) - (\alpha-1)(2\lambda+1)^{2}}(p_{2}+q_{2})\right] \\ & = h(\alpha,\lambda)(1-\mu)(p_{2}+q_{2}) + \frac{\alpha}{4(3\lambda+1)}(p_{2}-q_{2}) \end{split}$$

where
$$h(\alpha, \lambda) = \frac{\alpha^2}{2\alpha(4\lambda+1)-(\alpha-1)(2\lambda+1)^2}$$
 is

nonnegative. Hence,

$$a_{3} - \mu a_{2}^{2}$$

$$= h(\alpha, \lambda)(1 - \mu) p_{2} + h(\alpha, \lambda)(1 - \mu) q_{2}$$

$$+ \frac{\alpha}{4(3\lambda + 1)} p_{2} - \frac{\alpha}{4(3\lambda + 1)} q_{2}$$

$$= \left[h(\alpha, \lambda)(1 - \mu) + \frac{\alpha}{4(3\lambda + 1)} \right] p_{2}$$

$$+ \left[h(\alpha, \lambda)(1 - \mu) - \frac{\alpha}{4(3\lambda + 1)} \right] q_{2}$$

$$= \begin{bmatrix} h(\alpha,\lambda)(1-\mu) + \frac{\alpha}{4(3\lambda+1)} \end{bmatrix} p_2 \\ + \begin{bmatrix} h(\alpha,\lambda)(1-\mu) - \frac{\alpha}{4(3\lambda+1)} \end{bmatrix} q_2 \end{bmatrix}$$

$$\begin{vmatrix} +\left[h(\alpha,\lambda)(1-\mu) - \frac{\alpha}{4(3\lambda+1)}\right]q_2 \end{vmatrix}$$

$$\leq \begin{cases} 2|h(\alpha,\lambda)(1-\mu)|(2) & \text{for } |h(\alpha,\lambda)(1-\mu)| \\ \geq \frac{\alpha}{4(3\lambda+1)} \end{cases}$$

$$2\left|\frac{\alpha}{4(3\lambda+1)}|(2) & \text{for } |h(\alpha,\lambda)(1-\mu)| \leq \frac{\alpha}{4(3\lambda+1)} \end{cases}$$

$$= \begin{cases} 4h(\alpha,\lambda)|1-\mu| & \text{for } h(\alpha,\lambda)|(1-\mu)| \geq \frac{\alpha}{4(3\lambda+1)} \end{cases}$$

$$= \begin{cases} \frac{\alpha}{3\lambda+1} & \text{for } h(\alpha,\lambda)|(1-\mu)| \leq \frac{\alpha}{4(3\lambda+1)} \end{cases}$$

Theorem 5 is completely proven.

Taking $\mu = 0$ and $\lambda = 0$ in Theorem 5, we obtain the following corollary.

Corollary 5 If f(z) in equation (1) be in the class $SS_{\Sigma}^{*}(\alpha)$, $0 < \alpha \le 1$, then

$$|a_3| \le \begin{cases} \alpha & \text{for } 0 < \alpha \le \frac{1}{3} \\ \frac{4\alpha^2}{\alpha + 1} & \text{for } \frac{1}{3} \le \alpha \le 1 \end{cases}$$

The result in Corollary 5 is similar to Corollary 10 in (Zaprawa, 2014) if $\lambda = 0$.

Putting $\alpha = 1$ in Corollary 5, we will get the following corollary.

(Zaprawa, 2014) If f(z) in equation (1) **Corollary 6**

be in the class $SS_{\Sigma}^{*}(1)$, then

$$|a_3| \leq 2$$
.

Next, we obtained Theorem 6, Theorem 7 and Theorem 8 as follows.

If $f \in A_{\Sigma}(\beta, \lambda)$, $0 \le \beta < 1$, $\lambda \ge 0$ Theorem 6 and $\mu \in \mathbb{R}$, then

and
$$\mu \in \mathbb{R}$$
, then Taking $\mu = 0$ and $\lambda = 0$ in Theorem 8, we obtain the following corollary.
$$\left|a_3 - \mu a_2^2\right| \leq \begin{cases} \frac{2(1-\beta)}{(4\lambda+1)} |1-\mu| & \text{for } 2(3\lambda+1)|1-\mu| \geq 4\lambda+1, \\ \frac{1-\beta}{3\lambda+1} & \text{for } 2(3\lambda+1)|1-\mu| \leq 4\lambda+1. \end{cases}$$
Corollary 10 (Zaprawa, 2014) If $f(z)$ in equation (1) be in the class $B_{\Sigma}(\beta)$, $0 \leq \beta < 1$, then
$$\left|a_3\right| \leq 1 - \beta.$$

Taking $\mu = 0$ and $\lambda = 0$ in Theorem 6, we obtain the following corollary.

If f(z) in equation (1) be in the class $S_{\Sigma}^{*}(\beta)$, $0 \le \beta < 1$, then

$$|a_3| \leq 2(1-\beta)$$
.

The result in Corollary 7 is similar to Corollary 11 in (Zaprawa, 2014) if $\lambda = 0$.

Theorem 7 If $f \in B_{\Sigma}(\alpha, \lambda)$, $0 < \alpha \le 1$,

 $\lambda \geq 0$ and $\mu \in \mathbb{R}$, then

$$\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases} \frac{\alpha^{2}}{\alpha(5\lambda+1)+(1-\alpha)(2\lambda+1)^{2}} |1-\mu| & \text{for } 3\alpha(3\lambda+1) |(1-\mu)| \\ \geq \alpha(5\lambda+1)+(1-\alpha)(2\lambda+1)^{2}, \\ \frac{\alpha}{3(3\lambda+1)} & \text{for } 3\alpha(3\lambda+1) |(1-\mu)| \leq \alpha(5\lambda+1)+(1-\alpha)(2\lambda+1)^{2}. \end{cases}$$

$$(41)$$

Taking $\mu = 0$ and $\lambda = 0$ in Theorem 7, we obtain the following corollary.

Corollary 8 If f(z) in equation (1) be in the class $B_{\Sigma}(\alpha)$, $0 < \alpha \le 1$, then

$$|a_3| \le \begin{cases} \frac{1}{3}\alpha & \text{for } 0 < \alpha \le \frac{1}{3} \\ \alpha^2 & \text{for } \frac{1}{3} \le \alpha \le 1 \end{cases}$$

The result in Corollary 8 is similar to Corollary 17 in (Zaprawa, 2014) if $\lambda = 0$.

Putting $\alpha = 1$ in Corollary 8, we will get the following corollary.

If f(z) in equation (1) be in the class **Corollary 9** $B_{\Sigma}(1)$, then

$$|a_3| \leq 1$$
.

If $f \in B_{\Sigma}(\beta, \lambda)$, $0 \le \beta < 1$, $\lambda \ge 0$ Theorem 8 and $\mu \in \mathbb{R}$, then

$$\left| a_{3} - \mu a_{2}^{2} \right| \leq \begin{cases} \frac{1 - \beta}{5\lambda + 1} |1 - \mu| & \text{for } 3(3\lambda + 1) |(1 - \mu)| \geq 5\lambda + 1, \\ \frac{1 - \beta}{3(3\lambda + 1)} & \text{for } 3(3\lambda + 1) |(1 - \mu)| \leq 5\lambda + 1. \end{cases}$$

Taking $\mu = 0$ and $\lambda = 0$ in Theorem 8, we obtain the

 $|a_3| \leq 1-\beta$.

IV. **SUMMARY**

In conclusion, coefficient estimates on $|a_2|$ and $|a_3|$ are obtained for some subclasses of bi-univalent functions. Furthermore, the upper bounds of the Fekete-Szegö functional are also obtained.

V. REFERENCES

- Altinkaya, Ş. & Yalcin, S. (2017). The Feketa-Szegö problem for a general class of bi-univalent functions satisfying subordinate conditions. Sahand Communications in Mathematical Analysis, 5(1): 1-7.
- Aouf, M. K., El-Ashwah, R. M. & Zayed, H. M. (2013).
 Fekete-Szegö inequalities for certain class of meromorphic functions. Journal of the Egyptian Mathematical Society, 21:197-200.
- Duren, P. L. (1983). Univalent functions. Grundlehren der mathematicschen Wissenschanften, 259. New York: Springer-Verlag.

- Janteng, A., Halim, S. A. & Darus, M. (2006). Fekete-Szegö problem for certain subclass of quasi-convex functions. Int. J. Contemp. Math. Sci., 1(1):45-51.
- Murugusundaramoorthy, G. & Magesh, N. (2009). Coefficient inequalities for certain classes of analytic functions associated with Hankel determinant. Bulletin of Mathematical Analysis and Applications, 1(3): 85-89.
- Shanmugam, T. & Sivasubramanian, S. (2005). On the Fekete-Szegö problem for some subclasses of analytic functions. J. Inequal. Pure Appl. Math., 6(3)(2005): 1-15.
- Zaprawa, P. (2014). Estimates of Initial Coefficients for Bi-Univalent Function. Abstract and Applied Analysis, 2014.