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DNA splicing system is modelled by the process of recombinant DNA that generates a language which is 

known as a splicing language.  In DNA splicing system, molecules are cut and recombined with the 

existence of restriction enzymes and a ligase to produce new molecules.  The molecules resulting from 

the splicing system depict the splicing language using formal language theory.  In nature, the sequences 

of restriction enzyme can be recognised as palindromic or non-palindromic, where palindrome is a 

sequence of string which reads the same forwards and backwards.  Research on splicing languages from 

DNA splicing systems has been done based on palindromic and non-palindromic restriction enzymes.  

In this research, the relation between DNA splicing language and concepts in automata theory is 

discussed.  The splicing languages from the splicing system with one cutting site each of two 

palindromic or two non-palindromic restriction enzymes are deduced from the grammars.  Then, the 

graphical representations of the languages generated by the grammars depicting the splicing languages 

are visualised as automata diagrams.  
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I. INTRODUCTION 
 
 

In 1987, (Head, 1987) introduced a study relating between 

formal language theory and informational 

macromolecules which is called a Deoxyribonucleic acid 

(DNA) splicing system.  The splicing system is simulated 

by the process of recombinant DNA where restriction 

enzymes and a ligase cut and recombine DNA molecules 

to produce further molecules.  The molecules resulting 

from the splicing system generate a language using formal 

language theory which is named as DNA splicing language 

(Head, 1987).  In formal language, a set of strings consists 

of symbols derived from an alphabet.  Some notations of 

regular expression in formal languages are applied in this 

research such as empty string λ, empty set ∅, union +, 

star-closure * and parentheses {} or () (Linz, 2006).  A 

grammar G is a set of production rules for strings in 

formal language (Linz, 2006). The grammar generates 

strings by arranging the production rules in sequential 

order, known as a language, generated by the grammar. 

The splicing system is made up of three sets via 

formal language theory. The first set consists of double 

stranded DNA (dsDNA) symbols formed by nitrogenous 

base pairings: adenine (A) pairs with thymine (T), while 

cytosine (C) pairs with guanine (G) (Paun et al., 1998).  

Next, the second set is the set containing initial DNA 

molecules or strings which is obtained from some 

fragments of protein or nucleotide sequences (Brejová 

et al., 2000).  The third set involves the cleavage of 

restriction enzymes which acts as rules in the form of a 

triple (Head, 1998).  

From splicing systems, the resulting splicing 

languages can be generalised based on the sequences of 

restriction enzymes.  Palindrome refers to the sequence of 
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restriction enzyme that reads the same forwards and 

backwards (Tomohiro, 2013). Previously, research on the 

generalised splicing languages resulting from DNA 

splicing systems involving palindromic and non-

palindromic restriction enzymes has been done (Ismail et 

al., 2019, Fong, 2019).  The name, sequence and cleavage 

for all restriction enzymes used in this research are 

obtained from the New England Biolabs (NEB) catalogue 

(New England Biolabs Inc., 2017). 

This research focuses on the relation between DNA 

splicing systems and the concepts of automata.  An 

automaton is constructed with a set of states where the 

current state can either accept or reject the input when 

moving to the next state through the transition functions 

(Linz, 2006).  The inputs accepted from every transition 

depict the language generated by the automaton. 

In this research, the graphical representations for 

DNA splicing systems with two palindromic or two non-

palindromic rules for restriction enzymes with the same 

and different crossings are illustrated as deterministic 

finite automata using grammars. 

 
 

II. PRELIMINARIES 
 
 

In this research, the modelling of DNA splicing systems 

with palindromic and non-palindromic rules is done using 

Head’s splicing model. The definitions of Head’s splicing 

model and splicing language are stated in the following. 

 

Definition 1 (Head, 1987) Splicing System and 

Splicing Language 

A splicing system S = (A, I, B, C) consists of a finite 

alphabet A, a finite set I of initial strings in A*, and finite 

sets B and C of triples (c, x, d) with c, x and d in A*.  Each 

such triple in B or C is called a pattern.  For each such 

triple the string cxd is called a site and the string x is 

called a crossing.  Patterns in B are called left patterns and 

patterns in C are called right patterns.  The language L = 

L(S) generated by S consists of the strings in I and all 

strings that can be obtained by adjoining to ucxfq and 

pexdv whenever ucxdv and pexfq are in L and (c, x, d) and 

(e, x, f) are patterns of the same hand.  A language, L is a 

splicing language if there exists a splicing system S for 

which L = L(S).  

 

Next, the definition of a palindromic string is 

presented. 

 

Definition 2 (Yusof, 2012) Palindromic String 

A string I of a dsDNA is said to be palindromic if the 

sequence from the left to the right side of the upper single 

strand is equal to the sequence from the right to the left 

side of the lower single strand.   

 

The definition of a deterministic finite automaton is 

presented next. 

Definition 3 (Linz, 2006) Deterministic Finite 

Automaton 

A deterministic finite automaton M is a 5-tuple, (Q, Σ, δ, 

q0, F) consisting of a finite set of states Q, a finite set of 

input symbols called the alphabet Σ, a transition function 

(δ: Q × Σ → Q), an initial state q0 ∈ Q and a set of final 

states F ⊆ Q. 

 

Lastly, the definition of a grammar is shown below. 

 

Definition 4 (Linz, 2006) Grammar 

A grammar G is defined as a quadruple G = (V, T, S, P), 

where V a is finite set of objects called variables, T is a 

finite set of objects called terminal symbols, S ∈ V is a 

special symbol called the start variable and P is a finite set 

of productions.  

 

The set L(G) ={𝑤 ∈ 𝑇∗: 𝑆
∗
⇒𝑤} is the language 

generated by G, where 
∗
⇒ denotes zero or more steps of 

sequence of productions. 

 

Figure 1 shows an example of a deterministic finite 

automaton that accepts the language L((a+b) · c*) 

generated by the grammar with P consisting of the 

productions 

S0 → aS1 | bS1, 

S1 → cS1 | 𝜆, 

where Q = {S0, S1}, Σ = {a, b, c}, S0 is the initial state, F = 

{S1} and δ is given by 

δ (S0, a) = S1,  
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δ (S0, b) = S1,  

δ (S1, c) = S1. 

 

Figure 1. A deterministic finite automaton 

 

The automaton makes a move from the current state 

to another state based on the transition function and 

accepts the input symbols.  In the automaton, single 

circle, double circle, arrows and arrow labels denote as the 

state, final state, transitions, and input symbols 

respectively. 

 
 

III. RESEARCH METHODOLOGY 
 
 

The graphical representations for DNA splicing systems 

with one cutting site each of two palindromic or two non-

palindromic rules for the same and different crossings are 

visualised as automata diagrams using the generalised 

splicing languages obtained from the respective DNA 

splicing systems.   

Table 1 shows the generalised splicing languages from 

DNA splicing systems with two palindromic rules where 

Theorem 1 involves the same crossing and Theorem 2 

involves different crossings of palindromic rules. While 

Table 2 shows the generalised splicing languages from 

DNA splicing systems with two non-palindromic rules 

where Theorem 3 involves the same crossing and 

Theorem 4 involves different crossings of non-

palindromic rules.   

Table 1.  Generalised Splicing Languages from DNA Splicing Systems with Two Palindromic Rules 

Theorem Theorem 1 (Ismail et al., 2019) Theorem 2 (Ismail et al., 2019) 

Initial 

String 

𝑁1𝑁1 …𝑁1𝑋1 𝑌 𝑋2𝑀 𝑀…𝑀𝑊1 𝑌𝑊2𝑁2𝑁2…𝑁2
𝑁1

′𝑁1
′ …𝑁1

′𝑋1
′𝑌′𝑋2

′𝑀′𝑀′…𝑀′𝑊1
′𝑌′𝑊2

′𝑁2
′𝑁2

′ …𝑁2
′  

𝑁1𝑁1 …𝑁1𝑋1 𝑌 𝑋2𝑀 𝑀…𝑀𝑊1 𝑍𝑊2𝑁2𝑁2…𝑁2
𝑁1

′𝑁1
′ …𝑁1

′𝑋1
′𝑌′𝑋2

′𝑀′𝑀′…𝑀′𝑊1
′𝑍′𝑊2

′𝑁2
′𝑁2

′ …𝑁2
′  

First  

Restriction 

Enzyme 

𝑋1𝑌𝑋2
𝑋1

′𝑌′𝑋2
′  

𝑋1𝑌𝑋2
𝑋1

′𝑌′𝑋2
′  

Second  

Restriction 

Enzyme 

𝑊1 𝑌𝑊2

𝑊1
′𝑌′𝑊2

′ 
𝑊1 𝑍𝑊2

𝑊1
′𝑍′𝑊2

′ 

Splicing 

Language 
(
𝑁1𝑁1 …𝑁1
𝑁1

′𝑁1
′ …𝑁1

′

𝑋1
𝑋1

′ +
𝑁2

′𝑁2
′ …𝑁2

′

𝑁2𝑁2…𝑁2 

𝑊1 

𝑊1
′) 

{
𝑌
𝑌′ (

𝑋2
𝑋2

′
𝑀 𝑀…  𝑀
𝑀′𝑀′…𝑀′

𝑊1
𝑊1

′ +
𝑊2

𝑊2
′
𝑀′𝑀′…𝑀′

𝑀 𝑀 …𝑀

𝑋1
𝑋1

′)}
∗

 

𝑌
𝑌′ (

𝑊2

𝑊2
′

𝑁2𝑁2…𝑁2
𝑁2

′𝑁2
′ …𝑁2

′ +
𝑋2𝑁1

′𝑁1
′ …𝑁1

′

𝑋2
′𝑁1𝑁1…𝑁1

) 

 

{
  
 

  
 

𝑁1𝑁1 …𝑁1
𝑁1

′𝑁1
′ …𝑁1

′

𝑋1
𝑋1

′
𝑌
𝑌′

𝑋2
𝑋2

′

(
𝑀 𝑀…  𝑀
𝑀′𝑀′…𝑀′

𝑊1 𝑍𝑊2

𝑊1
′𝑍′𝑊2

′
𝑀′𝑀′…𝑀′

𝑀 𝑀 …𝑀

𝑋1𝑌𝑋2
𝑋1

′𝑌′𝑋2
′)
∗

(
𝑁1

′𝑁1
′ …𝑁1

′

𝑁1𝑁1…𝑁1
+
𝑀 𝑀…  𝑀
𝑀′𝑀′…𝑀′

𝑊1 𝑍𝑊2

𝑊1
′𝑍′𝑊2

′

𝑁2𝑁2…𝑁2
𝑁2

′𝑁2
′ …𝑁2

′)}
  
 

  
 

+ 

{
  
 

  
 

𝑁2
′𝑁2

′ …𝑁2
′

𝑁2𝑁2…𝑁2 

𝑊1 𝑍𝑊2

𝑊1
′𝑍′𝑊2

′

(𝑀
′𝑀′…𝑀′

𝑀 𝑀 …𝑀

𝑋1𝑌𝑋2
𝑋1

′𝑌′𝑋2
′
𝑀 𝑀…  𝑀
𝑀′𝑀′…𝑀′

𝑊1 𝑍𝑊2

𝑊1
′𝑍′𝑊2

′)
∗

(
𝑁2𝑁2…𝑁2
𝑁2

′𝑁2
′ …𝑁2

′ +
𝑀′𝑀′…𝑀′

𝑀 𝑀 …𝑀

𝑋1𝑌𝑋2
𝑋1

′𝑌′𝑋2
′

𝑁1𝑁1 …𝑁1
𝑁1

′𝑁1
′ …𝑁1

′)}
  
 

  
 

 

 
Table 2.  Generalised Splicing Languages from DNA Splicing Systems with Two Non-Palindromic Rules 

Theorem Theorem 3 (Fong et al.,2019) Theorem 4 (Fong et al.,2019) 

Initial 

String 

𝑁1𝑁1 …𝑁1𝑋1 𝑌 𝑋2𝑀 𝑀…𝑀𝑊1 𝑌𝑊2𝑁2𝑁2…𝑁2
𝑁1

′𝑁1
′ …𝑁1

′𝑋1
′𝑌′𝑋2

′𝑀′𝑀′…𝑀′𝑊1
′𝑌′𝑊2

′𝑁2
′𝑁2

′ …𝑁2
′  

𝑁1𝑁1 …𝑁1𝑋1 𝑌 𝑋2𝑀 𝑀…𝑀𝑊1 𝑍𝑊2𝑁2𝑁2…𝑁2
𝑁1

′𝑁1
′ …𝑁1

′𝑋1
′𝑌′𝑋2

′𝑀′𝑀′…𝑀′𝑊1
′𝑍′𝑊2

′𝑁2
′𝑁2

′ …𝑁2
′  

First 

Restriction 

Enzyme 

𝑋1𝑌𝑋2
𝑋1

′𝑌′𝑋2
′  

𝑋1𝑌𝑋2
𝑋1

′𝑌′𝑋2
′  

Second 

Restriction 

Enzyme 

𝑊1 𝑌𝑊2

𝑊1
′𝑌′𝑊2

′ 
𝑊1 𝑍𝑊2

𝑊1
′𝑍′𝑊2

′ 



ASM Science Journal, Volume 13, 2020  

4  

Splicing 

Language 

 

𝑁1𝑁1 …𝑁1
𝑁1

′𝑁1
′ …𝑁1

′

𝑋1
𝑋1

′ (
𝑌𝑋2
𝑌′𝑋2

′
𝑀 𝑀…  𝑀
𝑀′𝑀′…𝑀′

𝑊1
𝑊1

′)
∗ 𝑌𝑊2

𝑌′𝑊2
′

𝑁2𝑁2…𝑁2
𝑁2

′𝑁2
′ …𝑁2

′  
𝑁1𝑁1 …𝑁1𝑋1 𝑌 𝑋2𝑀 𝑀…𝑀𝑊1 𝑍𝑊2𝑁2𝑁2…𝑁2
𝑁1

′𝑁1
′ …𝑁1

′𝑋1
′𝑌′𝑋2

′𝑀′𝑀′…𝑀′𝑊1
′𝑍′𝑊2

′𝑁2
′𝑁2

′ …𝑁2
′  

 

The symbols 
𝑁1
𝑁1

′, 
𝑋1
𝑋1

′ ,  
𝑌
𝑌′, 

𝑋2
𝑋2

′ , 
𝑀
𝑀′, 

𝑊1 

𝑊1
′ , 
𝑍
𝑍′, 

𝑊2

𝑊2
′ and 

𝑁2
𝑁2

′   denote 

arbitrary dsDNA symbol(s), where 𝑁1
′, 𝑋1

′ , 𝑌′, 𝑋2
′ , 𝑀′, 𝑊1

′, 

𝑍′, 𝑊2
′ and 𝑁2

′  are complementaries for 𝑁1, 𝑋1, 𝑌, 𝑋2, 𝑀, 

𝑊1, 𝑍, 𝑊2, and 𝑁2 respectively, and 
𝑌
𝑌′ and 

𝑍
𝑍′ are the 

crossings. 

 
 

IV. RESULTS AND DISCUSSIONS 
 

In this research, the automata diagrams for DNA splicing 

systems with one cutting site each of two palindromic or 

two non-palindromic rules for the same and different 

crossings are constructed using grammars where the 

splicing languages from the splicing system are deduced 

from the grammars. 

The automaton for DNA splicing system with one 

cutting site each of two palindromic restriction enzymes 

with the same crossing is presented as Theorem 5. 

 

 

 

 

 

 

Theorem 5 

Given S = 

(

 
{
A, 
T  
C, 
G  
G, 
C  
T
A
} , 
𝑁1𝑁1 …𝑁1𝑋1 𝑌 𝑋2𝑀 

𝑁1
′𝑁1

′ …𝑁1
′𝑋1

′𝑌′𝑋2
′𝑀′  

𝑀…𝑀𝑊1 𝑌𝑊2𝑁2𝑁2…𝑁2
𝑀′…𝑀′𝑊1

′𝑌′𝑊2
′𝑁2

′𝑁2
′ …𝑁2

′ , 

{(
𝑋1 

𝑋1
′ , 

 𝑌 
 𝑌′, 

𝑋2
𝑋2

′) , (
𝑊1 

𝑊1
′ , 

 𝑌 
 𝑌′, 

𝑊2

𝑊2
′)} , ∅

)

   

is a splicing system involving one cutting site each of two 

palindromic rules 
𝑋1𝑌𝑋2
𝑋1

′𝑌′𝑋2
′  and 

𝑊1 𝑌𝑊2

𝑊1
′𝑌′𝑊2

′ with the same 

crossing 
𝑌
 𝑌′ where 

𝑁1
𝑁1

′, 
𝑋1
𝑋1

′ ,  
𝑌
𝑌′ 
𝑋2
𝑋2

′ , 
𝑀
𝑀′ 

𝑊1 

𝑊1
′ , 
𝑊2

𝑊2
′ and 

𝑁2
𝑁2

′  are 

variables used to denote any arbitrary dsDNA and 𝑁1
′, 𝑋1

′ , 

𝑌′, 𝑋2
′ , 𝑀′, 𝑊1

′, 𝑊2
′ and 𝑁2

′  are complementaries for 𝑁1, 𝑋1, 

𝑌, 𝑋2, 𝑀, 𝑊1, 𝑊2, and 𝑁2 respectively, M1 = (Q, Σ, δ, q0, F) 

is a deterministic finite automaton for the DNA splicing 

system that accepts the language L(𝑆), in which Q  = {q0, 

q1, q2, q3, q4, q5} is the set of states where q0 is the initial 

state and F = {q4, q5} is the set of final states, Σ = 

{
 
 

 
 
𝑁1𝑁1 …𝑁1
𝑁1

′𝑁1
′ …𝑁1

′

𝑋1
𝑋1

′ , 
𝑁2

′𝑁2
′ …𝑁2

′

𝑁2𝑁2…𝑁2 

𝑊1 

𝑊1
′ , 
𝑋2
𝑋2

′
𝑀 𝑀…  𝑀
𝑀′𝑀′…𝑀′

𝑊1
𝑊1

′, 
𝑌
𝑌′,

  
𝑊2

𝑊2
′
𝑀′𝑀′…𝑀′

𝑀 𝑀 …𝑀

𝑋1
𝑋1

′ , 
𝑊2

𝑊2
′

𝑁2𝑁2…𝑁2
𝑁2

′𝑁2
′ …𝑁2

′ , 
𝑋2𝑁1

′𝑁1
′ …𝑁1

′

𝑋2
′𝑁1𝑁1…𝑁1 }

 
 

 
 

  is the 

set of inputs and δ are given by illustrating the automata 

diagram in Figure 2. 

 

 

Figure 2. An automaton diagram for M1 

 
Proof 

The splicing language L(𝑆) from the splicing system can 

be written as a language generated by a grammar G1 

where G1= ({S0, S1, S2, S3 }, {
𝑁1
𝑁1

′,  
𝑋1
𝑋1

′ ,  
𝑌
𝑌′, 

𝑋2
𝑋2

′ , 

𝑀
𝑀′, 

𝑊1 

𝑊1
′ , 
𝑊2

𝑊2
′, 
𝑁2
𝑁2

′}, S0, P1) with P1 consisting of the 

productions, 

S0 → 
𝑁1𝑁1 …𝑁1
𝑁1

′𝑁1
′ …𝑁1

′

𝑋1
𝑋1

′  S1 | 
𝑁2

′𝑁2
′ …𝑁2

′

𝑁2𝑁2…𝑁2 

𝑊1 

𝑊1
′  S2, 

 

S1 → 
𝑌
𝑌′ S3,  

S2 → 
𝑌
𝑌′ S3 and  

S3 → 
𝑋2
𝑋2

′
𝑀 𝑀…  𝑀
𝑀′𝑀′…𝑀′

𝑊1
𝑊1

′ S1 | 
𝑊2

𝑊2
′
𝑀′𝑀′…𝑀′

𝑀 𝑀 …𝑀

𝑋1
𝑋1

′  S2 |  
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 𝑊2

𝑊2
′

𝑁2𝑁2…𝑁2
𝑁2

′𝑁2
′ …𝑁2

′  | 
𝑋2𝑁1

′𝑁1
′ …𝑁1

′

𝑋2
′𝑁1𝑁1…𝑁1 .

 
 

Then, a sequence for the language generated by the 

grammar G1, L(G1) is  

S0 ⇒ (
𝑁1𝑁1 …𝑁1
𝑁1

′𝑁1
′ …𝑁1

′

𝑋1
𝑋1

′  S1 +
𝑁2

′𝑁2
′ …𝑁2

′

𝑁2𝑁2…𝑁2 

𝑊1 

𝑊1
′  S2) 

 
⇒ (

𝑁1𝑁1 …𝑁1
𝑁1

′𝑁1
′ …𝑁1

′

𝑋1
𝑋1

′ +
𝑁2

′𝑁2
′ …𝑁2

′

𝑁2𝑁2…𝑁2 

𝑊1 

𝑊1
′)
𝑌
𝑌′ S3 

 
⇒ (

𝑁1𝑁1 …𝑁1
𝑁1

′𝑁1
′ …𝑁1

′

𝑋1
𝑋1

′ +
𝑁2

′𝑁2
′ …𝑁2

′

𝑁2𝑁2…𝑁2 

𝑊1 

𝑊1
′) 

  
{
𝑌
𝑌′ (

𝑋2
𝑋2

′
𝑀 𝑀…  𝑀
𝑀′𝑀′…𝑀′

𝑊1
𝑊1

′ +
𝑊2

𝑊2
′
𝑀′𝑀′…𝑀′

𝑀 𝑀 …𝑀

𝑋1
𝑋1

′)}
∗

 

  𝑌
𝑌′ (

𝑊2

𝑊2
′

𝑁2𝑁2…𝑁2
𝑁2

′𝑁2
′ …𝑁2

′ +
𝑋2𝑁1

′𝑁1
′ …𝑁1

′

𝑋2
′𝑁1𝑁1…𝑁1

), 

which depicts the splicing language L(𝑆) from Theorem 1 

in Table 1. 

Based on G1, the automaton for the splicing system is 

constructed using productions in G1. The relation between 

productions in G1 and transition functions, δ for M1 from 

Figure 2 is given in Table 3. 

Table 3. Productions in G1 and transition functions for M1 

Production in G1 Transition Function, δ 

S0 → 
𝑁1𝑁1 …𝑁1
𝑁1

′𝑁1
′ …𝑁1

′

𝑋1
𝑋1

′  S1 δ (q0,  
𝑁1𝑁1 …𝑁1
𝑁1

′𝑁1
′ …𝑁1

′

𝑋1
𝑋1

′) = q1 

S0 → 
𝑁2

′𝑁2
′ …𝑁2

′

𝑁2𝑁2…𝑁2 

𝑊1 

𝑊1
′  S2 δ (q0,  

𝑁2
′𝑁2

′ …𝑁2
′

𝑁2𝑁2…𝑁2 

𝑊1 

𝑊1
′) = q2 

S1 → 
𝑌
𝑌′ S3 δ (q1,  

𝑌
𝑌′) = q3 

S2 → 
𝑌
𝑌′ S3 δ (q2,  

𝑌
𝑌′) = q3 

S3 → 
𝑋2
𝑋2

′
𝑀 𝑀…  𝑀
𝑀′𝑀′…𝑀′

𝑊1
𝑊1

′ S1 δ (q3,  
𝑋2
𝑋2

′
𝑀 𝑀…  𝑀
𝑀′𝑀′…𝑀′

𝑊1
𝑊1

′) = q1 

S3 → 
𝑊2

𝑊2
′
𝑀′𝑀′…𝑀′

𝑀 𝑀 …𝑀

𝑋1
𝑋1

′  S2 δ (q3,  
𝑊2

𝑊2
′
𝑀′𝑀′…𝑀′

𝑀 𝑀 …𝑀

𝑋1
𝑋1

′) = q2 

S3 → 
𝑊2

𝑊2
′

𝑁2𝑁2…𝑁2
𝑁2

′𝑁2
′ …𝑁2

′  δ (q3,  
𝑊2

𝑊2
′

𝑁2𝑁2…𝑁2
𝑁2

′𝑁2
′ …𝑁2

′) = q4 

S3 → |
𝑋2𝑁1

′𝑁1
′ …𝑁1

′

𝑋2
′𝑁1𝑁1…𝑁1

 δ (q3,  
𝑋2𝑁1

′𝑁1
′ …𝑁1

′

𝑋2
′𝑁1𝑁1…𝑁1

) = q5 

  

Thus, Theorem 5 is proved. □ 

 

Automaton for DNA splicing system with one cutting 

site each of two palindromic restriction enzymes with 

different crossings is presented as Theorem 6. 

 

Theorem 6 

Given S = 

(

 
{
A, 
T  
C, 
G  
G, 
C  
T
A
} , 
𝑁1𝑁1 …𝑁1𝑋1 𝑌 𝑋2𝑀 

𝑁1
′𝑁1

′ …𝑁1
′𝑋1

′𝑌′𝑋2
′𝑀′  

𝑀…𝑀𝑊1 𝑍𝑊2𝑁2𝑁2…𝑁2
𝑀′…𝑀′𝑊1

′𝑍′𝑊2
′𝑁2

′𝑁2
′ …𝑁2

′ , 

{(
𝑋1 

𝑋1
′ , 

 𝑌 
 𝑌′, 

𝑋2
𝑋2

′) , (
𝑊1 

𝑊1
′ , 

 𝑍 
 𝑍′, 

𝑊2

𝑊2
′)} , ∅

)

  

is a splicing system involving one cutting site each of two 

palindromic rules 
𝑋1𝑌𝑋2
𝑋1

′𝑌′𝑋2
′  and 

𝑊1 𝑍𝑊2

𝑊1
′𝑍′𝑊2

′ with different 

crossings 
𝑌
 𝑌′ and 

𝑍
 𝑍′ where 

𝑁1
𝑁1

′, 
𝑋1
𝑋1

′ ,  
𝑌
𝑌′ 
𝑋2
𝑋2

′ , 
𝑀
𝑀′ 

𝑊1 

𝑊1
′ , 
𝑍
 𝑍′, 

𝑊2

𝑊2
′ 

and 
𝑁2
𝑁2

′  are variables used to denote any arbitrary dsDNA 

and 𝑁1
′, 𝑋1

′ , 𝑌′, 𝑋2
′ , 𝑀′, 𝑊1

′, 𝑍′, 𝑊2
′ and 𝑁2

′  are 

complementaries for 𝑁1, 𝑋1, 𝑌, 𝑋2, 𝑀, 𝑊1, 𝑍, 𝑊2, and 𝑁2 

respectively, M2 = (Q, Σ, δ, q0, F) is a deterministic finite 

automaton for the DNA splicing system that accepts the 

language L(𝑆), in which Q  = {q0, q1, q2, q3, q4} is the set of 

states where q0 is the initial state and F = {q3, q4} is the set 

of final states, Σ = 

{
 

 
𝑁1𝑁1 …𝑁1
𝑁1

′𝑁1
′ …𝑁1

′

𝑋1
𝑋1

′
𝑌
𝑌′

𝑋2
𝑋2

′ , 
𝑁2

′𝑁2
′ …𝑁2

′

𝑁2𝑁2…𝑁2 

𝑊1 𝑍𝑊2

𝑊1
′𝑍′𝑊2

′, 
𝑀 𝑀…  𝑀
𝑀′𝑀′…𝑀′

𝑊1 𝑍𝑊2

𝑊1
′𝑍′𝑊2

′,

 𝑀
′𝑀′…𝑀′

𝑀 𝑀 …𝑀

𝑋1𝑌𝑋2
𝑋1

′𝑌′𝑋2
′ , 
𝑁2𝑁2…𝑁2
𝑁2
′𝑁2

′…𝑁2
′, 
𝑁1
′𝑁1

′…𝑁1
′

𝑁1𝑁1…𝑁1 }
 

 

 

is the set of inputs and δ are given by illustrating the 

automata diagram in Figure 3. 

 

Figure 3. An automaton diagram for M2 

 

 
Next, the automaton for DNA splicing system with one 

cutting site each of two non-palindromic restriction 

enzymes with the same crossing is presented as Theorem 

7.  
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Theorem 7 

Given S = 

(

 
{
A, 
T  
C, 
G  
G, 
C  
T
A
} , 
𝑁1𝑁1 …𝑁1𝑋1 𝑌 𝑋2𝑀 

𝑁1
′𝑁1

′ …𝑁1
′𝑋1

′𝑌′𝑋2
′𝑀′  

𝑀…𝑀𝑊1 𝑌𝑊2𝑁2𝑁2…𝑁2
𝑀′…𝑀′𝑊1

′𝑌′𝑊2
′𝑁2

′𝑁2
′ …𝑁2

′ , 

{(
𝑋1 

𝑋1
′ , 

 𝑌 
 𝑌′

, 
𝑋2
𝑋2
′) , (

𝑊1 

𝑊1
′ , 

 𝑌 
 𝑌′

, 
𝑊2

𝑊2
′)} , ∅

)

   

is a splicing system involving one cutting site each of two 

non-palindromic rules 
𝑋1𝑌𝑋2
𝑋1
′𝑌′𝑋2

′  and 
𝑊1 𝑌𝑊2

𝑊1
′𝑌′𝑊2

′ with the same 

crossing 
𝑌
 𝑌′

 where 
𝑁1
𝑁1
′, 
𝑋1
𝑋1
′ ,  

𝑌
𝑌′

 
𝑋2
𝑋2
′ , 
𝑀
𝑀′ 

𝑊1 

𝑊1
′ , 
𝑊2

𝑊2
′ and 

𝑁2
𝑁2
′ are 

variables used to denote any arbitrary dsDNA and 𝑁1
′, 𝑋1

′ , 

𝑌′, 𝑋2
′ , 𝑀′, 𝑊1

′, 𝑊2
′ and 𝑁2

′ are complementaries for 𝑁1, 𝑋1, 

𝑌, 𝑋2, 𝑀, 𝑊1, 𝑊2, and 𝑁2 respectively, M3 = (Q, Σ, δ, q0, F) 

is a deterministic finite automaton for the DNA splicing 

system that accepts the language L(𝑆), in which Q  = {q0, 

q1, q2, q3} is the set of states where q0 is the initial state 

and F = {q3} is the set of final state, Σ = {
𝑁1𝑁1 …𝑁1
𝑁1
′𝑁1

′…𝑁1
′

𝑋1
𝑋1
′ , 

𝑋2
𝑋2
′
𝑀 𝑀…  𝑀
𝑀′𝑀′…𝑀′

𝑊1
𝑊1

′, 
𝑊2

𝑊2
′

𝑁2𝑁2…𝑁2
𝑁2
′𝑁2

′ …𝑁2
′, 
𝑌
𝑌′
}  is the set of inputs and 

δ are given by illustrating the automata diagram in Figure 

4. 

 

Figure 4. An automaton diagram for M3 

 
Lastly, the automaton for DNA splicing system with 

one cutting site each of two non-palindromic restriction 

enzymes with different crossings is presented as Theorem 

8.   

 

Theorem 8 

Given S = ({
A, 
T  
C, 
G  
G, 
C  
T
A
} , 
𝑁1𝑁1 …𝑁1𝑋1 𝑌 𝑋2𝑀 

𝑁1
′𝑁1

′…𝑁1
′𝑋1

′𝑌′𝑋2
′𝑀′  

𝑀…𝑀𝑊1 𝑍𝑊2𝑁2𝑁2…𝑁2
𝑀′…𝑀′𝑊1

′𝑍′𝑊2
′𝑁2

′𝑁2
′ …𝑁2

′, {(
𝑋1 

𝑋1
′ , 

 𝑌 
 𝑌′

, 
𝑋2
𝑋2
′) , (

𝑊1 

𝑊1
′ , 

 𝑍 
 𝑍′

, 

𝑊2

𝑊2
′)} , ∅) is a splicing system involving one cutting site 

each of two palindromic rules 
𝑋1𝑌𝑋2
𝑋1
′𝑌′𝑋2

′  and 
𝑊1 𝑍𝑊2

𝑊1
′𝑍′𝑊2

′ with 

different crossings 
𝑌
 𝑌′

 and 
𝑍
 𝑍′

 where 
𝑁1
𝑁1
′, 
𝑋1
𝑋1
′ ,  
𝑌
𝑌′

 
𝑋2
𝑋2
′ , 
𝑀
𝑀′ 

𝑊1 

𝑊1
′ , 

𝑍
 𝑍′

, 
𝑊2

𝑊2
′ and 

𝑁2
𝑁2
′ are variables used to denote any arbitrary 

dsDNA and 𝑁1
′, 𝑋1

′ , 𝑌′, 𝑋2
′ , 𝑀′, 𝑊1

′, 𝑍′, 𝑊2
′ and 𝑁2

′ are 

complementaries for 𝑁1, 𝑋1, 𝑌, 𝑋2, 𝑀, 𝑊1, 𝑍, 𝑊2, and 𝑁2 

respectively, M4 = (Q, Σ, δ, q0, F) is a deterministic finite 

automaton for the DNA splicing system that accepts the 

language L(𝑆), in which Q  = {q0, q1, q2, q3, q4, q5} is the set 

of states where q0 is the initial state and F = {q5} is the set 

of final state, Σ = {
𝑁1𝑁1 …𝑁1
𝑁1
′𝑁1

′…𝑁1
′ , 
𝑋1𝑌𝑋2
𝑋1
′𝑌′𝑋2

′ , 
𝑊1 𝑍𝑊2

𝑊1
′𝑍′𝑊2

′, 

𝑀 𝑀…  𝑀
𝑀′𝑀′…𝑀′, 

𝑁2𝑁2…𝑁2
𝑁2
′𝑁2

′…𝑁2
′} is the set of inputs and δ are given 

by illustrating the automata diagram in Figure 5. 

 

Figure 5. An automaton diagram for M4 

 

Theorems 6, 7 and 8 are proved in same manner as 

Theorem 5 using grammars.  Hence, the splicing 

languages from the DNA splicing system involving two 

palindromic and n0n-palindromic rules with the same 

and different crossings are visualised as automata 

diagrams.  

 

V. CONCLUSION 
 

In this research, the relation of DNA splicing systems and 

automata theory is discussed.  The automata diagrams for 

the DNA splicing systems with one cutting site each of two 

palindromic or two non-palindromic rules for the same 
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and different crossings of the restriction enzymes are 

modelled using deterministic finite automata. The 

languages resulting from the automata depict the 

languages generated by the grammars. 

 
 
 
 
 
 
 
 
 
 
 

VI. ACKNOWLEDGEMENT 
 
 

The first author would like to thank Universiti 

Teknologi Malaysia (UTM) for supporting her study 

through Zamalah Scholarship.  The second and third 

authors would also like to thank to the Ministry of 

Education (MOE) and Research Management Centre 

(RMC), Universiti Teknologi Malaysia (UTM) for the 

funding through Fundamental Research Grant 

Scheme Vote No. 5F022. 

 

VII. REFERENCES 
 

 

Brejová, B., DiMarco, C., Vinar, T., Hidalgo, SR, 

Holguin, G. & Patten, C. (2000). Finding Patterns 

in Biological Sequences. Unpublished project report 

for CS798G, University of Waterloo, Fall. 

Fong, WH, Ismail, NI & Sarmin, NH. (2019). The 

Modelling of DNA Splicing Systems with Two Non-

Palindromic Restriction Enzymes. Indian Journal 

of Public Health Research & Development, In press. 

Head, T. (1987). Formal Language Theory and DNA: 

An Analysis of the Generative Capacity of Specific 

Recombinant Behaviors. Bulletin of Mathematical 

Biology, 49, no. 6, 737-759. 

Head, T. (1998). Splicing Representations of Strictly 

Locally Testable Languages. Discrete Applied 

Mathematics, 87, no. 1, 139-147. 

Ismail, NI, Fong, WH & Sarmin, NH. (2019). 

Generalisations of Splicing Languages in DNA 

Splicing Systems Involving Two Palindromic 

Restriction Enzymes. Malaysian Journal of 

Fundamental and Applied Sciences, In press. 

Linz, P. (2006). An Introduction to Formal 

Languages and Automata. 4th ed, Jones and 

Bartlett Publisher, USA. 

New England Biolabs Inc. (2017). NEB 2017-18 

Catalog & Technical Reference, Ipswich, United 

States, Catalogue. 

Paun, G., Rozenberg, G. & Salomaa, A. (1998). DNA 

Computing: New Computing Paradigms, Springer 

-Verlag Berlin Heidelberg, Germany. 

Tomohiro, I., Inenaga, S. & Takeda, M. (2013). 

Palindrome Pattern Matching. Theoretical 

Computer Science, 483, 162-170. 

Yusof, Y. (2012). DNA Splicing System Inspired by 

Bio Molecular Operations. Ph.D. Thesis, Universiti 

Teknologi Malaysia. 

 


