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In this paper, the exact solution for unsteady flow of rotating Brinkman type fluid over a moving disk is 

investigated. The momentum governing equation is modelled in the form of Partial Differential 

Equation together with the initial and boundary conditions. Using the suitable non-dimensional 

variables, the momentum governing equation as well as initial and boundary conditions are reduced to 

non-dimensional equations. The expressions of velocity and skin friction are obtained by using the 

Laplace transform method. Then, they are plotted graphically and discussed for different values of 

parameters such as Brinkman type fluid, rotation, and time. The obtained solution is satisfied for both 

initial and boundary conditions and skin friction shows the opposite behaviour to the velocity of the 

fluid. 
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I. INTRODUCTION 

 

Brinkman model is widely used as the basis for non-

Newtonian fluid flow study, over a wide range of 

applications such as in chemical engineering, 

pharmaceutical and cosmetics (Aliseda et. al., 2008; 

Lissant, 1977). The model was proposed by Brinkman 

(Brinkman, 1949a, Brinkman; 1949b) from the basis of 

Darcy’s law which described viscous fluid through a porous 

medium. This model has a special term of viscosity and is 

applicable for the fluid flow past a high porous surface. In 

these papers, a viscous fluid flow is defined as a fluid 

through a cloud of spherical particles whose size is smaller 

than the characteristic length scale of the flow, and it 

occupies a negligible volume. Therefore, the viscous fluid 

flow in a porous medium can be accurately described by the 

Brinkman model for incompressible flow. 

Numerous investigations have been reported in the 

literature to describe the fluid flow problem in various 

specific configurations, either by using analytical or 

numerical method. The study of the flow of viscous 

incompressible fluid flow through a porous channel using 

Brinkman model was presented in (Varma & Babu, 1985). 

Two cases have been considered in their study; (1) both 

channel boundaries are considered as a porous medium, 

and (2) only one side of the boundary is porous, while the 

other side is rigid wall. For the Stokes problem involving 

the Brinkman type fluid, its continuum solutions have been 

provided in (Fetecau et. al., 2011). By means of Fourier sine 

transforms, the solutions have been presented using 

suitable forms in terms of the classical solution of the first 

Stokes problem for Newtonian fluid. Another study on the 

Brinkman type fluid was presented by (Ali et. al., 2012), 

focusing on the new exact solutions for some unsteady 

motions of viscous fluid. By using the Laplace transform 

technique, the solutions for the problem were presented in 
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simple forms, and the solutions can immediately be 

reduced to the solutions of inviscid fluid when the initial 

and boundary conditions were gratified. 

The rotating flow near a vertical plate in viscous fluid 

conducted with stretching surface has been solved 

numerically by using Keller-box method in (Nazar et. al., 

2004). In the study, a comparison has been made between 

the numerical and analytical solutions.  By using the 

Laplace transform method, the problem involving fluid flow 

past an infinite flat plate in incompressible viscous fluid 

was solved in (Manna et. al., 2007). By focusing on the flow 

of rotating fluid, they considered that both plate and fluid 

rotate in uniform angular velocity about an axis normal to 

the plate. While for the rotating viscous fluid problem, the 

effects of magnetic field in oscillating plate filled by a 

saturated porous medium were studied in (Khan et. al., 

2013). By solving two types of boundary conditions (cosine 

oscillating and sine oscillating) using both methods 

(Laplace and Fourier Sine transforms), they summarized 

that the solutions satisfy the governing equations and 

imposed initial and boundary conditions. 

The Brinkman fluid flow under rotation motion with 

various boundary conditions is also important in 

engineering application. However, this area of research is 

not as much studied as flow over a moving plate, oscillating 

plate, flow over stretching sheet and many more. Most 

probably, it is due to complex structure of this non-

Newtonian fluid. Most of the studies focus on the other type 

of fluid flow. For example, the moving flow boundary 

condition of rotating second grade fluid in porous medium 

has been studied (Ismail et. al., 2015). They found that the 

fluid velocity profiles were enhanced by the speed of 

rotation. In another example, (Mohamad et. al., 2017) 

investigated the incompressible second grade fluid in 

oscillating plate wedge through a porous medium with the 

ramped wall temperature effect. From this study, they 

found that the ramped wall temperature in the oscillation 

motion is always lower compared to constant wall 

temperature. 

This paper emphasizes on this research matter. 

Therefore, the aim of this paper is to study the unsteady 

fluid flow of rotating Brinkman type fluid in moving disc. 

Exact solution is obtained by using Laplace transform 

method. 

 

II. MATHEMATICAL FORMULATION 

Consider the unsteady flow of a rotating Brinkman type 

fluid passing through a moving disk. The axis of rotation is 

assumed to be in plane x’ = 0. The y’ axis is taken normal to 

the disk. Initially, both of the fluid and disk are at rest. At 

time t’ > 0, the disk starts to move with constant velocity U0 

and the fluid starts solid body rotation with constant 

angular velocity Ω parallel to y’ axis. Therefore, the 

appropriate governing equation is given as 
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where f’=f’(y’,t’)=u’(y’,t’)+iw’(y’,t’) is a complex velocity, 

u’(y’,t’) is a primary velocity, i is unit vector for the flow, β* 

is defined as β* = 𝛼/𝜌 where 𝛼 is drag coefficient in positive 

value,  𝜌 is density of the fluid,  𝜐 is kinematic viscosity of 

the fluid. In order to simplify equation (1.1) and conditions 

(1.2) into non-dimensional form, the non-dimensional 

variables are introduced as 
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By using the non-dimensional variables (1.3), equation (1.1) 

together with conditions (1.2) are expressed as 
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where a1 = 2ik – β1. Here, k is rotation parameter and β1 is 

Brinkman fluid parameter. Our main aim is to find an exact 

solution of (1.4). By taking Laplace transform to equation 

(1.4) with respect to initial conditions (1.5), we obtained 
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and boundary conditions 
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By using the characteristic equation, (1.6) can be solved and 

we obtained 
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We now need to find the values of A1 and A2 in equation 

(1.8). Imposing boundary conditions (1.7), we yield 
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Then, the inverse Laplace transform of equation (1.9) is 
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and it is an exact solution for unsteady flow of rotating 

Brinkman type fluid over a moving disk. From this exact 

solution, the expression of skin friction τ can be obtained by 

using the non-dimensional form 
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By using this definition, we obtained the expression for the 

skin friction τ as 
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This skin friction expression defined the shear stress at the 

boundary layer of the rotating Brinkman type fluid in the 

moving disk. 

 

III. RESULTS AND DISCUSSION 

 

This section discusses the effect of embedded flow 

parameters on the fluid velocity. In order to illustrate such 

variations, the behaviour of velocity profiles has been 

plotted in Figure 1 until Figure 3. It is worth to note that, 

the panels (a) and (b) in each figure show the behaviour of 

the primary and secondary velocities, respectively. The 

effect of Brinkman type fluid β1 is displayed in Figure 1 for 

both velocities. It is observed that, the primary (panel (a)) 

and secondary (panel (b)) velocities decrease on increasing 

the value of β1. This is because, when the value of 

β1increase, the viscous force will increase, and this will 

retard the movement of velocity profile.  

The influence of rotation parameter k on velocity profile 

is graphically plotted in Figure 2. For larger values of 

rotation parameter, the fluid velocity decreases for primary 

velocity (panel (a)) whereas increases for secondary 

velocity (panel (b)). This is due to the Coriolis effect. In 

physics, the Coriolis effect is a deflection of moving objects 

in the frame rotating in the opposite direction. Therefore, 

primary velocity lost energy to deflect the movement of 

fluid to create the secondary velocity. 

From the Figure 3, it shows that the velocity profiles 

increase in time t for both velocities (primary (panel (a)) 

secondary (panel (b)) velocities).  Here, increasing in time 

will increase the movement of the disc and enhance the 

rotation speed of the fluid flow. 

The values of skin friction are calculated in Table1. Its 

show that by increasing the values of β, k and t, the skin 

friction increases for β, k (primary velocity) and decreases 

for t, k (secondary velocity). 
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(a) 

 

(b) 

 

Figure 1. Velocity profiles for different values of β1with k = 

1.0 and t = 1.0 where (a) primary and (b) secondary 

velocities. 

 

(a) 

 

 

 

(b) 

 

Figure 2. Velocity profiles for different values of k withβ1 = 

0.5 and t = 1.0 where (a) primary and (b) secondary 

velocities. 
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(a) 

 

 

 

(b) 

 

Figure 3. Velocity profiles for different values of t withβ1 = 

0.5 and k= 1.0 where (a) primary and (b) secondary 

velocities. 

 

Table 1. Variation of skin friction for all flow parameters 

β k t τ 

Primary 

τ 

Secondary 

0.500 0.300 0.200 1.389 -0.146 

3.000   1.953 -0.126 

 1.200  1.431 -0.582 

  0.800 0.887 -0.265 

 

 

IV. SUMMARY 

 

An exact solution for unsteady flow of rotating Brinkman 

type fluid over a moving disk is obtained by using the 

Laplace transform method. The influence of flow 

parameters β, k and t on velocity and skin friction are 

plotted and calculated in graphs and table. The obtained 

solution is satisfied for both initial and boundary conditions 
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