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Spatial solitons are the solutions of nonlinear partial differential equations describing the 

propagation of optical beams in nonlinear medium. This paper studies the scattering of a spatial 

solitons of the Cubic-Quintic Nonlinear Schrödinger Equation (C-Q NLSE) on an   interface between 

two nonlinear media. The scattering process will be investigated by variational approximation 

method and by direct numerical solution of C-Q NLSE. This variational approximation method has 

been used to analyse the dynamic of the width and centre of mass position of a soliton during the 

scattering process. Meanwhile, a direct numerical simulation of C-Q NLSE was done to check the 

accuracy of the approximation by using the same range of parameters and initial condition. The 

results for direct numerical simulation of CQNLSE for soliton parameters are quite similar with the 

variational equation. The studies showed that soliton can be reflected by or transmitted through the 

interface, also the nonlinear surface wave can be formed depending on the parameters of interface 

and initial soliton. 
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I. INTRODUCTION 
 
 

In optics, the term solitons can be considered as a localized 

wave propagating in a nonlinear media with constant speed 

and shape (Porsezian & Kuriakose, 2003; Abdullaev et 

al.,2014). A pulse or a beam have a natural tendency to 

spread, either due to chromatic dispersion or because of 

spatial diffraction. But under some condition’s nonlinearity 

may compensate natural broadening and a stable self-

localized wave packet may be formed (Ablowitz & 

Clarkson,1991; Yang, 2010). These kinds of objects are 

known as an optical soliton (Kivshar & Agrawal,2003). The 

optical beams that propagate in a nonlinear medium 

without diffraction is called spatial optical soliton (Trillo & 

Torruellas, 2013; Chen et al., 2012). Beam radius stays 

invariant during propagation. One can imagine that a 

spatial soliton is a result of an exact compensation between 

diffraction and nonlinearly induced self-focusing effects. 

Also, one can consider it as an optical beam inducing a 

waveguide which directs itself while propagating as if it 

were bounded in the long tube.  

The principle on how an optical beam can guide itself in 

self-induced waveguide was first introduced by Askaryan 

(1962) and soon the self-guiding or self-focusing 

phenomena was observed in experiment (Hercher, 1964). 

Later, the spatial optical solitons were observed in 

experiment both in 2 dimensional (Barthelemy et al., 1985).  

and 3 dimensional cases (Bjorkholm & Ashkin, 1974).  

The study of spatial solitons represents interest for 

fundamental physics of nonlinear waves but also there had 

been proposals for some interesting applications, for 

example wave guiding and beam splitting, optical 

interconnects, frequency conversion, image transmission, 

gateless computing and soliton based navigation (Trillo & 

Torruellas, 2013; Chen et al., 2012). The experimental and 

theoretical studies of spatial solitons reveal that they may 

show the particle-like behaviour, they interact between 

each other and with external potentials preserving their 

identity. 

To control and manage spatial solitons it is necessary to 

study their interaction with different types of perturbations. 

Especially important problem is to learn how the optical 

spatial solitons behave on the interface between two media 

with different optical properties. This problem was first 

studied theoretically in the papers (Aceves et al., 

1989;Aceves et al., 1988) where a spatial soliton in Kerr 

nonlinear medium were described as a soliton solution of 

nonlinear Schrödinger equation (NLSE) and the equivalent 

particle theory for soliton was developed. It was shown that 

the success of this theory depends on the ability of the 

spatial solitons to remain unaffected by perturbations 

which allowed us to describe the interaction of spatial 

solitons with interface as a soliton with slowly modulated 

parameters. An analytical expression for nonlinear of Goos-

Hänchen shift has been derived and the equivalent 

potential was obtained. The studies showed that soliton can 

be reflected by or transmitted through the interface, also 

the nonlinear surface wave can be formed depending on the 

parameters of interface and initial soliton. It was 

demonstrated that the analytical estimation provides good 

agreement with the direct numerical simulation of NLSE. 

It has been widely known that the optical beam can self-

focus in both space and time while propagating in a 

nonlinear media. However, this beam also can be collapse 

in a Kerr medium for 2 and 3 dimensional when it produces 

high electric field strengths. It was observed that the 

insertion of a saturable nonlinearity could prevent the 

singular collapse, thus it is necessary to consider 

nonlinearities higher than third order 

(Biswas&Konar,2006). Therefore, in this paper we will try 

to understand the propagation of optical solitons in non-

Kerr law media which induces a fifth order nonlinearity 

term. The problem we are going to consider is to study the 

interaction of a spatial soliton with interface between two 

nonlinear media, when both cubic and quintic nonlinearity 

will be considered. The spatial soliton in this case will be 

represented as a soliton solution of generalized C-Q NLSE.  

The plan of the present paper is as follows. In Sec II we 

briefly describe the model and the main equation for 

scattering of spatial soliton with nonlinear interface and 

obtain the perturbed CQ-NLSE. Sec III we present 

variational approximation method and illustrate the 

equivalent potential. We then describe in Sec IV two 

representative set of numerical result for ordinary 

differential equation (ODE) and reveal the kinds of soliton 

transmission, reflection and trapping behaviours. In Sec V 
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we make comparison between the partial differential 

equation (PDE) and ODE result by using same range of 

parameter. The paper is concluded in the Sec VI. 

 

II. THE MODEL AND MAIN 
EQUATIONS 

 
 

The main equation of our model is based on the C-Q NLSE 

of known as Gross-Pitaevskii equation (GPE) with 

perturbation 
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where Ψ (x, t) is the wave function, α and β are the 

coefficients of cubic and quintic nonlinearity respectively. 

The perturbation potentials V1(x) and V2(x) are 
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Here H(x) is a step function and characterized by the 

strengths 𝑔1˃0 and 𝑔2˃0. We consider positive coefficient of 

nonlinearity, α˃0 and β˃0 corresponds to focusing 

nonlinearity on optic applications so that the system support 

bright solitons. In the case V(x)=0 and α= 1, eq. (1) has exact 

solution in the form of C-Q NLSE soliton 
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where 𝐴1 , 𝜉, 𝜐, 𝜑 are the amplitude, center of mass position, 

velocity and initial phase of the soliton respectively. 

 

III. VARIATIONAL 
APPROXIMATION METHOD 

 
 

Variational approximation is a body of deterministic 

methods for making approximate inference for parameters 

in complex models. The capability of this approximation to 

reduce the partial differential equation to ordinary equation 

and be a well described analysis of non-integrable equation 

has made it a widely used theoretical tool in the research of 

solitons. Moreover, it also shows agreement with the 

numerical simulation results in many cases where the very 

first application was for soliton in plasma physics.  

The variational approximation can be used to obtain the 

dynamic properties of the solution of NLSE. The accuracy 

of this approximation critically depends on the chosen of 

our trial function. In this paper, a Lagrangian density was 

derived first from the C-Q NLSE before substituted the trial 

function into the equation 
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As next step, we find the averaged/effective Lagrangian 

with spatial integration of lagrangian density L =∫ ℒ 𝑑𝑥
∞

−∞
 

using the trial function (Aklan& Umarov,2015) 
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where A,a,v, 𝜉,b and φ represent amplitude, width, velocity, 

centre of mass position, chirp parameter, and phase of the 

soliton, respectively. It gives rise to the total averaged 

Lagrangian in eq. (7). The conserved quantity 𝑁 =

∫ |𝛹|2 𝑑𝑥 = 𝑎𝐴2 √𝜋
+∞

−∞
  is the norm of wave function, where 

the number of atom, N is constant for every trajectory of 

the system. 
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The variation approximation equation is derived 

through Euler-Lagrange equation   

( ) ( )/ / /td dt L q L q  −   where q are parameters of 

wave function. 
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From above equation, we get a set of coupled equations for 

width and centre-of-mass position of soliton 
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Equation (9) and (10) represent the main result of this 

work and it describe the scattering of soliton on interface 

between two nonlinear media. The system become coupled 

when the soliton come close to the interface and we should 

consider for full system of eq. (9) - (10). In this case, the 

soliton is transmitted or reflected through the interface and 

it also will generate small oscillation due to the 

perturbation. 

But when the soliton is located far from the potential 

 a, it is clear from the equations above are decoupled 

and one has a soliton moving freely with initial velocity and 

its amplitude also remain constant. In this case, we can 

neglect the effect of potential to the width of soliton, hence 

it is possible to find the approximation width of the 

stationary soliton (att =0) of cubic-quintic NLSE. 
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Thus, we can consider the eq. (9) - (10) are separately 

for each other and can be transform into a single equation 
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The above equation then can be integrated once and 

reduced to eq. (13) which is that for a classical particle 

motion in the external potential, Vp in eq. (14). 
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The different shapes of the potential are determined by 

the values of 𝑔2 in eq. (14). In Figure 1, it shows that if  𝑔2 <

0.42, there are no critical value for Vp since there are no 

corresponding steady state solution at left side of medium 

[13]. Differently, if  𝑔2 > 0.42, there exist a maximum point 

in   Vp due to the present of an unstable steady state surface 

wave near the interface between two nonlinear media. 

 

Figure 1. Graphs of the effective potential, 𝑉𝑝 at the 

interface (x=0) for 𝑔1=0.1, A=0.7, 𝛽=1 and various values of 
the parameter g2: (a) g2=0.1, (b) g2=0.5, (c) g2=0.61, (d) 

g2=0.8. 
 

Now, we focus on the potential at right hand of the 

media. There are four typical cases to be observed: the first 

one refers to 1(a) which is𝑔2 < 0.42,where 𝑉𝑝is an 

increasing function of x.  Three of others correspond to the 

cases where 𝑔2 > 0.42 and it demonstrate a minimum point 

of  Vp, but in 1(b) 𝑉𝑝(0) <𝑉𝑝(∞), 1(c) 𝑉𝑝(0) = 𝑉𝑝(∞)  and 1(d) 

𝑉𝑝(0)>𝑉𝑝(∞). According to the cases, the critical point is due 

to the existences of a stable steady state solution in right 

side media. As a result, the soliton that approaching the 

interface from the right will be circle at the centre and 

return back to +∞ without passing though the interface. 

This happen because of its initial energy less than 𝑉𝑝(0). 

However, the soliton that propagate with enough energy 

will cross the interface. 

Hence, we can conclude that here are exist a minimum 

and a maximum value of this potential when0.42 < 𝑔2 <

1.5. As this occurs, if 0.42 < 𝑔2 < 0.61, then 𝑉𝑝(∞)>𝑉𝑝(0) 

and if0.61 < 𝑔2 < 1.5, then 𝑉𝑝(∞) < 𝑉𝑝(0). 

 

IV. ODE SIMULATION OF THE 
INITIAL VALUE PROBLEM 
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We now describe a set of numerical result for the ODE 

which is the equation (9) – (10). We initialize the soliton 

at 𝜉(0) = −8 and v(0)=v with v>0, propagating rightward 

toward the interface. To set it propagate from the right 

side, we fixed the values of 𝜉(0) = 8 and v(0)= v with v<0 

while the soliton amplitude is set to  A=0.7 and 𝑔1= 0.1. 

In Figure 2, the behaviour for 𝑔2 = 0.8 is shown under 

4 trajectory types; (1) a soliton coming from the left and 

failing to pass through the interface, therefore ending up 

at 𝜉 = −∞; (2) a soliton entering from the left and ending 

up at 𝜉 = ∞ because it has enough energy to overcome 

Vmax; (3) a packet coming from the right with enough 

energy to overcome Vmax and it pass through the interface; 

(4) a packet moving from 𝜉 = ∞ and it reflected from the 

interface. 

When the soliton entering from the left medium, the 

critical velocity of the soliton, Vc=0.118 while from the 

right it given that        Vc=-0.339. The value of |Vc, right| > 

|Vc, left| due to the energy needed to overcome the 

potential are higher when the soliton entering from right 

compared to the left. The above condition only will be 

occurred if𝑉𝑝(∞) < 𝑉𝑝(0)where  𝑔2  should be greater than 

0.61. 

 
 

Figure 2. Potential and phase plane for values of the 
parameter 𝑔1 = 0.1 and 𝑔2 = 0.8. 

 

In Figure 3, we computed ODE for 𝑔2 = 0.5. The result 

is quite similar compared to previous cases in Figure 2; 

when the soliton has enough energy to overcome Vmax, it 

will be transmitted through the interface (case (2) and 

case (3)) and will be reflected by the interface when the 

soliton is in low energy (case (1)). But in case (4), the 

soliton is trapped for a while at the interface and then it 

moves out from the potential well to the right side of the 

medium. The escape of the soliton from the potential well 

is due to the action of resonance force that causes the 

destruction of the surface wave (Abdullaev et al., 1998). 

The formation of the nonlinear surface wave occurs when 

the soliton is captured into the minimum of the potential 

well. It will be oscillating around the potential minimum 

under the effect of a periodic force. When the amplitude of 

oscillation exceeds the critical value of the modulation 

amplitude, hence it can leave the interface. 

 

Figure 3. Potential and phase plane for values of the 
parameter 𝑔1 = 0.1 and 𝑔2 = 0.5. 

 

V. NUMERICAL RESULT 
 
 

In order to study the dynamics of solitons, split-step Fast 

Fourier Transform (FFT) procedure is applied to solve the 

C-Q NLSE numerically(Aklan & Umarov, 2015); in our 
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case we use a first-order split step method as our 

numerical scheme. The time step was taken as 0.001 and 

2048 number of FFT mode were used. The spatial domain 

was taken as [-12𝜋 ,12𝜋 ] . We applied absorbing boundary 

layers at both ends of the integration domain to minimize 

the radiation that can feed back into the system. To 

reduce numerical error, we operated our simulation with 

wider spatial domain, larger grid points and smaller time 

steps. 

The variational approximation method gave the 

approximate results and based on some assumptions. The 

direct numerical solutions of the governing equations are 

performed to check the accuracy of the approximate 

calculations by monitoring the evolution of centre-of mass 

position of the soliton by using eq. (15) and compared 

with dynamic equation of variational approximation Eq. 

(9) – (10). 

2

2

| ( , ) |

( )

| ( , ) |

x x t dx

t

x t dx









−



−

=




                         (15) 

In Figure 4 the interaction of soliton can be observed 

through the time dependence of its relative centre-of-

mass trajectory. The soliton at initial width, (0) sa a=  

and position 𝜉0 = 8is set in motion with velocity v, toward 

an interface between two nonlinear media. In Figure 4 we 

present the reflected, transmitted, and trapped part of the 

soliton as a function of the incident velocity. As we can see 

from the Figure, the soliton moves freely with constant 

width and velocity when it far from an interface, but it will 

be affected when it approaches an interface. 

According to the results obtained from numerical 

simulation, it is quite good agreement between the result 

of PDE (dotted blue line) and ODE (red line). Though, 

there is still a slightly different between the ODE model 

and the PDE model due to the omission of energy 

radiation in the ODE model. This radiation mostly 

generated when a spatial soliton passes through the 

interface. Because of this radiation loss, we observed that 

each time it crosses the new medium it will be reshaped 

and no longer be a perfect soliton. This is the reason why 

the translation motion (gradient of the centre of mass) of 

soliton in the PDE model is slightly lower than the ODE 

model after crossing. Since the energy losses are quite 

small, we find that a good agreement between the result of 

PDE and ODE. It shows that the variational analysis is 

well describes a soliton scattering process in cubic and 

quintic nonlinearity. 

 

 

Figure 4. Evolution of the centre-of-mass position of a 

soliton with A=0.7, A1=1.14, 𝑔1 = 0.1, 𝑔2 = 0.5, 𝜉0=8 and 

velocity as variable, v: (a) v=-0.093, (b) v=-0.2, (c) v=-

0.0615. 

 

VI. CONCLUSION 
 

We have studied the scattering of solitons of NLSE with 

cubic and quintic terms added to the system in the presence 

of two potential V1(x) and V2(x). The results of C-Q NLSE 

numerical simulation show that variational approximation 
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well described the soliton scattering on interface between 

two nonlinear media with the consideration of a good 

choice of trial function. Direct simulation of C-Q NLSE has 

already covered all the results needed but can be time 

consuming to run the simulation, thus variational approach 

can show the results faster and also it gives us the insight to 

the physics of the soliton scattering. We hope that this 

simulation will help us to develop intuition and to solve 

more complicated problems on soliton scattering. This 

researched can be extended on soliton interactions with 

localized potential walls and wells and also other form of 

generalized NLSE. This result will serve as guidelines for 

possible future experiments with matter-wave solitons and 

optical solitons. 
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