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I. INTRODUCTION 

 
The Poisson distribution is a basic model for the analysis of 

count data but is restricted in its applications due to the 

equality of its mean and variance (equi-dispersion). A 

popular alternative is the class of mixed Poisson 

distributions when the count frequency data exhibit 

overdispersion (variance greater than the mean). 

Overdispersion is common in a count data. For example, in 

accident proneness modelling, the probability distribution of 

accidents for a group of individuals is modelled by the 

negative binomial (NB) distribution, a mixed Poisson 

distribution. Some of the earliest work on mixed Poisson 

distributions was dated as far back as a century ago, such as 

the paper on accident proneness by Greenwood and Yule 

(1920). A comprehensive survey of mixed Poisson 

distributions was given by Karlis and Xekalaki (2005). 

Gupta and Ong (2005) reviewed their applications in fitting 

very long-tailed data. The book on univariate discrete 

distributions by Johnson et al. (2005) gave a useful 

summary of properties of mixed Poisson distributions. Since 

the review paper of Karlis and Xekalaki in 2005, there is still 

much interest and applications of mixed Poisson 

distributions; see, for instance, Iyer-Biswas and Jayaprakash 

(2014) and Simeunović et al. (2018). Due to this, the 

objective of this paper is to bring together recent works on 

mixed Poisson distributions. We first define the class of 

mixed Poisson distributions. Let 𝑋  be a Poisson random 

variable with parameter 𝜆  and probability mass function 

(pmf): 

 

𝑃𝑟(𝑋 = 𝑘|𝜆) = 𝑒−𝜆 𝜆𝑘

𝑘!
, 𝑘 = 0,1,2,3, . . . , 𝜆 > 0                 (1) 

 
If the Poisson mean 𝜆varies as a random variable 𝛬with 

probability density function (pdf) 𝑔(𝜆) , a mixed Poisson 

distribution is obtained. It has pmf given by: 

 

𝑃𝑟(𝑋 = 𝑘) = ∫ 𝑒−𝜆 𝜆𝑘

𝑘!

∞

0
𝑔(𝜆)𝑑𝜆.                         (2) 

 
The pdf 𝑔(𝜆) is known as the mixing distribution. In the 

accident proneness model mentioned above, the mixing 

distribution has the gamma pdf which results in the NB 

distribution (Greenwood and Yule, 1920). Sometimes the 

mixed Poisson distribution is considered with a scale 

parameter 𝜃: 

 

𝑃𝑟(𝑋 = 𝑘) = 𝜃𝑘 ∫ 𝑒−𝜃𝜆 𝜆𝑘

𝑘!

∞

0
𝑔(𝜆)𝑑𝜆, 𝜃 > 0 .              (3)  
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In actuarial science, 𝜃 is known as the exposure-to-risk. In 

general, if 𝑓(𝑥|𝜆) is a pdf indexed by a parameter 𝜆  that 

varies as a random variable 𝛬with pdf 𝑔(𝜆), the pdf: 

𝑓(𝑥) = ∫ 𝑓(𝑥|𝜆)𝑔(𝜆)𝑑𝜆
∞

0
                              (4) 

 

is known as the pdf of a mixture distribution. Note that the 

mixing distribution may be continuous, discrete or 

distribution with finite steps. For the finite-step distribution, 

the mixture distribution is known as a finite mixture 

distribution. Comprehensive reviews and compilation of 

properties and applications of finite mixture distributions 

are found in a number of textbooks, for example, McLachlan 

and Peel (2000). For other references, refer to Karlis and 

Xekalaki (2005). Several international conferences and 

special journal issues on finite mixtures showed the 

continuing interest in this class of models. As an example, 

see 4th Special Issue on Advances in mixture models, 

Computational Statistics and Data Analysis, Volume 132, 

April 2019. 

Mixture models have been applied in diverse areas such as 

robust statistics, classification, Bayesian statistics, computer 

generation of random samples, latent structure models, and 

many others. In cluster analysis (classification), a finite 

mixture model is a natural representation of the 

components in the population.  Ong (1992) considered 

mixture models to facilitate the generation of bivariate 

binomial samples with given marginal distributions and 

correlation. 

Section II gives a review of some basic properties and 

results of the mixed Poisson distributions. In Section III, 

new mixed Poisson models are discussed. Sections IV and V 

consider simulation and computation of mixed Poisson 

distributions and applications to construct new stochastic 

models and data analysis. This complements the works 

mentioned above. Finally, in Section VI we briefly conclude. 

 

II. SOME PROPERTIES OF MIXED POISSON 
DISTRIBUTIONS 

 
Karlis and Xekalaki (2005) have summarized the important 

and interesting properties of the class of mixed Poisson 

distributions. Nikoloulopoulos and Karlis (2008) presented 

a comparison of NB, Poisson-inverse Gaussian and 

generalized Poisson distributions from aspects such as the 

tail length and model fit for varying degrees of over 

dispersion.  Recently, Kuba and Panholzer (2016) reviewed 

the properties of mixed Poisson distributions and 

probabilistic aspects of the Stirling transform and presented 

a new simple limit theorem using expansions of factorial 

moments. The authors also presented unifying and 

extension of earlier results on the applications of mixed 

Poisson distributions in the analysis of random discrete 

structures, and several new results on triangular urn 

models.  

A few basic properties and important results will be given 

in this section. A number of properties of the mixed Poisson 

distribution (2) or (3) are inherited from the mixing 

distribution with pdf 𝑔(𝜆) . Some of these properties are 

stated here without proof. 

Property 1: Let 𝐺(𝑧) be the probability generating function 

of the mixed Poisson distribution (3) and 𝑀𝛬(𝑡) be the 

moment generating function of the mixing distribution. 

Then 𝐺(𝑧) is given by: 

 

𝐺(𝑧) = 𝑀𝛬(𝜃(𝑧 − 1))                                  (5) 

 

Property 2 (Holgate, 1970): The mixed Poisson 

distribution is unimodal if the absolutely continuous mixing 

pdf 𝑔(𝜆) is unimodal. 

A random variable 𝑋 is said to have an infinitely divisible 

distribution if its characteristic function 𝜙(𝑡)can be written 

as [𝜑𝑛(𝑡)]𝑛, where 𝜑𝑛(𝑡)  are characteristic functions for any 

𝑛 ≥ 1. 

Property 3 (Maceda, 1948): The mixed Poisson 

distribution is infinitely divisible if the mixing distribution is 

infinitely divisible. 

Infinite divisibility is connected to the important class of 

Poisson-stopped sum (compound or generalized Poisson) 

distributions. A discrete distribution is said to be a Poisson-

stopped sum distribution if it can be represented as the 

distribution of a random sum of 𝑁 independent and 

identically distributed random variables where 𝑁  is a 

Poisson random variable.  

Property 4 (Feller, 1968): An infinitely divisible discrete 

distribution is a Poisson-stopped sum distribution. 

In general, every infinitely divisible probability 

distribution is a limit of Poisson-stopped sum Poisson 
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distributions (Lukacs, 1970). Property 3 together with 

Property 4 link the mixed Poisson distributions to the 

Poisson-stopped sum distributions. 

Allowing the Poisson mean to vary as a random variable 

alters the properties and characteristics of the Poisson 

distribution. Shaked’s (1980) Two Crossings Theorem 

showed that the mixed Poisson distribution has a larger 

probability of zeros and a longer tail than a Poisson 

distribution with the same mean.  

Two Crossings Theorem (Shaked, 1980) Let 𝑋be mixed 

Poisson distributed with mean 𝜇. There are two integers 0 ≤

𝑥 < 𝑦, such that: 

 

𝑃𝑟(𝑋 = 𝑘) ≥ 𝑒−𝜇 𝜇𝑘

𝑘!
, 𝑘 = 0,1,2, . . , 𝑥                            

𝑃𝑟(𝑋 = 𝑘) ≤ 𝑒−𝜇 𝜇𝑘

𝑘!
, 𝑘 = 𝑥, 1,2, . . , 𝑦                  (6) 

𝑃𝑟(𝑋 = 𝑘) ≥ 𝑒−𝜇 𝜇𝑘

𝑘!
, 𝑘 ≥ 𝑦 + 1                                  

 

Although different mixed Poisson distributions are obtained 

by a different choice of the mixing distributions, this 

theorem shows that to model particular features of the data 

such as very high zero counts, extra-long tail or large 

overdispersion, a proper selection of the mixing distribution 

is required. 

 

III. SPECIFIC MIXED POISSON 
DISTRIBUTIONS 

 
There is interest in proposing and studying specific mixed 

Poisson models, especially for empirical modelling. A 

particular distribution that has attracted the attention of 

researchers is the Poisson-Lindley distribution. The 

Poisson-Lindley distribution and proposed generalizations 

have simple closed forms for the pmf. Sankaran (1970) 

proposed a single-parameter Poisson-Lindley distribution 

which has a closed-form pmf given by:   

 

𝑃(𝑋 = 𝑥) =
𝜃2(𝜃+2+𝑥)

(𝜃+1)𝑥+3 , 𝑥 = 0,1,2,3, . . . , 𝜃 > 0.            (7) 

 

The mixing distribution is the Lindley distribution with pdf 

(Lindley, 1958): 

 

𝑓(𝜆) =
𝜃2

1+𝜃
(1 + 𝜆)𝑒−𝜃𝜆, 𝜆 > 0, 𝜃 > 0.                     (8) 

 

The single-parameter Poisson-Lindley distribution may be 

written as a finite mixture of a geometric (𝜃/(1 + 𝜃)) 

distribution and a NB (2, 𝜃/(1 + 𝜃))  distribution with 

mixing proportion 𝜃/(1 + 𝜃) . Gómez-Déniz et al. (2012) 

proposed multivariate extensions of this Poisson-Lindley 

distribution with a flexible covariance structure and 

discussed its properties such as estimation methods. This 

multivariate Poisson-Lindley application was illustrated in 

the modelling of automobile insurance claim counts for 

computation of bonus-malus premiums. 

Ghitany and Al-Mutairi (2009) investigated the properties 

of the method of moments and maximum likelihood 

estimators of the Poisson-Lindley distribution’s single 

parameter, such as its biasness and asymptotic properties. It 

is found that both estimators are almost equally efficient. 

Mahmoudi and Zakerzadeh (2010) generalized the Poisson-

Lindley distribution to a two-parameter generalized 

Poisson-Lindley distribution with pmf: 

  

𝑃(𝑋 = 𝑥) =
𝛤(𝛼 + 𝑥)

𝑥! 𝛤(𝛼 + 1)

𝜃𝛼+1

(𝜃 + 1)𝑥+𝛼+1 (𝛼 +
𝛼 + 𝑥

𝜃 + 1
), 

    𝑥 = 0,1,2,3, . . . , 𝛼, 𝜃 > 0                                                           (9) 

 

The mixing distribution for this generalized Poisson-

Lindley distribution (Zakerzadeh & Dolati, 2009) has pdf: 

 

𝑓(𝜆) =
𝜃𝛼+1

1+𝜃

𝜆𝛼−1

𝛤(𝛼+1)
(𝜃 + 𝜆)𝑒−𝜃𝜆, 𝜆 > 0, 𝛼, 𝜃 > 0.         (10) 

 

Properties of the distribution and performance of various 

parameter estimation methods were studied. Simulation of 

variables from the distribution was also provided.   

Bhati et al. (2015) proposed another new generalized 

Poisson-Lindley distribution when the mixing distribution 

follows a two-parameter Lindley distribution (Shanker et al., 

2013) defined as: 

 

𝑓(𝜆) =
𝜃2

𝛼+𝜃
(1 + 𝛼𝜆)𝑒−𝜃𝜆, 𝜆 > 0, 𝛼, 𝜃 > 0.                (11) 

The resulting pmf is:  
 

𝑃(𝑋 = 𝑥) =
𝜃2

(𝜃 + 𝛼)(𝜃 + 1)𝑥+1 (1 +
𝛼(1 + 𝑥)

𝜃 + 1
), 

   𝑥 = 0,1,2,3, . ..                                                                           (12) 
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Basic properties have been derived. The pmf still retains 

the finite mixture interpretation of geometric and negative 

distributions but with mixing proportion 𝜃/(𝛼 + 𝜃). That is, 

an extra parameter 𝛼 is introduced through the mixing 

proportion. Bhati et al. (2015) gave an actuarial application 

to collective risk model by considering the proposed 

distribution as primary distribution and exponential and 

Erlang as secondary distributions. It is shown that the model 

performed better than competing models for some real data 

sets. 

Recently, Das et al. (2018) proposed a further 

generalization of the Poisson-Lindley distribution known as 

the three-parameter Poisson-Lindley distribution. The 

mixing distribution used has pdf: 

 

𝑓(𝜆) =
𝜃2

𝛽+𝜃𝛼
(𝛼 + 𝛽𝜆)𝑒−𝜃𝜆, 𝜆 > 0, 𝛽 > 0, 𝜃 > 0.         (13) 

 

The three-parameter Poisson-Lindley distribution has pmf: 

 

𝑃(𝑋 = 𝑥) =
𝜃2

(𝜃 + 1)𝑥+2
(1 +

𝛼 + 𝛽𝑥

𝜃𝛼 + 𝛽
), 

𝑥 = 0,1,2,3, . ..                                                                           (14) 

 

Statistical properties of this new distribution were 

investigated, and it was found to be a viable alternative to 

the Poisson-Lindley and two-parameter Poisson-Lindley 

distributions. 

Sarabia and Gomez-Deniz (2011) extended the results 

from Holla and Bhatacharya (1965) to derive two 

multivariate versions of the mixed Poisson-beta distribution, 

one of which is based on the Sarmonov-Lee model (Lee, 

1996). They examined the estimation methods and 

discussed examples of application in accident analysis and 

modelling of fault counts in lenses. 

Using the weighted exponential distribution as the mixing 

distribution, Zamani et al. (2014) introduced a two-

parameter Poisson-weighted exponential distribution and 

regression model and subsequently introduced a bivariate 

extension of the distribution. 

Bhati et al. (2017) studied a new mixed Poisson 

distribution where the transmuted exponential distribution 

is the mixing distribution. Distributional properties and 

parameter estimation were considered for this mixed 

Poisson distribution and illustrate with an actuarial 

application in the context of aggregate claim distribution. 

Low et al. (2017) proposed a generalized Sichel 

distribution obtained by using the extended generalized 

inverse Gaussian distribution as mixing distribution. This 

mixed Poisson distribution is introduced to model 

simultaneously overdispersion, high zero-inflation and 

excessive heavy-tails in count data sets. The generalized 

Sichel distribution has pmf given by: 

 

𝑃(𝑋 = 𝑘) = 

1

(2 𝛿⁄ )(𝑏 𝑎⁄ )
𝜆

2𝛿𝐾𝜆 𝛿⁄ (2√𝑎𝑏)
∫

𝑒−𝜃𝜃𝑘

𝑘!
𝜃𝜆−1 𝑒𝑥𝑝( − 𝑎𝜃𝛿 − 𝑏𝜃−𝛿)

∞

0
𝑑𝜃 (15) 

 

which can be written as: 

 

𝑃(𝑋 = 𝑘) = 

(
1

𝐾𝜆/𝛿(2√𝑎𝑏)𝑘!
) ∑

(−1)𝑗

𝑗!
(

𝑏

𝑎
)

(𝑗+𝑘)/2𝛿
𝐾(𝑗+𝑘+𝜆)/𝛿(2√𝑎𝑏)∞

𝑗=0          (16) 

 

where 𝐾𝜈(𝑧) is the modified Bessel function of the third kind 

with index ν. 

Gómez-Déniz and Calderin-Ojeda (2018) studied the 

properties of the mixed Poisson distribution which was 

obtained by considering the reciprocal inverse Gaussian 

distribution as the mixing distribution. They also considered 

parameter estimation via an EM-type algorithm in its 

regression model. Application of this Poisson-reciprocal 

inverse Gaussian distribution on modelling claim frequency 

is found to be competitive with the more popular NB and 

Poisson-inverse Gaussian distribution. 

Habibi and Asgharzadeh (2018) constructed a new mixed 

Poisson distribution by mixing the Poisson distribution with 

the binomial, exponential 2 distribution. Basic properties, 

parameter estimation by method of moments and maximum 

likelihood and applications to real data sets were considered. 

Recently, Ong et al. (2019) examined probabilistic 

properties of the non-central negative binomial distribution 

(NNBD) which is both a mixed Poisson and a Poisson 

stopped-sum (Ong & Toh, 2001) or compound distribution. 

These properties are log-concavity, discrete self-

decomposability, unimodality and asymptotic behaviour. 

The construction as a mixed Poisson process is also 
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considered. The non-central negative binomial distribution 

has applications in photon and neural counting, statistical 

optics, astronomy and a stochastic reversible counter system. 

The NNBD is a mixed Poisson distribution with the non-

central gamma distribution as mixing distribution. The non-

central gamma pdf is given by: 

 

g(θ) = a(ν+1) 2⁄ (θ λ⁄ )(ν−1) 2⁄ exp{−(λ + aθ)} I(ν−1) (2√aλθ), 

θ > 0, a, ν, λ > 0.                                                                        (17) 

 

The pmf is given in terms of Laguerre polynomials 

𝐿𝑘
(𝛼)

(𝑥) orthogonal over () with respect to 𝑥𝛼−1𝑒−𝑥: 

 

           Pr(k) = e−λppkqνLk
(ν−1)

(−λq)                         (18) 

 

The Laguerre polynomials 𝐿𝑘
(𝛼)(𝑥) are defined by: 

 

𝐿𝑘
(𝛼)

(𝑥) =
(𝛼+1)𝑘

𝑘!
𝐹1 1(−𝑘, 𝛼 + 1; 𝑥)                        (19) 

 

where 𝐹1 1(𝑎, 𝑏; 𝑥) is the confluent hypergeometric function 

given by: 

 

𝐹1 1(𝑎; 𝑏; 𝑧) = ∑
(𝑎)𝑖

(𝑏)𝑖

∞
𝑖=0

𝑧𝑖

𝑖!
, (𝑎)𝑖 =

𝛤(𝑎+𝑖)

𝛤(𝑎)
.                    (20) 

 

Apart from the bivariate generalizations of the NNBD cited 

in Ong et al. (2019), another generalization was given 

recently by Ong and Ng (2013). 

Kempton (1975) obtained a generalization of NB 

distribution as a mixed Poisson distribution with mixing 

distribution having pdf:  

 

  𝑔(𝜆) =
𝑏𝑝𝜆𝑝−1

𝐵(𝑝,𝑞)(1+𝑏𝜆)𝑝+𝑞
.                                (21) 

 

The generalized NB distribution has pmf: 

 

𝑃(𝑘) =
1

𝐵(𝑝, 𝑞)
∫ 𝑒−𝜆

∞

0

𝜆𝑘

𝑘!
  

𝑏𝑝𝜆𝑝−1

(1 + 𝑏𝜆)𝑝+𝑞 𝑑𝜆 ,                      

=   
𝛤(𝑝 + 𝑘)

𝑘! 𝐵(𝑝, 𝑞)𝑏𝑞   𝜓 (𝑝 + 𝑞,  𝑞 + 1 − 𝑘;
  1

𝑏
) ,  

𝑘 = 0,1,2, . . .,                                                                  (22) 

 

where 𝜓 is the confluent hypergeometric function of the 

second kind (Erdelyi, 1953). Ong (1995) and Ong and 

Muthaloo (1995) have considered computation and 

statistical properties of this generalized NB and another 

mixed Poisson with the inverted beta as mixing distribution. 

Ong and Low (2019) examined the properties, applications 

to empirical modelling, and computation of Kempton’s 

generalized NB distribution probabilities. 

In the Bayesian framework for mixed Poisson distributions, 

the mixing variable 𝜔 follows the distribution 𝐺(𝜔; 𝜼), and 

the count variable 𝑋  follows a Poisson distribution with 

mean 𝜆 = 𝜇𝜔, where 𝜇 > 0 and 𝜼 is a vector of parameters 

that characterizes G. The marginal pmf of 𝑋 is thus given as: 

  

𝑓(𝑥; 𝜇, 𝜼) = ∫ 𝑓𝑃(𝑥; 𝜇𝜔)𝑔(𝜔; 𝜼)𝑑𝜔
∞

0
,                    (23) 

 

where 𝑔(𝜔; 𝜼)  denotes the pdf of 𝜔  and 𝑓𝑃(𝑥; 𝜇𝜔)  denotes 

the pmf of Poisson distribution with mean 𝜇𝜔. Hassanzadeh 

and Kazemi (2016) introduced the log-skew-normal as a 

mixing prior resulting in the Poisson-log-skew-normal 

distribution and presented its main properties. This new 

distribution can account for both overdispersion and zero-

inflation. In this case, evaluation of the likelihood functions 

is performed via numerical methods and the proposed 

distribution is found to perform very well in the presence of 

overdispersion and zero-inflation. 

In regression modelling, Barreto-Souza and Simas (2016) 

obtained a general class of mixed Poisson regression models, 

including the NB and Poisson-inverse Gaussian models. The 

regression structure and EM-based parameter estimation 

for the mean and dispersion parameters with diagnostic 

measures were considered with illustration on a dataset on 

the number of absences in two urban high schools. 

Gómez-Déniz and Calderin-Ojeda (2016) proposed the 

exponential-inverse Gaussian distribution of Bhattacharya 

and Kumar (1986) to be the mixing distribution resulting in 

a mixed Poisson regression model with closed-form 

expressions for its factorial moments. The regression model 

was found to fit well on a well-known healthcare demand 

dataset. 

Gómez-Déniz et al. (2016) considered a Poisson-mixed 

inverse Gaussian distribution and regression model whereby 

a two-component mixture of the inverse Gaussian and the 
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length-biased inverse Gaussian distribution was applied as 

the mixing distribution. Parameter estimation of the model 

via maximum likelihood estimation was studied. The 

application of the regression model was illustrated on a 

dataset on the number of hospitals stays among the elderly 

population.                                               

 

IV. COMPUTATION AND SIMULATION 

 
Even though the mixed Poisson distributions form an 

important class of distributions in applications, the 

complicated probability distributions of many of these 

distributions hampered their applications. Some recent 

work to aid computation and simulation for statistical 

inferences are presented below. 

Ghitany et al. (2012) proposed a general EM algorithm for 

maximum likelihood estimation of a class of multivariate 

mixed Poisson regression models with special focus on the 

multivariate NB, Poisson-inverse Gaussian and Poisson-

lognormal regression models. The authors analyzed the 

demand for health care in Australia dataset (Cameron & 

Trivedi, 1998). The univariate situation has been examined 

by Karlis (2001, 2005). 

Ong and Lee (2008) gave an envelope rejection method for 

generating NB random samples by exploiting the mixed 

Poisson formulation for the NB distribution. The envelope 

rejection is based on a simple probability distribution 

inequality derived from the rejection result of Tadikamalla 

(1978) for the gamma distribution.  

Izsák (2008) examined the computation of probabilities 

and maximum likelihood estimation for the Poisson-

lognormal distribution by providing a sharp approximation 

of the Poisson-lognormal integrals probabilities and 

illustrated its application in modelling species abundance 

data. 

Chatelain et al. (2009) presented a maximum pairwise 

likelihood approach for parameter estimation of 

multivariate mixed Poisson distributions with multivariate 

Gamma distribution as the mixing distribution. They 

investigated the effectiveness of this approach and applied it 

in the change detection problem in image processing. 

Extending the generalized linear mixed model to 

correlated count response data, Weems and Smith (2018) 

investigated the robustness of the maximum likelihood 

estimators of the Poisson-inverse Gaussian model when the 

distribution of its random effects is misspecified. 

Ong et al. (2019) derived a general technique for 

computation of mixed Poisson probabilities by Monte Carlo 

sampling.  This general method applies to any mixed 

Poisson distribution with arbitrary mixing distribution. 

Computational speed and accuracy of this technique is 

exemplified with the Poisson-inverse Gaussian distribution 

as a benchmark since the probabilities of this distribution 

can be computed with good accuracy. The proposed method 

is also applied to compute Poisson-lognormal probabilities, 

a popular species abundance model.  This computation 

method of mixed Poisson probabilities applied in the 

Expectation-Maximization (EM) algorithm for maximum 

likelihood estimation of Poisson-lognormal parameters is 

shown to avoid numerical problems encountered by existing 

techniques.  

There is an R package MixedPoisson for parameter 

estimation of different popular mixed Poisson models using 

the EM algorithm for practitioners. 

 

V. APPLICATIONS TO STOCHASTIC AND 
DATA MODELLING 

 
Mixed Poisson distributions, in particular the NB 

distribution, have found applications in constructing integer 

time series models and in statistical data analysis in a 

variety of settings. To cater to the integer nature of the time 

series, for example, an integer autoregressive (INAR(1)) 

time series {𝑋𝑡} is defined as: 

 

𝑋𝑡 = 𝛼 ∘ 𝑋𝑡−1 + 𝜀𝑡                                          (24) 

 

where 𝛼 ∈ [0,1]  and 𝜀𝑡  is the innovation term. ‘∘’ is the 

thinning operator and is defined as: 

 

𝛼 ∘ 𝑋𝑡−1 = ∑ 𝐵𝑖
𝑋𝑡−1
𝑖=1                                     (25) 

 

𝐵𝑖  is the Bernoulli random variables with the success 

probability of 𝛼 . In other words, the thinning operation 

denotes a stopped sum of Bernoulli random variables. 

Zhu (2011) examined a negative binomial GARCH model 

and gave stationarity conditions and the autocorrelation 
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function. Three approaches for estimation were presented 

with the focus on the maximum likelihood estimation. 

Christou and Fokianos (2014) studied inference and 

diagnostics for count time series on regression models, 

particularly NB processes that include a feedback 

mechanism.  For this class of processes, probabilistic 

properties and quasi‐likelihood estimation were considered, 

and it is shown that the resulting estimators are consistent 

and asymptotically normally distributed. 

Barreto-Souza (2019) considered mixed Poisson INAR(1) 

processes. The proposed INAR(1) processes have marginal 

mixed Poisson distributions. A condition for this class of 

INAR processes to be well-defined has been established, and 

some statistical properties are studied. Estimators for the 

parameters are proposed with proofs of their consistency 

and asymptotic normality. The finite-sample performance of 

the proposed estimators is evaluated by Monte Carlo 

simulation and application to a real data set exemplified the 

utility of the proposed models. 

In an application in healthcare, Henríquez and Castrillón 

(2011) showed that the mixed Poisson distribution works 

well in computing tumour control probability which is 

defined as the probability of destroying every clonogen in a 

tumour as a result of a radiation therapy treatment. They 

found that the mixed Poisson distribution is able to account 

for the inhomogeneity in the absorbed dose throughout the 

tumour volume, thus providing a more flexible method. In 

this case, pdf of the mixing distribution is derived as 𝑔(𝜆) =

1

𝛼𝜆
𝐷𝑉𝐻𝑑 (−

log 𝜆

𝛼
), where DVH is the dose-volume histogram 

that describes the probability distribution of absorbed dose 

along with the tumour. 

By using mixed Poisson distributions, Iyer-Biswas and 

Jayaprakash (2014) considered the interplay between 

stochastic gene expression and system design using simple 

stochastic models of auto-activation and auto-inhibition. 

In accident analysis, the NB distribution is one of the 

commonly used models for predicting motor vehicle crashes. 

Lord et al. (2005) compared the NB distribution with other 

commonly used statistical models in the accident analysis 

literature and recommended guidelines for choosing 

appropriate models when investigating motor vehicle crash 

data. In this context, mixed Poisson distributions such as the 

NB distribution has a natural interpretation in accounting 

for unobserved heterogeneity in the response variable. 

Subsequently, Lord and Miranda-Moreno (2008) 

investigated the effects of low sample means and small 

sample size on the maximum likelihood estimation of the 

dispersion parameter in Bayesian modelling of motor 

vehicle crashes using the NB and Poisson-lognormal models. 

Cheng et al. (2013) applied the Poisson-Weibull distribution 

in the regression context to analyze motor vehicle crash 

data. This mixed Poisson distribution has the Weibull 

distribution as mixing distribution. The pmf of the Poisson-

Weibull model does not have a closed-form and is an 

impediment in applications. This is resolved with the 

Bayesian interpretation of the mixed Poisson formulation so 

that the Markov chain Monte Carlo (MCMC) technique can 

be employed in the parameter estimation and inference. It is 

remarked here that the Monte Carlo computation of mixed 

Poisson probabilities proposed by Ong et al. (2019) may be 

used. 

The Poisson-Lindley distribution of Sankaran (1970) was 

considered by Hernández-Bastida et al. (2011) as the 

primary distribution for modelling the number of claims in a 

collective risk model to calculate the Bayes premium in 

actuarial science as well as to determine regulatory capital in 

operational risk analysis. Simeunović et al. (2018) examined 

the process of determining premium rates in automobile 

liability insurance using the bonus-malus system. A bonus - 

malus system has been constructed based on mixed Poisson 

models, where the expected value principle is used to 

determine the net premium. 

 

VI. CONCLUDING REMARKS 

 
This review has gathered some recent work on mixed 

Poisson distributions from the following areas: new 

univariate and multivariate mixed Poisson models or further 

study of existing models, applications in stochastic 

modelling and data analysis, simulation and computation. 

Mathematically it is straightforward to derive new mixed 

Poisson models by choosing the mixing distribution. The 

Two Crossings Theorem shows that relative to the Poisson 

distribution, the mixing distribution alters the zero counts 

and tail length. Hence for statistical data analysis, a 

judicious choice of mixing distribution is necessary to cater 

for high zero counts or long tail length in data. Mixed 
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Poisson distributions may have intractable probability 

functions even though the mixing distribution such as the 

lognormal or Weibull distribution has a simple form. A 

number of the new mixed Poisson distributions have 

tractable forms like the generalized Poisson-Lindley 

distribution. The general Monte Carlo simulation approach 

may be applied to compute complicated mixed Poisson 

probabilities and maximum likelihood by EM algorithm for 

mixed Poisson distributions as exemplified by the Poisson-

lognormal distribution. 
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