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The Poisson inverse Gaussian and generalized Poisson distributions are widely used in modelling 

overdispersed count data which are commonly found in healthcare, insurance, engineering, 

econometric and ecology. The inverse trinomial distribution is a relatively new count distribution 

arising from a one-dimensional random walk model (Shimizu & Yanagimoto, 1991). The Poisson 

inverse Gaussian distribution is a popular count model that has been proposed as an alternative to 

the negative binomial distribution. The inverse trinomial and generalized Poisson models possess a 

common characteristic of having a cubic variance function, while the Poisson inverse Gaussian has 

a quadratic variance function. The nature of the variance function seems to be an important property 

in modelling overdispersed count data. Hence it is of interest to be able to select among the three 

models in practical applications. This paper considers discrimination of three models based on the 

likelihood ratio statistic and computes via Monte Carlo simulation the probability of correct 

selection. 
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I. INTRODUCTION 

 
The generalized Poisson and inverse trinomial distributions 

are cubic variance distributions belonging respectively to the 

Abel and Takac family of distributions (Letac & Mora, 1990). 

A distribution is said to have cubic variance function if the 

variance is a cubic function of its mean. Distributions with 

quadratic variance functions of the mean have been 

examined by Morris (1982). An example of a quadratic 

variance distribution is the negative binomial (NB) 

distribution. The generalized Poisson (GP) distribution 

(Consul, 1989) and the Poisson-inverse Gaussian 

distribution (PIG) (Holla, 1966; Sichel, 1971; Willmot, 1987; 

Ord & Whitemore, 1986; Ong, 1998) are well-known, and 

well-researched count models for overdispersion (variance 

greater than the mean) in data and they have been widely 

used in applications in diverse disciplines. Due to “its 

physical justification, and its abundance of convenient 

mathematical properties”, Willmot (1987) proposed the PIG 

distribution as an alternative to the NB distribution. The 

inverse trinomial distribution (IT) was introduced by 

Shimizu and Yanagimoto (1991) as a random walk model. 

Aoyama et al., (2008) generalized the IT distribution, and 

later Phang et al., (2013) examined statistical analysis for the 

IT distribution. Although the IT distribution is a cubic 

variance function distribution, it is not adequately 

mentioned by Letac and Mora (1990). The NB distribution is 

a particular important case of the IT distribution. Since the 

IT and GP distributions both have cubic variance functions, 

it is of interest to be able to discriminate between the two 

models in practical applications. Phang et al., (2013) showed 

that the IT distribution is a viable model for statistical 

analysis of overdispersed count data. Khang and Ong (2007) 

have shown the IT distribution to be a Poisson-stopped 

distribution. The GP, IT and PIG distributions are non-

nested models and are rather flexible. In many instances, 
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they provide similar fits to data sets. Apart from the above-

mentioned consideration about dispersion, they may differ 

in other aspects, such as tail probabilities which may affect 

the conducted statistical inferences.  Therefore, it is 

necessary to consider discrimination between these three 

distributions by examining the correct selection probability 

(PCS). 

Likelihood ratio statistic is commonly used in model 

selection. The idea of using a logarithm of the ratio of the 

maximum likelihood function in selecting models is 

originated by Cox (1961, 1962). Bain and Englehardt (1980) 

use it in choosing between gamma and Weibull distributions. 

In addition, Gupta and Kundu (2003) employed this 

approach in choosing between gamma and generalized 

exponential (GE) distributions or between Weibull and GE 

distributions. Van der Hoeven (2005) discussed the 

probability to select the correct model using likelihood ratio 

based criteria in choosing between two nested models. Kundu 

et al., (2005) considered discrimination between the 

lognormal and generalized exponential distributions. 

Recently, Qaffou and Zoglat (2017) used asymptotic results to 

distinguish the normal and Gumbel distributions. Virtually 

all the published work on discriminating between 

distributions are for continuous distributions. There seems to 

be a dearth of publications on discriminating discrete 

distributions. In this paper, we use the likelihood ratio 

statistic to discriminate the well-known PIG, GP and IT 

distributions. Since the exact distribution of this statistic is 

not known, the probabilities of correct selection are obtained 

via Monte Carlo simulations for different samples size and 

model parameters.  

The structure of the paper is as follows. Section 2 presents 

a brief discussion of the IT, PIG and GP distributions. The 

PCS is given in section 3. A real-life data set is used as 

illustrations of the results in section 4. Section 5 provides 

some concluding remarks. 

 

II. INVERSE TRINOMIAL, POISSON 
INVERSE GAUSSIAN AND GENERALIZED 

POISSON DISTRIBUTIONS 

 

A. Inverse Trinomial Distribution 

 
Inverse trinomial (IT) distribution is so named because its 

cumulant generating function is the inverse of the cumulant 

generating function for the trinomial distribution (Shimizu & 

Yanagimoto, 1991). 

The probability mass function (pmf) of the IT distribution 

is given by: 

𝑃𝑟( 𝑋 = 𝑥) =
𝜆𝑝𝜆𝑞𝑥

𝑥 + 𝜆
∑ (

𝑥 + 𝜆
𝑡, 𝑡 + 𝜆, 𝑥 − 2𝑡

)

[𝑥/2]

𝑡=0

(
𝑝𝑟

𝑞2
)

𝑡

         (1) 

 

for x = 0,1, 2, … , where 𝜆 > 0, 𝑝 ≥ 𝑟, 𝑝 + 𝑞 + 𝑟 = 1, [𝑥] is the 

largest integer less than or equal to x and: 

 

(
𝑥 + 𝜆

𝑡, 𝑡 + 𝜆, 𝑥 − 2𝑡
) =

𝛤(𝑥 + 𝜆 + 1)

𝑡! 𝛤(𝑡 + 𝜆 + 1)𝛤(𝑥 − 2𝑡 + 1)
.         (2) 

 

The probability generating function (pgf) of IT is given by: 

 

𝐺(𝑢) = (
2𝑝

[(1 − 𝑞𝑢) + √(1 − 𝑞𝑢)2 − 4𝑝𝑟𝑢2]
)

𝜆

            (3) 

𝜆 > 0, 𝑝 + 𝑞 + 𝑟 = 1,0 < 4𝑝𝑟/(1 − 𝑞)2 < 1. 

 

If 𝑟 = 0, this is the NB pgf.     

  

The recurrence formula for pmf of IT is: 

 

𝑃𝑟(𝑘 + 1) =
(𝑞 + 2√𝑝𝑟)(𝜆 + 𝑘)

(𝑘 + 1)(2𝜆 + 1 + 𝑘)
 

[
((2𝜆 + 1 + 2𝑘) (1 −

𝛷

2
)) 𝑃𝑟(𝑘) −

(1 − 𝛷)(𝑞 + 2√𝑝𝑟)(𝜆 + 𝑘 − 1) 𝑃𝑟(𝑘 − 1)
] (4) 

where 

 

𝛷 =
4√𝑝𝑟

(𝑞 + 2√𝑝𝑟)
                                    (5) 

 

with 𝑃𝑟( 0) = 𝑝𝜆 and 𝑃𝑟( 1) = 𝑝𝜆𝜆𝑞. The mean and variance 

of IT are, respectively, 

 

𝐸[𝑋] = 𝜆 {
1−(𝑝−𝑟)

𝑝−𝑟
} = 𝜇,                         (6) 

 

𝑉𝑎𝑟[𝑋] =
𝜆

(𝑝−𝑟)2 {1 − (𝑝 − 𝑟) +
2𝑟

𝑝−𝑟
} = 𝜎2.         (7) 

 

The variance 𝜎2of the IT distribution can be expressed as 

a cubic function of the mean (Phang et al., 2013): 

 

𝜎2 =
2𝑟

𝜆2 𝜇3 + (
6𝑟+1

𝜆
) 𝜇2 + (6𝑟 + 1)𝜇 + 2𝑟𝜆.          (8) 

 

The Takács (1962) family of distributions examined by Letac 
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and Mora (1990, equation (4.37)) has a cubic variance 

function of the form: 

 

𝑉(𝑚) = (
𝛼+1

𝛼𝑝
)

2
𝑚3 +

1

𝑝
(

2𝛼+1

𝛼
) 𝑚2 + 𝑚, 𝛼 > 0, 𝑝 > 0.     (9) 

 

where 𝑚 is the mean. Comparing this with equation (1) we see 

that they are of the same form apart from a constant. Refer 

also to Kokonendji (1995) for further discussion. 

 

B. Poisson inverse Gaussian Distribution 

 
The Poisson inverse Gaussian distribution is a mixed Poisson 

distribution derived from the Poisson distribution using the 

inverse Gaussian as a mixed distribution. It has received 

much attention in modelling overdispersed count data such 

as species abundance. Its theory and applications are 

discussed in Holla (1965), Sichel (1971) Willmot (1987), Ord 

and Whitemore (1986) and Ong (1998). 

The pmf of the PIG is: 

 

𝑃(𝑋 = 𝑥) = (
2𝛼

𝜋
)

1/2 𝜇𝑥𝑒1/𝜆𝐾𝑥−1/2(𝛼)

(𝛼𝜆)𝑥𝑥!
, 𝑥 = 0,1,2, …           (10) 

 

where 𝛼 = √𝜆−2 + 2𝜇/𝜆 and 𝐾𝑦(⋅)  is the modified Bessel 

function of the third kind. The mean and variance are: 

 

𝐸(𝑋) = 𝜇, 𝑉𝑎𝑟(𝑋) = 𝜇 + 𝜆𝜇2.                       (11) 

 

It is seen that the Poisson inverse Gaussian distribution has a 

quadratic variance function of the mean. 

 

C. The Generalized Poisson Distribution 

 
The generalized Poisson distribution is an extension of the 

Poisson distribution. For the properties and various 

applications of the generalized Poisson distribution, see 

Consul (1989). 

The pmf of the GP is: 

 

𝑃(𝑋 = 𝑥) =
(1+𝛾𝑥)𝑥−1

𝑥!

(𝜃𝑒−𝛾𝜃)
𝑥

𝑒𝜃 ,    x = 0,1,2,....               (12)   

 

where the parameter space is as follows: 

i. 𝜃 > 0, 𝛾 ≥ 0,0 ≤ 𝛾𝜃 < 1. 

ii. 𝜃 > 0, 𝛾 ≤ 0, 𝑚𝑎𝑥( − 1, −𝜃/𝑚) ≤ 𝛾𝜃 < 0, where m is the 

largest positive integer such that 1 + 𝛾𝑚 > 0 , see Consul 

(1989) and Johnson et al., (1992, page 396).  

  

The mean and variance are, respectively, 

 

𝐸(𝑋) =
𝜃

1−𝛾𝜃
= 𝜇, 𝑉𝑎𝑟(𝑋) =

𝜃

(1−𝛾𝜃)3
= 𝜎2.                  (13) 

 

The variance as a function of the mean 𝜇 is: 

 

𝜎2 =
𝜃

(1−𝛾𝜃)3
=

𝜇3

𝜃2
.                                 (14) 

 

This shows that the GP distribution is in the Abel class of 

distributions which have variance function (Letac & Mora, 

1990, equation (4.35)): 

 

𝑉(𝑚) = 𝑚 (1 +
𝑚

𝑝
)

2
, 𝑝 > 0.                     (15) 

 

D. Likelihood Ratio Statistics 

 
The likelihood and log-likelihood are, respectively, given by: 

 

𝐿 = ∏ Pr(𝑥)𝐹𝑥     𝑡
𝑥=0                           (16) 

and  

 

𝑙𝑛 𝐿 = ∑ 𝐹𝑥 ln Pr(𝑥)            (17) 

 

where 𝐹𝑥 is the observed frequency. The parameter estimates 

for the PIG, IT and GP distributions have been obtained by 

numerical maximization of the log-likelihood functions to 

determine the global maximum. For the IT distribution due 

to the constraint 𝑝 > 𝑟, 𝑝 + 𝑞 + 𝑟 = 1, the parameter 𝑟 is fixed, 

and the maximization is with respect to λ and 𝑝.  

  

III. PROBABILITY OF CORRECT 
SELECTION 

 
Let 𝐿𝑀  and 𝐿𝑁  respectively be the likelihood functions for 

distributions 𝑀  and 𝑁 . The log-likelihood ratio statistic in 

selecting between two distributions 𝑀 and 𝑁 is given by: 

  

𝑇 = 𝑙𝑜𝑔(𝐿𝑀/𝐿𝑁).                                   (18) 
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If 𝑇 > 0 we choose𝑀, otherwise we choose𝑁. The probability 

of correct selection (PCS) is given by: 

 
𝑃𝑟(𝑇 > 0|𝑑𝑎𝑡𝑎 𝑓𝑟𝑜𝑚 𝑀)                             (19) 

 

Monte Carlo simulation is employed to compute the 

probability of correct selection for different parameter values 

and sample sizes. For each model, several sets of parameters 

based on each model's respective constraints were chosen, 

and the model was simulated 5000 times for each set of 

parameter values.  

Let F and G be the two models to be selected. The steps in 

obtaining the PCS are presented in the following algorithm.  

1. Generate a sample from model F. 

2. Estimate the parameters of model F. 

3. Estimate the parameters of model G. 

4. Determine the log-likelihood ratio T, whether it is 

positive or negative. 

5. Calculate the probability of T positive, which is the 

probability of correct selection. 

If we have to find the PCS between G and F, we repeat steps 

1 to 5 by replacing model F with model G, and for step 5, we 

calculate the probability of T negative. 

We use the procedures as mentioned above to compute the 

PCS for models IT and PIG; IT and GP. We substitute the 

model F and model G accordingly.  

 
1. Case 1: Between IT and PIG 

 
Tables 1, 2 and 3 show the PCS between IT and PIG 

distributions when the data are generated from IT 

distribution with different λ values. The constraints for IT 

parameters are 𝑝 > 𝑟, 𝑝 + 𝑟 < 1 . Cells in the tables are left 

blank if these constraints are violated. The results show that 

overall they are easily distinguished between models IT and 

PIG especially when the λ increases from 0.5 to 2.5. When λ 

= 0.5, p = 0.9 and r = 0.01 and 0.05, the PCS is very low. This 

is because most of the data are gathered at 0 and 1. There is a 

very high frequency of zeros for data generated from these 

two sets of parameters. When λ = 0.5, p = 0.3 and r = 0.2, the 

PCS is less than 0.5. This could be due to the high-over 

dispersion display by data generated from this set of 

parameters. The average dispersion index recorded is 6.23. 

The same reason applies to data generated with the 

parameters λ = 2.5, p = 0.3 and r = 0.2. The PCS is 0.1334. 

The average dispersion index is 7.49.  From Tables 1 and 2, 

we observed that when p = 0.3, the PCSs decrease as r 

increases. However, when p = 0.5 and r ≥ 0.1 and when p = 

0.7 the PCSs increase as r increases. The PCS for parameter 

sets when λ = 2.5, p = 0.9 is higher compared with λ = 0.5, p 

= 0.9. The PCS for different parameter sets appeared to be 

high when the sample size is large, n = 1000. The results given 

in Tables 4 and 5 show the computation of the PCS when the 

data come from PIG. All the PCSs are between 0.5-0.75 except 

when ν = 0.3 and μ = 5 which provide data with a very high 

overdispersion. The average dispersion index is 9.39. The 

results indicate that it is quite difficult to distinguish between 

PIG and IT for a certain range of parameter values. The PCS 

is higher when we increase the sample size to 1000 (Table 5). 

The PCS increases as ν and μ increase. 

 

Table 1. Probability of correct selection: IT and PIG 

distributions, data from IT distribution. 

𝜆 = 0.5,  n = 100, subject to 𝑝 > 𝑟, 𝑝 + 𝑟 < 1 

p 0.3 0.5 0.7 0.9 

r     

0.01 0.8106 0.7682 0.7006 0.0936 

0.05 0.6812 0.6878 0.7072 0.4284 

0.1 0.5412 0.6506 0.8638 - 

0.2 0.4174 0.7726 0.9836 - 

0.3 - 0.8538 - - 

0.4 - 0.9852 - - 

 

Table 2. Probability of correct selection: IT and PIG 

distributions, data from IT distribution. 

λ =2.5 ,  n = 100, subject to 𝑝 > 𝑟, 𝑝 + 𝑟 < 1 

p 0.3 0.5 0.7 0.9 

r     

0.01 0.7610 0.7606 0.7614 0.6334 

0.05 0.6728 0.6846 0.7702 0.9844 

0.1 0.5736 0.7146 0.9028 - 

0.2 0.1334 0.7268 0.9972 - 

0.3 - 0.8002 - - 

0.4 - 0.8062 - - 
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Table 3. Probability of correct selection: IT and PIG 

distributions, data from IT distribution. 

λ=2.5,   n = 1000, subject to 𝑝 > 𝑟, 𝑝 + 𝑟 < 1 

p 0.3 0.5 0.7 0.9 

r     

0.01 0.9926 0.9224 0.8420 0.9738 

0.05 0.9688 0.9010 0.9692 1.0000 

0.1 0.9414 0.9710 1.0000 - 

0.2 1.0000 0.9998 1.0000 - 

0.4 - 1.0000 - - 

 

Table 4. Probability of correct selection: IT and PIG 

distributions, data from PIG distribution. 

n = 100 

ν 0.3 0.6 1 3 5 

 𝝁      

0.3 0.6122 0.6560 0.6896 0.7302 0.7540 

0.6 0.5826 0.5584 0.5634 0.6868 0.6930 

1 0.6058 0.5900 0.5630 0.5724 0.6156 

3 0.5844 0.5404 0.5928 0.6066 0.5856 

5 0.2156 0.5860 0.6450 0.5702 0.5898 

 

Table 5. Probability of correct selection: IT and PIG 

distributions, data from PIG distribution. 

n = 1000 

𝝂 0.3 0.6 1 3 5 

𝝁      

0.3 0.5590 0.6136 0.6812 0.8206 0.7644 

0.6 0.7554 0.7274 0.6524 0.5848 0.6672 

1 0.9272 0.8014 0.7336 0.6404 0.5476 

3 0.9694 0.9716 0.9588 0.9102 0.9368 

5 0.9924 0.9908 0.9864 0.9656 0.9718 

 
2. Case 2: Between IT and GP 

    
Tables 6, 7 and 8 display the result of PCS calculated between 

IT and GP when the data were simulated from IT. For data 

sets which are highly dispersed, the PCSs are very low for 

example when p = 0.3 and r = 0.1 and 0.2 where the average 

dispersion indices are 3.63 and 6.23 respectively. Besides that, 

some data with certain parameter values are quite difficult to 

distinguish while others are easy to distinguish. We can 

observe that IT and GP may possess the common 

characteristic such as skewness and dispersion under certain 

parameter values. Overall, Table 6 shows that it has the 

lowest PCS in comparison with IT and PIG. When λ increases 

to 2.5, the PCS’s of p between 0.3 and 0.5 for IT and PIG are 

reduced. It is relatively more difficult to distinguish between 

IT and GP. Nevertheless, when the PCS’s increase for p>0.5, 

the PCS’s are above 0.7. When the sample size increases to 

1000, the PCSs are very high (close to 1). When data are 

coming from GP distribution under the constraint that γθ <1, 

they are quite difficult to distinguish except some data sets 

with high dispersion such as when γ = 0.7, θ = 1 and γ = 1, θ 

= 0.7 which produce dispersion indices of 4.0 and 4.35 

respectively. The PCSs for these data sets are 0.734 and 

0.7322.  Other PCSs are between 0.4306 and 0.6632 (Table 

14). Contrary to other models, the PCSs decrease and most of 

them drop until less than 0.5 (Table 10) when the sample size 

is increased to 1000. This indicates that we cannot 

distinguish between IT and GP when the data come from GP, 

and the sample size is big. Cells in Tables 9, 10, 13 and 14 are 

left blank if the constraint γθ <1 is violated. 

 

Table 6. Probability of correct selection: IT and GP 

distributions, data from IT distribution. 

λ= 0.5, n = 100, subject to 𝑝 > 𝑟, 𝑝 + 𝑟 < 1 

p 0.3 0.5 0.7 0.9 

r     

0.01 0.7196 0.7398 0.6864 0.0367 

0.05 0.5078 0.6168 0.6690 0.2840 

0.1 0.3240 0.5306 0.8306 - 

0.2 0.1606 0.6196 0.9674 - 

0.3 - 0.6460 - - 

0.4 - 0.8178 - - 

 

Table 7. Probability of correct selection: IT and GP 

distributions, data from IT distribution. 

λ= 2.5, n = 100, subject to 𝑝 > 𝑟, 𝑝 + 𝑟 < 1 

p 0.3 0.5 0.7 0.9 

r     

0.01 0.6208 0.7074 0.7324 0.6208 

0.05 0.4754 0.5542 0.8338 0.9746 
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0.1 0.3110 0.5338 0.8376 - 

0.2 0.0190 0.4700 0.9904 - 

0.3 - 0.4976 - - 

0.4 - 0.5110 - - 

 

Table 8. Probability of correct selection: IT and GP 

distributions, data from IT distribution. 

λ= 2.5, n = 1000, subject to  𝑝 > 𝑟, 𝑝 + 𝑟 < 1 

p 0.3 0.5 0.7 0.9 

r     

0.01 0.9662 0.9744 0.9284 0.9596 

0.05 0.8126 0.9632 0.9114 1.0000 

0.1 1.0000 0.8982 0.9980 - 

0.2 1.0000 0.9524 1.0000 - 

0.3 - 0.9918 - - 

0.4 - 0.9744 - - 

 

Table 9. Probability of correct selection: IT and GP 

distributions, data from GP distribution. 

n = 100, subject to γθ <1 

γ 0.3 0.5 0.7 1 2 

𝜽      

0.1  0.7070 0.6118 0.5334 0.4726 

0.3 0.6052 0.4742 0.4556 0.5104 0.6632 

0.5 0.5524 0.5022 0.4842 0.5978 - 

0.7 0.6158 0.5186 0.6342 0.7322 - 

1 0.4306 0.5704 0.7340 - - 

2 0.5928 0.9788 - - - 

 

Table 10. Probability of correct selection: IT and GP 

distributions, data from GP distribution. 

n = 1000, subject to γθ <1 

γ 0.3 0.5 0.7 1 2 

𝜽      

0.1 0.6144 0.4990 0.4756 0.4702 0.0602 

0.3 0.4054 0.4296 0.1300 0.0856 0.0352 

0.5 0.1374 0.1310 0.1034 0.1220 - 

0.7 0.3704 0.1256 0.1170 0.3110 - 

1 0.1492 0.1490 0.3524 - - 

2 0.3952 - - - - 

 

3. Case 3: PIG and GP 

 
Tables 11 and 12 showed the computed PCS for PIG and GP 

when data come from PIG. When n = 100, it is quite difficult 

to distinguish between PIG and GP especially for data that are 

highly dispersed with dispersion index more than 4 (see Table 

11). The PCS are below 0.5. In addition, the PCS for other 

parameter values are between 0.5 and 0.63. Overall, the PCS 

increase as ν increases. Conversely, the PCS decrease as μ 

increases. Table 12 shows that when the sample size increases 

to 1000, the PCS also increase. It is clear that the two models 

can be discriminated easily. When the data come from GP, for 

sample size n=100, the two models are better discriminated 

in comparison to data coming from the PIG. The PCS are 

between 0.55 and 0.86 except when γ = 0.5, θ = 0.1 with PCS 

equal to 0.4034. The dispersion index for data with these 

parameter values is 1.05. The PCS increase as γ and θ increase. 

Results are given in Table 13.  When sample sizes increase 

(Table 14), the two models are well discriminated. The PCS 

increase as γ and θ increase and they are higher than when 

sample size n = 100.  

 

Table 11. Probability of correct selection: PIG and GP 

distributions, data from PIG distribution. 

n = 100 

ν 0.3 0.6 1 3 5 

μ      

0.3 0.5906 0.6058 0.6154 0.6118 0.6336 

0.6 0.5612 0.5450 0.5530 0.3634 0.6220 

1 0.5368 0.5656 0.5396 0.5676 0.4358 

3 0.3910 0.4154 0.5062 0.5732 0.5694 

5 0.0964 0.3504 0.4364 0.4960 0.5444 

 

Table 12. Probability of correct selection: PIG and GP 

distributions, data from PIG distribution. 

n = 1000 

ν 0.3 0.6 1 3 5 

μ      

0.3 0.5592 0.6140 0.6736 0.7148 0.3082 

0.6 0.7568 0.7286 0.6538 0.5834 0.6324 

1 0.9306 0.8052 0.7366 0.6406 0.5508 

3 0.9626 0.9734 0.9616 0.9162 0.9398 

5 0.9676 0.9786 0.9816 0.9706 0.9760 
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Table 13. Probability of correct selection: PIG and GP 

distributions, data from GP distribution. 

n = 100, subject to γθ <1 

γ 0.3 0.5 0.7 1 2 

𝜽      

0.1  0.4034 0.6364 0.6076 0.5682 

0.3 0.6296 0.6110 0.5912 0.5918 0.6840 

0.5 0.5874 0.5908 0.6170 0.6472 - 

0.7 0.5526 0.6138 0.6352 0.7128 - 

1 0.6856 0.6424 0.6908 - - 

2 0.6424 0.8598 - - - 

 

Table 14. Probability of correct selection: PIG and GP 

distributions, data from GP distribution. 

n = 1000, subject to γθ <1 

γ 0.3 0.5 0.7 1 2 

𝜽      

0.1 0.4718 0.5426 0.5562 0.5702 0.6508 

0.3 0.5944 0.6106 0.6878 0.7668 0.8352 

0.5 0.6384 0.7238 0.8076 0.9120 - 

0.7 0.6630 0.8168 0.9052 0.9772 - 

1 0.7496 0.8948 0.9560 - - 

2 0.9084 - - - - 

 

IV. APPLICATION TO DATA 
ANALYSIS 

 
We apply the PCS to a real-life data set taken from Heilbron 

(1994). We apply IT, PIG, and GP distributions to the data set. 

Maximum likelihood estimates, 𝜒2  values and the log-

likelihood values are presented in Table 15.  

For the real-life data set (Table 15), when we compare IT 

and PIG distributions, the likelihood ratio T1 = -1014.75 – (-

1011.49) = -3.26 gives a negative value which implies that the 

PIG distribution is preferable than IT distribution. Referring 

to Table 4, the PCSs between IT and PIG distributions are 

approximately 80% which provide the same conclusion 

where PIG is more favourable than IT distribution. 

 

 

 

 

 

Table 15.  Sexual behaviour count data (Heilbron, 1994) 

x 

Observed 

frequency Expected frequency 

  IT P-IG GP 

0 466 472.13 465.73 471.62 

1 182 179.40 192.94 179.58 

2 103 78.78 76.44 78.75 

3 29 37.79 34.42 37.89 

4 15 9.27 17.36 19.38 

5 3 10.26 9.48 10.34 

6 5 5.65 5.48 5.70 

7 0 3.19 3.29 3.21 

8 2 1.84 2.04 1.85 

9 0 1.07 1.29 1.08 

10 2 0.64 0.84 0.64 

11 0 0.38 0.55 0.38 

12 0 0.23 0.36 0.23 

13 0 0.14 0.24 0.14 

14 1 0.09 0.16 0.08 

15 1 0.05 0.11 0.05 

16 1 0.03 0.08 0.03 

17 1 0.04 0.18 0.05 

Total 811    

-log-

likelihood 1019.09 1014.75 1011.49 1014.95 

χ2  15.78 15.64 15.95 

 

𝑝̂𝐼𝑇 =0.5527   𝜈̂𝑃𝐼𝐺 =0.4539 𝜃𝐺𝑃 =0.5421 

𝑟̂𝐼𝑇 =0.0308 
𝜇̂𝑃𝐼𝐺 =0.8390 

𝛾𝐺𝑃 =0.6516 

𝜆̂𝐼𝑇 =0.9125   

 

V.  CONCLUDING REMARKS 

 
The 𝜒2 goodness-of-fit statistic and Akaike Information 

Criterion are popular methods for model selection. The 

probability of correct selection method serves as an 

alternative approach in model selection. It can be used for 

nested and non-nested models. Since the exact distribution of 

the likelihood ratio is complicated, the probability of correct 

selection is obtained through Monte Carlo simulation. The 

results indicate that under certain parameter values, it is 

quite difficult to discriminate the selected models. This could 

be due to the reason that under these parameter values, these 

models share the common characteristics such as they may 

have the same dispersion values, skewness or kurtosis. 
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Generally, the probability of correct selection is affected by 

the dispersion index and parameter values. From the 

simulation results, it is observed that the pair IT and GP and 

IT and PIG are more easier to discriminate when the sample 

size is large and data is from IT distribution. As an illustration 

of application, a real-life data set (Heilbron, 1994) has been 

analyzed. The interesting problem of obtaining the 

asymptotic distribution of the likelihood ratio statistic will be 

considered elsewhere. 
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