²²²Rn Emanation and Exhalation Rate of Soil from Tasik Paya Bungor Area using CR-39 and Continuous Radon Monitor

Siti Fatimah Saipuddin^{1*}, Nur Sha'adah Zainuddin¹, Maryam Jamilah Mustaffa¹, Izzah Amirah Hazlinda Medar¹, Sabarina Md Yunus² and Ahmad Saat^{2,3}

¹Faculty of Applied Sciences, Universiti Teknologi MARA Pahang, Bandar Tun Abdul Razak Jengka, Pahang, Malaysia ²Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia ³Institute of Science, Universiti Teknologi MARA Shah Alam, Selangor, Malaysia

Of late, environmental pollution caused by outdoor 222Rn emanation rate from soil has become one of the main concerns of many researchers. This research focuses on the 222Rn emanation rate of Naturally Occurring Radioactive Materials (NORM) in the soil from the Tasik Paya Bungor area, Malaysia, which is one of the oldest tropical rainforest in the world. This area has been transformed into a plantation area by the locals. With the increment of agricultural activities in the area which involve the use of phosphate fertilisers and pesticides, the radiation contamination due to 222Rn emanation rate from the soil has also increased. To investigate the 222Rn emanation rate from the soil, samples from 14 different points on selected locations were collected using a hand auger, based on a standard sampling method. Both methods in determining the 222Rn emanation rate for long-term measurement using CR-39 and 222Rn exhalation rate using diurnal measurement by Sun Nuclear Continuous Radon Monitor, CRM-1029 in Air-Tight Chamber were used. From the results, the average 222Rn emanation rate obtained using CR-39 is 0.51±0.05 Bq m⁻³ day⁻¹. As for the diurnal measurement using CRM-1029, the ²²²Rn mass exhalation rate reading ranges between 0.11 - 0.72 mBq kg⁻¹ hr⁻¹ and the ²²²Rn surface exhalation rate between 0.31 - 2.0 Bq m⁻² hr⁻¹. It shows that both methods may be used, depending on the accessibility. The values are considered low as compared to the allowed national limit. However, in the future, more points on the selected locations should be considered for radon emanation rate measurement and its natural radionuclides concentration should also be determined.

Keywords: CR-39; CRM-1029; NORM; Radon emanation rate; SSNTD

I. INTRODUCTION

The inhalation of radon gas and its progeny is known as one of the main routes of radiation exposure to human population (UNSCEAR, 2000). This colourless, odourless, and radioactive chemical element exists naturally in the earth's crust (Cevik *et. al.*, 2011; Gilmore *et al.*, 2002). Thorium and uranium undergo radioactive decay to produce stable lead and in between the process, release radon gas. Having a half-life of 3.8 days, ²²²Rn is produced from the decay of ²²⁶Ra, through ²³⁸U decay series and diffuses through soil into the atmosphere (Singh *et al.*, 2004). Even though ²²²Rn has a very short half-life, its presence

in the environment has been common due to its continual regeneration. The main contributors to its regeneration are thorium and uranium, which are abundant on Earth and have long half-lives. As an inert gas, ²²²Rn releases electrically charged particles from its short half-lived progenies. Hence, it can be attached to natural aerosol and dust which if inhaled, will tend to spread into the lungs. This may lead to health risk as it may expose the lung epithelial bronchial cells to excessive alpha radiation (Al-Zoughool *et al.*, 2009).

In this study, soil samples were collected from the area of Tasik Paya Bungor area whereat many research focusing

^{*}Corresponding author's e-mail: sitifatimah7020@uitm.edu.my

mainly on fisheries and aquaculture, water quality analysis and flora and fauna have been conducted (Sharip *et al.*, 2007). Due to the increment of agricultural activities in the area, outdoor radon investigations need to be conducted to study the ²²²Rn emanation and exhalation rates from the soil within the area. ²²²Rn emanation happens due to the formation of radon atoms through radium decay from the grain which are then released into the interstitial spaces between the grains while ²²²Rn exhalation occurs due to the transportation of radon atom to the ground surface before being exhaled to the atmosphere (Ishimori *et al.*, 2013). Figure 1 summarises the difference between radon emanation and exhalation activities within the soil.

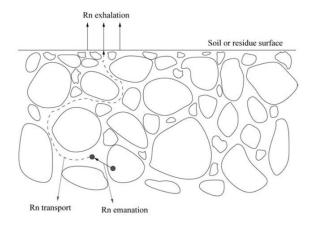


Figure 1. Processes leading to radon release to the atmosphere (Ishimori *et al.*, 2013)

The soil samples collected were prepared for ²²²Rn emanation rate study using CR-39 and ²²²Rn exhalation rate study using Sun Nuclear Continuous Radon Monitor, CRM-1029. This study focuses on the ²²²Rn emanation and exhalation rates from the soil in an air-tight chamber.

II. MATERIALS AND METHOD

The study was conducted in the Tasik Paya Bungor area. 14 points near Tasik Paya Bungor, Gambang were selected based on the grid method. The soil at each point was dig 10 cm under the ground level using a hand auger and the detectors were placed inside the points. Table 1 shows the coordinates of the samples at the selected points obtained by using a global positioning system (GPS).

Table 1. Coordinates of soil samples at the selected points in Tasik Paya Bungor area

Point	Latitude,	Longitude,	Location
	\mathbf{N}	\mathbf{E}	Description
1	3° 42'	102° 55'	Near railroad
	57.65"	49.71"	
2	3° 42'	102° 55'	Near railroad
	58.00"	52.41"	
3	3° 42'	102° 55'	Inside jungle
	51.00"	59.90"	
4	3° 42'	102° 55'	Inside jungle
	49.23"	57.78"	
5	3° 42'	102° 56'	Inside jungle
	49.23"	00.49"	
6	3° 42'	102° 56'	Palm tree
	49.23"	03.19"	area
7	3° 42'	102° 55'	Palm tree
	49.23"	05.93"	area
8	3° 42'	102° 55'	Inside jungle
O	46.43"	55.12"	
0	3° 42'	102 ⁰ 55'	Inside jungle
9	46.43"	57.84"	
10	3° 42'	102° 56'	Inside jungle
	46.43"	03.80"	
	3° 42'	102º 56'	Palm tree
11	46.43"	05.88"	area
12	3° 42'	102° 55'	Inside jungle
12	43.64"	57.82"	
13	3° 42'	102° 56'	Inside jungle
	43.64"	00.50"	
1.4	3° 42'	102° 56'	Inside jungle
14	43.64"	03.16"	

CR-39 thin film, a solid-state nuclear track detector by Tastrak UK was used to detect the alpha radiation of ²²²Rn. Its polymer surface structure would collide with the alpha particle and create trails of chemical bonds on the structure surface. The trails were enhanced after being chemically etched. From these trails, the ²²²Rn track density may be observed and by calculation, the ²²²Rn concentration from the soil samples may be obtained, hence the emanation rate may be determined.

The CR-39 thin films were designed into 1 cm x 1 cm dimension before being placed in radon monitors adopting can-mode configuration (Sani *et al.*, 2018) as shown in Figure 2. Sealed-cup radon monitors were prepared by following Sani *et al.* (2018).

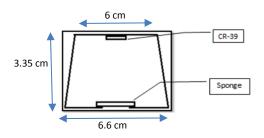


Figure 2. Placement of CR-39 detector inside a sealed-cup radon monitor

The CR-39 detector in radon monitors were exposed to the soil at roughly 8.35 cm below the ground level for 30 days to investigate the ²²²Rn emanation rate emitted from the soil at each point. Figure 3 shows the setup of each CR-39 detector when exposed to the soil at every selected point.

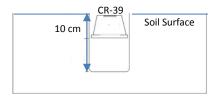


Figure 3. Schematic diagram of the placement of radon monitor in soil at each point

After 30 days, the radon monitors were retrieved and CR-39 were etched with 6 M NaOH at 70 °C for 6 hours. A minimum of one-hour rinse with running cold water was required to make the 222 Rn tracks visible on the surface of the detector (Sani *et al.*, 2018). After etching, CR-39 was observed under Leica Optical Microscope at 10X magnification and the 222 Rn track density calculation was conducted from the 222 Rn emanation rate. The observed sections of diameter 50 μ m were taken for calculation. Figure 4 shows the dark spots observed.

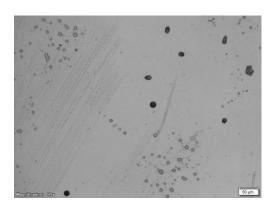


Figure 4. Optical image of dark spots observed on CR-39 detector

The calculation of 222 Rn track density, ρ [track / m²] visible on CR-39 under optical microscope and its track density frequency, X [track / m².day] were determined by Equation (1) and (2) (Al-Kaabi *et al.*, 2015):

$$\rho = \frac{\textit{Average total tracks}}{\textit{Area of field view}} \tag{1}$$

$$X = \frac{\rho}{days} \tag{2}$$

From 222 Rn track density frequency, the 222 Rn concentration, C_a [Bq / m³] and emanation rate, E_m [Bq / m².day] were determined using Equation (3) and (4), respectively (Al-Kaabi *et al.*, 2015):

$$C_a = X x F (3)$$

$$E_m = \frac{c_a \, x \, V}{A \, x \, days} \tag{4}$$

where F is the standard soil constant per track, 7.152 x 10⁻² Bq track⁻¹ day⁻¹, V is air in cup volume in m³ and A is the hole area of the opening in m². The standard soil constant, F has been determined earlier during calibration.

The 222Rn concentration was measured using the specifically patented Sun Nuclear Continuous Radon Monitor-1029. Its high sensitivity makes it suitable for ²²²Rn indoor measurement. It also measures the temperature, humidity and pressure of measured environment. For this experiment, CRM-1029 was set at the interval of every one hour for 72 hours of exposure. In order to avoid any effect of electrostatic charges, the sample container used for this study was made of plastic. The volume of the container is 0.04073 m3, following the dimension conducted by previous study methods (Khalid et al., 2014). Leakage of gas from the inside of the container to the outside or vice versa may be avoided by ensuring that the container was sealed tightly using masking tape every time the experiment was conducted. For every change of sample, the background radiation, C_b was measured. The measurements were conducted three times over three days for every sample to ensure its accuracy. Figure 5 shows the schematic diagram of the experimental setup.

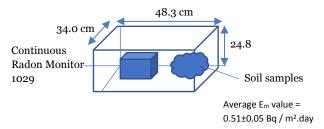


Figure 5. Schematic diagram of the radon air-tight chamber

Environmental Protection Agency (EPA) average reading was taken directly from the data produced by the CRM-1029 monitor, showing the average radon emanation for 72 hours of measurement at every hour interval. To ensure data accuracy, the results obtained were then subtracted to the background reading, C_b . The corrected ²²²Rn activity concentration, C_{Rn} and ²²²Rn concentration in secular equilibrium, C_{eq} were obtained by using Equation (5) and (6), respectively (Hussein *et al.*, 2012):

$$C_{Rn} = C_{Ave} - C_b \tag{5}$$

$$C_{eq} = \frac{c_{Rn}}{(1 - e^{-\lambda t})} \tag{6}$$

The results were then tabulated, analysed and the 222 Rn mass and surface exhalation rate, E_m [Bq/kg.hr] and E_S [Bq/m².hr] were calculated using Equation (7) and (8), respectively (Hussein *et al.*, 2012):

$$E_m = \left(\frac{C_{eq}\lambda_{Rn}V_{eff}}{m}\right) \tag{7}$$

$$E_S = \left(\frac{c_{eq}\lambda_{Rn}v_{eff}}{S}\right) \tag{8}$$

where λ_{Rn} is ²²²Rn decay constant, 7.554 x 10⁻³ hr⁻¹, t is the time of the ²²²Rn activity build-up in the container in hr, V_{eff} is air volume inside the air-tight container in m³, m is mass of the sample in kg and S is surface area of sand brick in m².

III. RESULTS AND DISCUSSION

The results in location 6, which is a palm tree area, showed the highest 222 Rn concentration hence the biggest contributor to 222 Rn emanation rate, 1.17±0.16 Bq / m².day followed by the results in location 10, which is inside a jungle, with 222 Rn emanation rate 1.11 ± 0.036 Bq / m².day. The lowest 222 Rn concentration soil was from location 3 and the soil sample from

the jungle area, with ²²²Rn emanation rate 0.14±0.01 Bq / m².day. Figure 6 shows the ²²²Rn emanation rate of soil samples from all points selected. It shows that soil samples taken from a commercial agricultural area contributes more ²²²Rn emanation rate to the surrounding which could be a result of the usage of phosphate fertilisers.

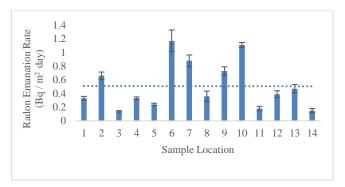


Figure 6. ²²²Rn emanation rate of soil samples from selected locations

Table 2 tabulates the comparison between 222Rn emanation rate from the study to others conducted around the world. The values obtained were lower compared to other studies from different places as well as the World Limit of 3.43 Bq / m2.day (ICRP, 1993). Many factors contribute to 222Rn concentration and emanation coefficient such as macroscopic properties, grain permeability, differences in radium concentrations, radium distribution, grain surfaces crystallisation, as well as the grain texture and size (Ahmad et al., 2014). One of the most important factors that influence the radon concentration is the radium distribution within the grains. The measured ²²²Rn concentration will be automatically increased if the radium distribution concentrated on the thin grain surface layers. This leads to the increment of 222Rn atoms diffusion into the pore spaces. Even though the amount of radium concentration in the particles are similar, its emanation rates are higher in frangible rather than in solid grains (Hassan et al., 2016).

Table 2. Comparison of ²²²Rn emanation rate from soil in different locations

Location	Average ²²² Rn	Reference
	Emanation	
	Rate	
	(Bq m ⁻² day ⁻¹)	
Tasik Paya	0.51±0.05	Present
Bungor,		study
Gambang		
Bahawalpul	1.56 – 3.33	Rahman,
Division,		S., 2006
Pakistan		
NWFP, Pakistan	2.49 – 4.66	
Turkey	0.4	Baykara et
		al., 2005
Azad Kashmir,	0.17 - 0.34	Rafique et
Pakistan		al., 2011

Figure 7 shows the comparison between 222 Rn mass and surface exhalation rate from the same samples at selected locations. The values were calculated from 222 Rn concentration measured using CRM-1029 for samples from each location studied. It shows that the 222 Rn mass exhalation rate reading averages between 0.11 – 0.72 mBq kg⁻¹hr⁻¹ and the 222 Rn surface exhalation rate between 0.31 - 2.0 Bq m⁻²hr⁻¹.

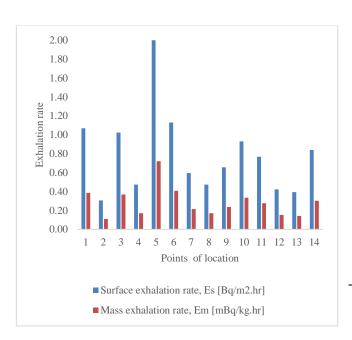


Figure 7. 222 Rn Mass Exhalation Rate (E_m) and Surface Exhalation Rate (E_s) from soil samples at selected points of research

Table 3 compares the average ²²²Rn mass and surface exhalation rate from the study to other values around the world. It shows that both mass and surface exhalation rate from the soil of Tasik Paya Bungor are still within the safe limit and averages with the results from other countries. The values are also within the World Limit of 37.8 mBq kg⁻¹hr⁻¹(UNSCEAR, 1988; Chowdhury *et al.*, 1999)

Table 3. Comparison of ²²²Rn mass and surface exhalation rate from soil in different locations

		Average	
	Average	²²² Rn	
	²²² Rn Mass	Surface	
Location	Exhalation	Exhalatio	Reference
	Rate, Em	n Rate, Es	
	(mBq kg ⁻¹ h ⁻¹)	(Bq m ⁻² h	
		1)	
Tasik Paya	0.11 - 0.72	0.31 - 2.0	Present
Bungor,			study
Gambang			
Benghazi,	8.2 ± 0.3	0.22±0.01	Saad et al.,
Libya			(2013)
Al-Marj,	13.9±0.5	0.32 ± 0.01	
Libya			
Southern	NA	14.12 -	Sroor et al.,
Egypt		59.44	(2001)
USA	7.6	NA	Nazaroff et
			al., 1992
Himalaya,	0.91±0.16	NA	Prasad et
India			al., 2008
Chittagong,	1.06±0.59	1.58±0.89	Chowdhury
Bangladesh			et al., 1999
Northern	0.19 – 0.88	NA	Almayahi <i>et</i>
Peninsular			al., 2013
Malaysia			
World Limit	37.8	0.96	UNSCEAR,
			1988;
			Chowdhury
			et al., 1999

IV. CONCLUSION

This paper has presented the ²²²Rn emanation and exhalation rates of soil to the environment in Tasik Paya Bungor area. In general, the ²²²Rn emanation rate obtained was lower compared to the global average values. With the world ²²²Rn emanation rate limit of 3.43 Bq m⁻² day⁻¹, the

highest value determined in this study is still much lower. It has been proven that the natural limit was not reached for the study area and it shows no significant difference from other regions of the world. Hence, for natural radioactivity mapping, the result may be considered a useful resource to be referred to. More samples should be taken from other locations around the Tasik Paya Bungor area and from all over Malaysia especially with soils from other lake-type locations. For further investigations, besides using soil as sample, researchers may investigate other elements such as plants, sediments and water from the place of study to determine the ²²²Rn concentration from it. From the results, radiation safety level may be determined and further actions by the authorities may be taken accordingly. The radiological quality of the soil around Tasik Paya Bungor area may be obtained from this study and the authorities can create radiation related awareness to the public within this area. To avoid any excessive radiation from direct exposure, future construction developers may take necessary

precautions before further development of this area and take mitigation actions at locations with high radioactivity concentration. Moreover, the findings may be used by the authorities to design rules and laws for the incoming plantation and agricultural activities and for future researchers who will embark in environmental radiation field.

V. ACKNOWLEDGEMENT

The authors would like to thank the Research Management Institute of Universiti Teknologi MARA for FRGS grant (600-RMI/FRGS 5/3 (0130/2016), Ministry of Higher Education (MOHE), Universiti Teknologi MARA (UiTM) Pahang, Jengka Campus and InQKA for their help, support and cooperation in this research.

VI. REFERENCES

Ahmad, N & Khan, MJS 2014, 'Correlation of radon exhalation rate with grain size of soil collected from Kedah, Malaysia', Sci. Int, Lahore, vol. 26, no. 2, pp. 691-696.

Al-Kaabi, MA & Al-Shimary, A 2015, 'Study of the radiological doses and hazard indices in soil samples from Karbala city, Iraq', arXiv preprint arXiv:1511.09417.

Almayahi, BA, Tajuddin, AA, & Jaafar, MS 2013, 'In situ soil ²²²Rn and ²²⁰Rn and their relationship with meteorological parameters in tropical northern peninsular Malaysia', Radiation Physics and Chemistry, vol. 90, pp. 11-20.

Al-Zoughool, M & Krewski, D 2009, 'Health effects of radon: a review of the literature', International Journal of Radiation Biology, vol. 85, no. 1, pp. 57-69.

Baykara, O, Doğru, M, İnceöz, M & Aksoy, E 2005, 'Measurements of radon emanation from soil samples in triple-junction of north and east anatolian active faults systems in Turkey', Radiation Measurements, vol. 39, no. 2, pp. 209-212.

Cevik, U, Kara, A, Celik, N, Karabidak, M & Celik, A 2011, 'Radon survey and exposure assessment in Karaca and Cal Caves, Turkey', Water, Air & Soil Pollution, vol. 214, no. 1-4, pp. 461-469.

Chowdhury, MI, Alam, MN & Hazari, SKS 1999, 'Distribution

of radionuclides in the river sediments and coastal soils of Chittagong, Bangladesh and evaluation of the radiation hazard', Applied Radiation and Isotopes, vol. 51, no. 6, pp. 747-755.

Gillmore, GK, Phillips, PS, Denman, AR & Gilbertson, DD 2002, 'Radon in the Creswell Crags Permian limestone caves', Journal of Environmental Radioactivity, vol. 62, no. 2, pp.165–179.

Hassan, NM, Mansour, NA, Fayez-Hassan, M & Sedqy, E 2016, 'Assessment of natural radioactivity in fertilisers and phosphate ores in Egypt', Journal of Taibah University for Science, vol. 10, no. 2, pp. 296-306.

Hussein, ZA, Jaafar, MS, Ismail, AH 2012, 'Study on emanation from selected building materials in Iraqi Kurdistan region', International Journal of Scientific Research Engineering & Technology, vol. 2, no. 2, pp. 108-112.

ICRP, PA 1993, 'Radon-222 at home and at work. Publication 65', Annals of the ICRP Reports of Task Group of Committee 4, pp. 1-45.

Ishimori, Y, Lange, K, Martin, P, Mayya, YS & Phaneuf, M 2013, 'Measurement and calculation of radon releases from NORM residues', Technical Report Series, no. 474, pp. 6.

- Khalid, N, Ab Majid, A, Yahaya, R, Yasir, MS & Mohamed, F 2014, 'Construction of radon chamber for determination of radon emanation using continuous radon monitor', Malaysian Journal of Analytical Sciences, vol. 18, no. 3, pp. 618-628.
- Nazaroff, WW 1992, 'Radon transport from soil to air', Reviews of Geophysics, vol. 30, no. 2, pp. 137-160.
- Prasad, Y, Prasad, G, Gusain, GS, Choubey, VM & Ramola, RC 2008, 'Radon exhalation rate from soil samples of south kumaun lesser himalayas, India', Radiation Measurements, vol. 43, pp. 369-374.
- Rafique, M, Rahman, SU, Mahmood, T, Rahman, S & Rehman, SU 2011, 'Radon exhalation rate from soil, sand, bricks, and sedimentary samples collected from Azad Kashmir, Pakistan', Russian Geology and Geophysics, vol. 52, no. 4, pp. 450-457.
- Rahman, S 2006, 'Studying ²²²Rn exhalation rate from soil and sand samples using CR-39 detector', Radiation Measurements, vol. 41, no. 6, pp. 708-713.
- Saad, AF, Abdallah, RM & Hussein, NA 2013, 'Radon exhalation from Libyan soil samples measured with the SSNTD technique', Applied Radiation and Isotopes, vol. 72, pp. 163-168.
- Sani, JM, Alias, N, Ahmad, N & Saat, A 2018, 'The assessment

- of indoor radon-222 concentration and emanation rate at Gua Penyu, Pahang', Malaysian Journal of Analytical Sciences, vol. 3, pp. 483-490.
- Sharip, Z & Zakaria, S 2007, 'Lakes and reservoir in Malaysia: management and research challenges', Proceedings of Taal 2007: The 12th World Lake Conference, vol. 1349, pp. 1355.
- Singh, S, Sharma, DK & Kumar, A 2004, 'Environmental Radon studies using solid state nuclear track detectors', Journal of Environmental Radioactivity, vol. 76, no. 3, pp. 369-376.
- Sroor, A, El-Bahi, SM, Ahmed, F & Abdel-Haleem, AS 2001, 'Natural radioactivity and radon exhalation rate of soil in southern Egypt', Applied Radiation and Isotopes, vol. 55, no. 6, pp. 873-879.
- United Nations Scientific Committee on the Effects of Atomic Radiation 2000, 'Sources and effects of ionising radiation: sources. report to the general assembly, with scientific annexxes', United Nations Publications, *pp. 1-11*.
- United Nations Scientific Committee on the Effects of Atomic Radiation 1988, 'Sources, effects and risks of ionising radiation' report to the general assembly, with annexxes', United Nations Publications. pp. 1-47.