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The visual analysis of foods on social media by using food recognition algorithm provides valuable 

insight from the health, cultural and marketing. Food recognition offers a means to automatically 

recognise foods as well the useful information such as calories and nutritional estimation by using 

image processing and machine learning technique. The interest points in food image can be detected 

effectively by using Maximally Stable Extremal Region (MSER). As MSER used global segmentation 

and many food images have a complex background, there are numerous irrelevant interest points 

are detected. These interest points are considered as noises that lead to computation burden in the 

overall recognition process. Therefore, this research proposes an Extremal Region Selection (ERS) 

algorithm to improve MSER detection by reducing the number of irrelevant extremal regions by 

using unsupervised learning based on the k-means algorithm. The performance of ERS algorithm is 

evaluated based on the classification performance metrics by using classification rate (CR), error 

rate (ERT), precision (Prec.) and recall (rec.) as well as the number of extremal regions produced by 

ERS. UECFOOD-100 and UNICT-FD1200 are the two food datasets used to benchmark the proposed 

algorithm. The results of this research have found that the ERS algorithm by using optimum 

parameters and thresholds, be able to reduce the number of extremal regions with sustained 

classification performance. 
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I. INTRODUCTION 
 

The advancement of mobile technology at a reasonable cost 

has indulged the people in photographing food and sharing 

their excitement when having a meal in the social media and 

it has become a worldwide phenomenon (Rich et al., 2016). 

Food recognition has become an emerging research area in 

object recognition which has grown more substantially in the 

era of the smartphones and social media services 

revolutionary (Kagaya & Aizawa, 2015; R. Xu et al., 2015). 

The revolution of big data and social media analytics 

technologies provides valuable encouragement that useful 

knowledge and information can be discovered from the 

massive volume of food images in social media, including 

trends of food consumption, eating habits and behaviour, and 

preferences for foods and restaurants (De Choudhury et al., 

2016; Fried et al., 2015; Rich et al., 2016). In previous 

research, the dense sampling and Different of Gaussian (DoG) 

are the two common interest points sampling used in earlier 

studies in food recognition (Kawano & Yanai, 2015; Martinel 

et al., 2016; Sasano et al., 2016). Inevitably, features will be 

extracted from irrelevant interest points (i.e. from the 

background, especially if it is complex) (Altintakan & Yazici, 

2015)  and will generate less informative descriptions 

regardless of the sampling techniques being used. Interest 

region-based detectors using Maximally Stable Extremal 

Region (MSER) that were used in the previous study (Razali 

et al., 2017)  use global segmentation and take into account 

regions from images with complex backgrounds as well. The 

configuration parameter of MSER based on Extremal Region 

Detection (ERD) technique as pr0posed by Razali et al., 2019) 
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have detected a massive amount of Extremal Regions 

especially from the food images with complex background. 

Detectors based on DoG also unavoidably detect interest 

points within complex and noisy backgrounds (Yu et al., 

2013). Furthermore, the number of interest points is still very 

high for real-time applications, and the irrelevant interest 

points increase the computational cost of the feature 

encoding process (Lin et al., 2016; Mukherjee et al., 2016; Xu 

et al., 2015). Figure 1 shows examples of ER detection on a 

complex background.  

The illustrations in Figure 1 (b), (e), and (h) demonstrate 

ER detection, while illustrations (c), (f), and (i) show interest 

points detection on the centroid of each ER. The examples 

feature a complex image background that has higher contrast 

and brightness density, and a pronounced texture, leading 

MSER also to detect ERs from these regions. Therefore, this 

research proposes the interest regions selection algorithm, or 

ER selection algorithm (ERS) to reduce the quantity of ERs, 

especially from the image background based on the spatial 

information of extremal regions. The evaluation and analysis 

have been conducted to determine the optimal threshold and 

parameters configuration in ERS.  

 

 

Figure 1. Examples of ER detection on a complex 

background 

 

II. RELATED WORKS 
 

The massive number of interest points produced by local 

feature extraction will provide a more discriminative visual 

dictionary but may also increase the computational effort for 

feature encoding (Lin et al., 2016). It is good practice to 

reduce the number of interest points but at the same time 

retain or increase the recognition performance. A minimal 

amount of local (or useful) features may conserve memory 

and reduce the computational burden of feature encoding as 

well.  

Interest points can be sampled densely and may contain 

redundancies. Redundant interest points are defined as those 

with other interest points close to them and which may 

provide unnecessary information (Rudinac, Lenseigne, & 

Jonker, 2009). Using a certain neighbourhood threshold, 

redundant interest points can be filtered. Another filtering 

technique is based on information entropy, where a small 

subset of the most representative interest points with the 

highest information content is selected.   

The distinctiveness of an image can also be captured with a 

visual saliency or attention analysis approach, which has 

become popular in recent years (Li, Wang, Tian, & Ding, 

2015). Visual saliency refers to the rarity of the colour, 

gradient, edges, and boundary of an image in a way intended 

to reflect how humans gaze at certain regions that attract 

them. Saliency detection allows efficient resource allocation 

when exciting areas can be determined early on before further 

processing. The rarity of appearance is driven by low-level 

image features. For example, lightness, colour, contrast, 

intensity, edge, orientation, shape, gradient, coarseness, and 

sharpness (X. Xu et al., 2015).  

The study conducted by (Gao & Yang, 2011) identified two 

types of visual saliency techniques: local contrast-based and 

global contrast-based which are integrated to obtain a 

distinctive SIFT interest point. Local contrast-based 

techniques identify the rarity of regions in a small local 

neighbourhood where intensity, colour, and edges are 

calculated. The global contrast-based approach uses the 

entire image to evaluate saliency. In the research of 

(Buoncompagni, Maio, Maltoni, & Papi, 2015), the saliency of 

FAST interest points was measured based on an estimation of 

distinctiveness, repeatability, and detectability. High 

distinctiveness, repeatability, and detectability of interest 

points indicate a high level of saliency. Distinctiveness 

computes the difference between the different interest points 

detectors, reproducibility means the invariance of an 

indicator towards different conditions, and detectability 

calculates the suitability of interest points under various 

viewpoints and illuminations. A similar saliency 

measurement was adopted by (Mukherjee et al., 2016), where 

the scores for distinctiveness, repeatability, and detectability 

were retrieved to detect salience and rank the KAZE and SIFT 



ASM Science Journal, Volume 15, 2021  
 

3 

interest points. 

A different approach is used by (Lin et al., 2016) in selecting 

interest points, where k-means is used in two iterative stages 

known as IKS1 and IKS2. In IKS1, interest points are sampled 

using SIFT, whereas in IKS2 k-means is used to filter the 

interest points if the distance from the identified 

representative interest points is less than a pre-defined 

threshold. 

Interest points that are located nearest to each other are 

assumed to be unnecessary since they may contain 

redundancy. Selecting only a few interest points is considered 

enough to provide more representative interest points. 

However, this technique may remove too many interest 

points and require an exhaustive threshold evaluation to deal 

with images of a different nature and variability.  

One of the challenges in identifying salient interest points 

is when an image has a distracting foreground and cluttered 

background. Most of the techniques that are based on the 

statistics of centre distance are limited to centralised objects. 

Hence, to alleviate these problems (Liu, Ling-Yu Duan, Jie 

Chen, & Huang, 2016) introduced depth cue information to 

interest point selection. Interest points were selected based 

on correlation analysis between depth cue and scale. 

Inaccuracy in identifying interest points using Laplacian of 

Gaussian (LOG) in SIFT occurs during the convolution 

process. A modification in the stage of selecting extreme 

points can decrease the bias (Zuchun, 2013). Instead of 

identifying the salient regions of an image (Yoo & Kim, 2013) 

proposed a scheme to model the image backgrounds in the 

BoF model. The background can be well represented by visual 

words since its local structure is not too varied. Hence, the 

dynamic background modelling using a soft assignment 

approach can effectively subtract the background. However, 

the scope of this approach is limited only to dynamically 

textured scenes.  

Feature or instance selection and interest points selection 

are distinct (Lin et al., 2016). Feature selection aims to reduce 

feature dimensionality by removing redundant or irrelevant 

features, whereas interest point selection is intended to 

remove useless interest points. Technically, feature selection 

removes the columns of the vector, in contrast to interest 

points selection which removes the rows. However, the main 

limitation of feature selection is its computational expense, 

especially for high feature dimensions. On the other hand, 

interest points selection yields good speed performance.  

In general object recognition, a procedure to reduce the 

interest points is known as interest point or region selection. 

Interest point selection should be not be confused with 

feature selection used in data mining. Feature selection 

normally works by pruning the attributes represented in 

columns from the extracted features. Still, interest point 

selection prunes whole interest points represented in rows 

and is performed before or after feature description.  

Moreover, interest point selection is not necessarily 

intended to remove interest points solely from the 

background but rather to remove any irrelevant interest 

points and can be performed exclusively to reduce 

computational cost. In work conducted by (Lin et al., 2016), 

interest point selection aims to reduce the number of interest 

points by identifying those that can be considered redundant 

and less representative. However, their method is less useful 

for detecting the interest points of scenic images. Food and 

scene recognition have highly similar characteristics, and 

therefore problems that exist in scene recognition may also 

appear in food recognition. Just as scene images consist of 

multiple entities with regions of arbitrary shape, food images 

are also composed of many multi-class foods with high 

deformation and significant variation in colour and texture. 

Additionally, the DoG and dense sampling used to detect 

interest points in previous studies provide a dense search that 

might cause redundancy. The MSER detector used in this 

study locates interest points in each region and generates a 

less dense distribution of interest points.   

However, the interest region selection procedure in food 

recognition seems to be an uncommon practice. Feature 

selection to reduce the dimensionality of descriptors and 

feature vectors is still rare in food recognition. For instance, 

(Kawano & Yanai, 2015) used PCA as a form of feature 

selection to reduce the Histogram Of Gradients (HOG) 

dimensionality, and (Faria, Alex, Rocha, & Torres, 2012) has 

adopted a heuristic-based approach to feature selection. 

Whether or not feature selection is conducted in an online or 

offline process, this procedure will prolong the feature 

representation process since it involves crucial computation, 

not only in choosing a subset of features but also in 

transforming them into another level of representation.  

Therefore, an exciting point selection approach is 

preferable as it involves a less complicated procedure (Ghosh, 

Dhamecha, Keshari, Singh, & Vatsa, 2015) and also has 

greater potential to eliminate interest points from the 

background. The elimination of features from the image 

background via segmentation techniques can be considered a 

significant task in recent food recognition studies. The main 

reason is the multi-class appearance of food images and the 
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current interest in measuring food portion size for caloric and 

nutritional estimation. As mentioned earlier in this section, 

food segmentation is never a straightforward process due to 

the complex nature of food appearance.  

 

III. EXTREMAL REGION 
SELECTION IN MSER 

 

MSER is an interest-region-based detector which, along with 

its variants, has proven effective in scene recognition as it 

yields the best score in term of effectiveness and efficiency 

(Lee & Park, 2017). MSER for scene classification can detect 

objects of arbitrary shape in scenes containing multiple 

entities, as well as small objects. Therefore, MSER is chosen 

here as it is expected to be able to handle the complex 

appearance of foods, especially small foods and mixed foods 

that have solid mixtures of ingredients. MSER works by 

identifying a set of connected candidate regions that are 

discovered by using a global segmentation technique, 

specifically the watershed algorithm. Based on an intensity 

threshold, pixels are grouped into two sets, namely black and 

white. The threshold value is changed at each iteration, which 

changes the cardinality of each set. Finally, extremal regions 

are generated as connected regions, and each region is 

represented by an interest point located at its centre. 

MSER locates interest regions based on the existence of 

ridgelines and connected regions using intensity threshold 

adjustment. The use of global segmentation takes into 

account regions from the entire food image. Food images with 

high proportions of background (and backgrounds with a 

complex appearance) will increase the number of 

unnecessary regions detected. Thus, the complex appearance 

of food images which include a complex background will 

inevitably lead to the detection of many background regions. 

The features generated by the image background can be 

considered as noise and do not contribute to classification 

performance (Altintakan & Yazici, 2015; Zhang et al., 2016) 

and occupy more time for interest detection, description, and 

feature encoding (Lin et al., 2016). 

The motivations for ERS algorithm are twofold. First, the 

capability of interest points detectors to find interest points 

most densely in the image foreground, meaning that fewer 

ERs are detected from the background. Second, in the study 

conducted by (Lin et al., 2016), unsupervised learning based 

on k-means clustering was used to remove redundant interest 

points. Generally, k-means initialises its centroids randomly 

on denser regions. Figure 2 shows the centroids plotted by 

using k-means on the spatial information (i.e. location) of 

interest points, in a food image.   

As depicted in Figure 2, the coloured points represent the 

location of interest points, and the black circles mark the 

distribution of the centroids. The centroids are placed on a 

dense area of points which are in the image foreground. This 

example uses a small cluster size, but the larger cluster sizes 

used in this study will also place the centroids in the 

surrounding area that might be the image background. 

Therefore, interest points from image background and 

foreground are differentiated by the density of interest points 

held by the centroids.  

 

 

Figure 2. Centroid plotting in the k-means algorithm on a 

food image 

 

As shown in Figure 3, ERS is performed after ERD. Based 

on the number of ERs detected by ERD on each image, it will 

determine whether that image should perform interest points 

selection. If the number of ERs is greater than the pre-defined 

threshold Z, ER selection will be applied. The preliminary 

analysis used to determine threshold Z will be explained in 

Section 4. 

The data retrieved from each ER contains several items of 

information, including spatial information that indicates the 

coordinates of the x and y-axis of the located interest points 

in each ER. A clustering by k-means is performed to group 

the ERs based on their location on the x and y-axis. The 

centroids are placed randomly in the denser areas of data 

points. The clustering using k-means uses the distance 

function where points that are located within a certain 

neighbourhood will be grouped into a cluster. Therefore, all 

spatial information of ERs will be clustered. The centroid that 

distinguishes the ER from the image background is 

recognised by calculating the histogram, or occurrence 

frequency (OF), of the centroids. 

As mentioned earlier, the use of a detector tends to identify 

denser ERs in the image foreground. Based on this 
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assumption, centroids with a small quantity of ERs, or low 

OF, are probably from the background. Additionally, spatial 

information indicates that interest points located too closely 

might be redundant (Rudinac et al., 2009). Therefore, if the 

OF of the centroid is less than threshold V, the ERs that 

belong to the respective centroid will be regarded as noise and 

will be removed. The evaluation to determine threshold V 

(OF) is provided in Section 5.  

 

 

Figure 3. Extremal region selection (ERS) technique 

 

The k-means clustering used in ERS requires the cluster 

size k to be set before performing the clustering. However, the 

high diversity and variability of food appearance make 

determining k an exhaustive process that may subsequently 

affect the performance of the ERS algorithm. If the value of k 

is too small, there will be too many ERs grouped into a 

cluster, and this will possibly mix ERs from foreground and 

background. In contrast, a larger k may remove too many 

ERs, including those from the front, as the OF holds a small 

number of ERs. An example of ER removal on a sample image 

is shown in Figure 4. 

 

 

Figure 4. Extremal region selection 
 

As shown in Figure 4 (b), 554 ERs have been detected in 

total, with many detected from the foreground. Then, the ERS 

is performed in (c), and 69 ERs have been removed. In this 

example, the value of K and OF used is 10 and 50 respectively. 

The OF for each cluster K is shown in Table 1.  

 
Table 1. The Value of K and OF in ERS 

Cluster (K) Occurrence 

Frequency (OF) 

1 50 

2 31 

3 57 

4 55 

5 64 

6 64 

7 66 

8 38 

9 52 

10 77 

 

As shown in Table 1, the number of ERs (OF) that belong to 

each cluster (K) is computed. As this example using OF=50, 

the cluster with OF less than 50 will be removed. Thus, the 

ERs in cluster 2 and 8 will be removed as it consists of 31 and 

32 ERs, respectively. This example shows that the variable of 

K and OF is crucial in ERS algorithm as it is affecting the 

number and location of ERs to be eliminated. Therefore, 

empirical evaluation to determine the optimal value of K and 

OF is performed as presented in Section 5. Table 2 shows the 

algorithm for ER selection. The algorithm is developed based 

on the flowchart shown in Figure 3. 

 
Table 2. Extremal Region Selection Algorithm 

Extremal Region Selection (ERS) 

Input:  Extremal Regions (ER) detected by using ERD 

𝐄𝐑 = {𝐄𝐑𝟏, 𝐄𝐑𝟐, 𝐄𝐑𝟑… . 𝐄𝐑𝒂}  Output: The selected and 

extracted ER 

1.   for all images i = {𝒊𝟏, 𝒊𝟐, 𝒊𝟑…𝒊𝒏} do 

2.   extremal_region{i} ← Detected ER using ERD for  

      each i 

(b) ER Detection-(a) Original (c) ER Selection-
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3.       No_ER{i}← Get the number of ER for each i 

4.       if   No_ER{i} > threshold Z then 

5.              extremal_region.  Location{i} ←  Access spatial  

                information of coordinate (x, y) for each ER 

6.              mserpointslocation{i}← store coordinate (x, y)      

                for each ER 

7.              k-means(mserpointslocation{i}, K) ← Perform  

                clustering using k-means on the coordinate (x,     

                y) for each ER. 

8.              cluster_location{ER} ← return centroid for each  

                 ER. 

9.              frequency{i}  ← Calculate frequency for each 

                  centroid 

                if frequency{i} <  OF then 

                      Remove 𝑬𝑹𝒊 

                end if 

          end if 

10.      all_regions{i}  ← keep all updated ER 

11.      extractfeatures{i} ← Describe by using SURF 

12. end for 

 

As shown in Table 2, the input to the ERS algorithm is a list 

of ERs detected by ERD, and the output is a set of selected 

ERs, which are kept in a cell array of all_regions{i} before 

their features are described using a SURF descriptor. 

 

IV. PRELIMINARY EXTREMAL 
REGION QUANTITY ANALYSIS 

 

The purpose of ER quantity analysis is to provide a basic 

evaluation to determine a threshold value Z for which images 

with fewer than Z ERs will use the ERS technique. A 

preliminary experiment is conducted to reveal the 

classification performance for each food category using the 

traditional MSER detector and SURF descriptor.  

The results of the experiments are used to form two groups. 

Group A retains all food categories that yield classification 

rate below to 80%, and Group B keeps food categories that 

yield classification rate above or equal to 80%. This group is 

specified to observe the difference in the number of interest 

points detected between these groups. There are 78 food 

categories with a classification rate below 80%, representing 

the majority of the food categories. A total of 22 of food 

categories obtained classification rate above 80%. The 

number of ERs per category in both groups is shown in Figure 

5. As seen in Figure 5, the numbers of ERs for group B are 

almost all higher than those in group B. The average of ER 

quantity in group A is 25,446 and 50,130 in group B. This 

finding indicates that food categories with a higher number 

of ERs have better classification performance.  

 

 

Figure 5. Comparison of ER quantity between group A and 
group B 

 

The maximum, minimum, mean, median, and mode of the 

ER number for all images are calculated for both groups A 

and B. The maximum and minimum numbers of ERs guide 

how to group these images into a few ranges with an interval 

of 100 to identify the distribution of ERs. An interval of 100 

is fixed as many texture-less foods images have the number 

of interest points within the range of 0-100.  

Table  shows the statistics for ER numbers, comprising the 

maximum, minimum, mean, median, and mode for groups A 

and B. 

 

Table 3. Analysis of ER quantity for groups A and B 

 

Based on Table 3, the maximum and minimum number of 

ERs are used to construct the ranges to identify the 

distribution of ERs in that respective range. As mentioned 

earlier, the range is specified based on the observation that 

revealed many texture-less images have interest points below 

100. For example, the food category potage consists of 

79.65% of images with ERs below 100. The maximum is from 

the image that generates the highest number of ERs, and the 

minimum is from the image that generates the lowest 

number. The mean, median, and mode of ERs are used to 

support the selection of thresholds Q and Z. Since the number 

of ERs of the images in group B is greater than group A, group 

B has greater values for all statistics.  
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Figure 6. Distribution of ERs in group A (CR<80%) 
 

Based on Figure 6, most images contain ERs in the range of 

(0, 100) and (101, 200) making up 63.5% of the total. The 

value of the mean, median, and mode are within the range of 

(0, 200), as shown in Table 3. Figure 7 shows the histogram 

of ERs for group B.  

 

 

Figure 7. Distribution of ERs in group B (CR ≥ 80%) 
 

Based on Figure 7, most images are found in the ranges 

(101, 200), (201, 300), and (301, 400), accounting for 68.61% 

of the total. The most remarkable difference between group A 

and group B shown in this analysis is the number of images 

belonging in the range (0, 100). In group B, only 17.28% of 

the images have less than 100 ERs. In contrast, the 

percentage of images with ER quantity below 100 in group A 

is much larger, namely 27.88%. In the other hand, a 

significant number of images in group A have the number of 

interest points in the range (100,200). Based on the graph in 

Figure 7, most of the food images with better classification 

performance have between 100 and 500 ERs. Therefore, any 

image with more than 500 ERs is too dense and might 

contain too many ERs from the background. Figure 8 shows 

three examples from three food categories with more than 

500 ERs.  

 

Figure 8. Examples of foods with ERs above 500 

 

Figure 8 shows dense detection with many ERs from the 

image background. The image background is considered 

complex as it has a pronounced texture (as illustrated by 

category 62), contains miscellaneous objects (as per category 

27) and contains visible ridgelines and high contrast (as seen 

in category 52). As a result, the image background and 

foreground are difficult to distinguish by MSER. In this 

context, the image with ERs more than 500 can be considered 

for ERS. However, an empirical evaluation to find an optimal 

value of Z will be performed as provided in Section 5.  

 

V. RESULTS AND DISCUSSION 
 

This section provides the experimental results of the 

proposed method: the ERS algorithm designed to reduce the 

quantity of ERs, especially from the background. ERS is 

performed after ER detection and initially is used on any food 

images with ER quantity greater than Z. The determination 

of threshold Z was initially explained in Section 4 and, as 

mentioned then, an ER range of 100 to 500 is sufficient to 

provide good classification performance. An excessive 

number of ERs could be overwhelming since too many are 

detected from the image background, especially in images 

with a complex background. However, an empirical 

evaluation threshold Z is conducted by using 500 and 1000 

to determine the best performance of ERS. There are only two 

values are evaluated to determine threshold Z as only 10 food 

images have ERs greater than 1500.  
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A. Evaluation of ERS Parameters on UECFOOD-
100 Dataset 

 
Two parameters govern ERS: the so-called cluster size k and 

the occurrence frequency (OF). OF computes the histogram 

of the centroid on each cluster k. K-means is used to partition 

the ERs based on the location of the interest points within 

them. Table 4 presents the overall performance of ERS 

parameters and threshold Z. 

As shown in Table 4, the evaluation can be grouped based 

on the two threshold Z: 500 and 1000. The K and OF 

evaluation consist of two stages, namely, stage 1 and stage 2. 

Stage 1 evaluates the effect of K while stage 2 evaluates the 

effect OF towards the ERS algorithm. The findings showed 

the ERS variants have successfully reduced some amounts of 

ERs and sustained the ERT performance obtained previously 

in ERD. In addition to that, the threshold Z required different 

parameter configuration for ERS to performed in an 

optimum manner. 

 
Table 1. Evaluation of ERS parameters and threshold Z 

Figure 9 depicted a combo graph of classification rate and 

number of ERs in ERS variants by using threshold Z=500.  

 

 

Figure 9. Classification rate and ERs of ERS variants for 

threshold Z=500 

 

 

Based on Figure 9, it is apparent that the classification rate 

dropped very slightly from 90.93% in ERD to 90.31% in 

ERS1. As the parameters value changed in ERS2, ERS3 and 

ERS4, the classification rate has minorly affected but has 

reduced the number of ERs significantly. In this case, ERS1 

yielded the best classification performance overall. Although 

the ERS algorithm decreased the ERD4 classification rate by 

0.62% in ERS1, the error rate is still low as in ERD4.  

Figure 10 showed a graph of classification rate and number 

of ERs in ERS variants by using threshold Z=1000.  

 

 

Figure 10. Classification rate and ERs of ERS variants for 

threshold Z=1000 
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CR% ERT% Prec.% Rec.% Extremal 

Regions 

 

 

500 

(5062 

images) 

Stage 1 

(OF=10) 

ERS1 (k =20) 90.31 0.10 90.30 90.30 6577569 

ERS2 (k =40) 89.81 0.10 90.00 89.80 6324237 

Stage 2 

(K=20) 

ERS3 (OF =20) 89.59 0.10 89.70 89.60 6338721 

ERS4 (OF =30) 88.87 0.10 88.90 88.90 5705136 

 

 

 

1000 

 

(292 

images) 

 

Stage 1 

(OF=10) 

ERS5 (k =20) 90.47 0.10 90.50 90.50 6608064 

ERS6 (k =40) 90.59 0.10 90.60 90.60 6604616 

ERS7 (k =60) 90.33 0.10 90.40 90.30 6592816 

 

Stage 1 

(K=40) 

 

ERS8 (OF =20) 90.13 0.10 90.20 90.10 6570537 

ERS9 (OF =30) 90.31 0.10 90.40 90.30 6472556 

ERS10 (OF =40) 90.39 0.10 90.40 90.40 6382108 

ERS11 (OF =50) 88.74 0.10 88.90 88.70 6310263 

ERD 90.93 0.10 91.10 90.90 6608363 
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Based on the graph presented in Figure 10, the classification 

rate pattern over ERS5, ERS6, ERS7, ERS8, ERS9 and ERS10 

does not severely affected and can be sustained above 90%. 

However, the number of extremal regions demonstrated a 

dramatic reduction. For instance, the number of ERs in 

ERS10 is only 6382108 to achieved 90.39% classification 

rate.  

In conclusion, based on results showed in Table 4, Figure 9 

and Figure 10, food images with the number of ERs above 

1000 (threshold Z) obtained better classification 

performance from using ERS algorithm. Specifically, ERS6 

has yielded the best classification performance among ERS 

variants.  

 

B. Visual Effect of the ERS Variants  
 

This section will provide the illustrations to show the effect of 

ERS algorithm by using different parameter configuration on 

two samples of food image. The two samples are taken from 

food image with the number of ERs more than 500 and 1000. 

Figure 11 shows the effect ERS parameters on a sample 

image by using threshold Z=500. In Figure 11, the OF value 

was set to 10 in ERS1 and ERS2, and cluster size was set to 20 

and 40, respectively. While the OF in ERS3 and ERS4 were 

set to 20 and 30 respectively. Any cluster containing fewer 

ERs than the OF value was removed. Initially, ERD in (a) 

detects 525 ERs in a sample image belonging to this image. 

Both parameter K and OF has played an important role to 

remove the ERs, especially from the image background as can 

be seen in (d), (e) and (f). Figure 12 shows the effect of ERS 

parameter configuration on a sample image by using Z=1000.  

 

 

 

Figure 11. Effect ERS variants by using Z=500 
 

 

 

Figure 12. Examples of foods with ERs above 500 
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Based on Figure 12, the number of ERs, especially from the 

background, has been removed gradually in ERS6, ERS7, 

ERS8 and ERS9. However, the ERS10 and ERS11 have 

removed ERs dramatically, including many ERs from the 

foreground image.  

Conclusively, the ERS variants have successfully reduced 

the number of ERs, including many ERs from the 

background. In general, the ERS algorithm is applicable for 

any image with more than 500 ERs, provided a suitable ERS 

parameter configuration needs to be used for according ERs 

density to images based on the empirical evaluation 

conducted in Table 4.  

Denser ERs are usually detected from food images with 

complex background. Unavoidably, ERs from the foreground 

are eliminated as well due to the heterogeneous colour and 

texture of foods. The global segmentation in MSER samples 

food regions into granular parts. However, aside from visual 

inspection, the primary evaluation metrics of the proposed 

ERS algorithm are still its classification performance and the 

quantity of ERs it produces (Lin et al., 2016).  

 

 

 

VI. CONCLUSIONS AND FUTURE 
WORKS 

 

This research has proposed the extremal region selection 

(ERS) algorithm in the MSER detector to reduce the number 

of extremal regions. Specifically, ERS recognised the 

extremal regions detected from the complex background of 

food image by calculating the occurrence frequency of the k-

means centroids. The clustering is performed on the spatial 

information of the extremal region. The results demonstrated 

the reduction number of extremal regions by 37 ERs using 

ERS variants with ERS6 yields the most optimal performance 

with 0.1 error rate. This research can be improved in the 

future by incorporating visual saliency evaluation as a 

criterion in performing ER selection. Saliency values for each 

interest point might provide a clear and more accurate 

separation between relevant interest regions and outliers 

because, in some cases, the image background is not an 

outlier and may be a useful clue for recognition.  
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