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The standard practice among rice farmers in Malaysia is to apply fertilizer using a single application 

rate for the whole field. However, fertility conditions vary across the field. The excess use of fertilizer 

leads to increased input cost and can be damaging to the environment. The focus of this research 

was to develop a method to apply fertilizer on-the-go while sensing the crop nutrient status of rice 

plants. A machine learning approach was used to develop a crop nitrogen status prediction model . 

The model used spectral data from an active canopy reflectance sensor and several vegetation indices 

as inputs. The model was then incorporated into an on-the-go variable rate fertilizer application 

system. System performance was then evaluated in the field. The results from this work showed that 

the model had and accuracy of 83% in classifying the nitrogen status of the rice plants. The results 

also showed that our method was able to save up to 20% fertilizer use while maintaining yield. These 

findings are important for large estate farmers who are looking to increase productivity and 

efficiency. 
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I. INTRODUCTION 

 
Rice in Malaysia had a production value of RM 2.95 billion 

(USD  688 million) in 2018 (MoA 2018). With a planted area 

of 699,980 ha and an average yield of 3.8 t ha-1, the 

productivity of the industry has stagnated over the last 

decade. A report published by a government institute found 

that rising input cost and shortage of labor is forcing the 

government and estate farmers to find ways to be more 

efficient in producing the crop as it is one of the most 

important agro-food commodities in Malaysia (Omar et al., 

2019). As the industry is heavily subsidized by the 

government, any savings achieved would lessen the burden 

on the government. Precision agriculture could be exploited 

to address these issues. 

Precision agriculture provides the means to manage 

variability in the field by applying inputs at the right place, 

the right time and the right amount (Abu Bakar et. al., 2019; 

Finger et al., 2019). In the case of fertilizer application, the 

normal practice in Malaysia is to use a blanket rate split over 

three to four applications throughout the season (Man et al., 

2008). This conventional method assumes that the 

conditions in the field are uniform which is often not the case 

in practice (Chen et al., 2018). It could lead to a waste of 

fertilizer and can be harmful to the environment. Variable 

rate application of fertilizer, on the other hand, takes into 

account the variability in field, and only applies fertilizer 

depending on the nutrient requirement of the crop (Grisso et 

al., 2011).  

The foundation of any variable rate application method is 

the ability to detect soil or crop properties. Methods such as 
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remote sensing using satellite imagery  or microwave back 

scattering are two examples of properties detection (Kuenzer 

& Knauer, 2013; Rudiyanto et al., 2019). Optical sensors that 

are closer to the ground have also been used to estimate soil 

and crop nutrients (He et. al., 2007; Pallottino et al., 2019).  

An optical sensor was used to sense the nitrogen (N) status 

and develop a variable rate application strategy for rice 

(Bijay-Singh et al., 2015). An N management strategy based 

on the GreenSeeker canopy sensor (NTech Industries, Inc., 

Ukiah, California, USA) was compared to a management 

strategy based on conventional farmers’ practice. It was 

shown that the sensor-based management strategy was able 

to obtain similar yields, but with a reduced N rate of up to 

21.7%. However, the sensor could only be used at the panicle 

initiation stage and sufficient N application had to be ensured 

at earlier stages of growth using a conventional method.  

An active canopy reflectance sensor was used to estimate 

rice plant N status (Cao et al., 2013). This sensor emits light 

and measures the reflectance of three spectral bands from a 

plant canopy. In contrast, the GreenSeeker canopy sensor had 

only two spectral bands. The authors derived several 

vegetation indices from the sensor measurements and found 

that some of the indices had a good correlation with the 

nutrition index (NNI), which is an indication of the crop N 

content. The best vegetation indices had an R2 of 0.76. The 

authors found that using multiple linear regression did not 

outperform the best indices and suggested more studies were 

needed to explore other methods of synthesizing the data. 

Recent advances in machine learning showed that it was 

possible to synthesize many inputs to achieve good results 

(Chlingaryan et. al., 2018; Kamilaris & Prenafeta-Boldú, 

2018). 

Holland and Schepers (2013) used the active canopy 

reflectance sensor to estimate the N content for corn and 

incorporated a simple learning algorithm to develop a 

variable rate fertilizer application system using a virtual 

reference concept. This system continuously updated a 

histogram to calculate the reference vegetation index in lieu 

of a N-rich strip in the field. The authors compared two 

strategies of variable rate fertilizer application using the 

virtual reference concept. The first strategy was known as the 

Drive-First approach, where the vegetation index was 

determined before N application was initiated by driving 

around in the field to collect sensor data. The second strategy 

involved the Drive-and-Apply approach, where the fertilizer 

was applied “on-the-go” while the tractor was moving 

through the field collecting sensor data to update the 

histogram. They found that the Drive-and-Apply approach 

over applied N by 15% compared to the Drive-First approach 

when starting from the part of the field where the plants were 

most vigorous. The system under applied N by about 25% 

when starting from the least vigorous part of the field.  

To the best of the authors’ knowledge, no on-the-go variable 

rate fertilizer application system exist for rice. Hence, there 

were two objectives for this research. The first objective was 

to develop a machine learning-based model to classify the N 

status of rice plants by using measurements from an active 

crop canopy sensor and several derived vegetation indices as 

inputs to the model. The machine learning approach allows 

the inputs to be analyzed collectively in producing an output. 

The second objective of this research was to use the model to 

develop an on-the-go variable rate fertilizer application 

system for rice production. This research is important 

because it has the potential to save time, effort and cost for 

rice growers in Malaysia. It can also help the government in 

formulating policies regarding the use of precision 

agriculture practices in rice production. 

 

II. MATERIALS AND METHOD 

 

A Model Development 

 
1. Location 

 
Four experiments were conducted at the Seberang Perai 

research station of the Malaysian Agricultural Research and 

Development Institute (MARDI). It is located in the district 

of Northern Seberang Perai in the state of Penang, Malaysia 

(latitude 5°32'28.7"N and longitude 100°27'43.7"E).  

 
2. Active canopy sensor  

 
An active canopy sensor, Crop Circle ACS-430 (Holland 

Scientific Inc., Lincoln, Nebraska, USA), was used to collect 

crop canopy reflectance information. This sensor emits visual 

and near infrared (NIR) light and measures 3 fixed spectral 

wavebands;  red (670nm), red-edge (730nm), and near 

infrared (780nm). A performance evaluation of the sensor 

was done by Muslimin et al. (2020). 
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3. Experimental design 

 
Four experiments were carried out from April 2017 to 

February 2019 in order to study the relationship between the 

canopy reflectance of rice plants measured from the active 

canopy sensor and the nitrogen (N) status of the rice plants. 

The experiments were done using a randomized complete 

block design experiment with 5 treatments of N fertilizer (0, 

50, 100, 150 and 200 kg N ha-1) and 8 replicates. The 

experiments used a local rice variety MR297 that takes 110 – 

115 days to mature. The variety was planted twice each year 

following normal practice in Malaysia.  The main season ran 

from April to August and the second season ran from October 

to February each year. In each experiment, a total of 40 plots 

of 5 m x 5 m or 0.0025 ha were each given a specific 

treatment.  

The N fertilizer source was granular urea applied as four 

splits 20% at tillering, 35% at stem elongation stage, 25% at 

panicle initiation stage and 20% at heading stage. Readings 

of the active canopy sensor were taken for each plot right 

before fertilizer application at the three latter stages. Since 

the sensor used had its own light source and had an internal 

correction factor, it did not matter what time of day the 

readings were taken. However, effort was taken to ensure that 

the readings were taken roughly before noon at each growth 

stage.  

Across all four experiments, a total of 160 sensor data and 

plant samples were taken at each fertilizer application stage.  

Figure 1 shows the data being taken with the active crop 

canopy sensor at panicle initiation stage of crop growth. 

 
4. Plant sample destructive analysis 

 

Rice plant samples were taken right after sensor reading 

measurements. At each sampling stage, and in each plot 

where the plants were sensed, the aboveground biomass was 

collected destructively by randomly clipping three to four rice 

hills (each hill had 4–6 rice plants). All samples were then 

cleaned by rinsing with water and removing the roots  (Cao et 

al., 2013).  

Each biomass sample was oven-dried at 105℃ for 30 min. 

It was then dried at 75℃  until a constant weight was 

obtained. The sample was then weighed. Sub-samples that 

passed through 1 mm screen in a sample mill were 

mineralized and plant N concentration was determined using 

the standard Kjeldahl-N method.  

 

 

Figure  1. Data acquisition with active crop canopy sensor at 

panicle initiation stage of crop growth 

 
The plant N uptake was determined by multiplying plant N 

concentration with dry biomass. The nitrogen nutrition index 

(NNI) was then calculated as defined by Lemaire et al. (2008) 

in Equation (1):  

 

NNI = 
Na

Nc
 (1) 

 
where Na   is the measured nitrogen content as percentage of 

the above ground biomass. The denominator term Nc is the 

critical nitrogen for the rice crop and is defined in Equation 

(2) as the following (Sheehy et al., 1998): 

 
Nc = 5.18𝑊−0.52 (2) 

 
where W is the dry weight of the above ground biomass that 

was sampled. The NNI is a measure of plant nitrogen content. 

 
5. Machine learning prediction model 

 
The data collected from the experiment were utilized to 

develop four machine learning classification models. The first 

three models were for the stem elongation, panicle initiation 

and heading stages. The fourth model was trained using all 

data across the three crop growth stages. Python 

programming language (Python Software Foundation, 

version 3.8.2, https://www.python.org/) with Scikit-learn 
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library was used to implement a support vector machine 

(SVM) algorithm to train each model (Pedregosa et al., 2011). 

The SVM algorithm was chosen due to the fact of its 

relatively efficient memory use. Since the number of support 

vectors that are saved is usually small, it makes it an attractive 

algorithm to use in fast classification applications. 

A support vector machine algorithm with 3 output classes 

was used to train each model. The classes corresponded to the 

NNI of the fertilizer N treatments denoted by NNIk where k is 

the fertilizer N treatment. For example, NNI50 is the nitrogen 

nutrition index for the fertilizer treatment of 50 kg N ha-1. The 

inputs to the model were the wavebands of the active canopy 

sensor and several vegetation indices (VI) that had the best 

individual performance of estimating the NNI as described in 

previous study (Cao et al., 2013).  They are listed in Table 1. 

The data from the experiments were divided into a training 

and test set at a ratio of 70:30. The number of training and 

testing samples for each model is shown in Table 2. A radial 

basis function (RBF) kernel was used to map the input 

features to a higher dimensional space. The model was 

trained and tuned using a 10-fold cross validation scheme. Its 

performance was then assessed on the test sets.  

Table  1. Inputs to the SVM model 

 

 

 

 

 

 

 

 

Table  2. Data used to generate 4 SVM models, input 

features and outputs of the models. Three models 

corresponding to stem elongation, panicle initiation and 

heading stages. One model corresponding to all stages 

together. The number of samples for each fertilizer 

application stage is the accumulation of all data over 4 

experiments from April 2017 to February 2019. 

 

 

B. On-The-Go Variable Rate Application System 

 
The best performing model was incorporated into an on-the-

go fertilizer application system. The developed system allows 

the instantaneous application of fertilizer upon sensing the 

nutrient status of the crop. The system components are 

described below.  

 
1. Hardware specification 

  
The system consisted of a high clearance prime mover, a 

variable rate applicator (Bogballe L1, Denmark), a ruggedized 

mini-computer (Compulab, IPC2, Israel) functioning as the 

system controller, an active canopy sensor, Crop Circle ACS-

430 (Holland Scientific Inc., Lincoln, Nebraska, USA), and a 

user interface running on a smartphone or tablet. Figure 2 

shows the hardware setup, while Figure 3 shows the user 

interface to control the system. 

 

Input features Formula Reference 

Red 670nm Crop Circle ACS-430  

Red Edge (RE) 730nm Crop Circle ACS-430  

Near Infra Red (NIR) 780nm Crop Circle ACS-430  

NDRE (NIR – RE) / (NIR + RE) (Barnes et al. 2000) 

RESAVI 1.5*[(NIR – RE) / (NIR + 

RE + 0,5)] 

(Cao et al. 2013) 

REDVI NIR – RE (Cao et al. 2013) 

MRESAVI 0.5 * [2 * NIR + 1 − 

SQRT((2 * NIR + 1)2 − 8 * 

(NIR − RE))] 

(Cao et al. 2013) 

RERDVI (NIR − RE)/SQRT(NIR + 

RE) 

(Cao et al. 2013) 

CI (NIR/RE) - 1 (Gitelson 2003) 

 1 

 Fertilizer application stage 

 
Stem 

elongation 

Panicle 

initiation 

Heading Across all 

stages 

Total samples, n 160 160 160 480 

Training samples, m 112 112 112 336 

Testing sampels,x 48 48 48 144 

Input features Red, RE, NIR, NDRE, 

RESAVI, REDVI, MERESAVI, RERDVI, CI 

Output Class Low = {NNI0, NNI50}, 

Medium = {NNI100, NNI150} 

High = {NNI200} 

 1 
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Figure  2. Hardware setup of the on-the-go variable rate 

application system. It consists of a high clearance prime 

mover, a variable rate applicator, a ruggedized fanless mini-

computer and an active canopy sensor. 

 

 

Figure  3. The user interface of the on-the-go variable rate 

application system 

 
2. Control specification 

 
A field ruggedized fanless mini-computer  (Compulab, IPC2, 

Israel) with a linux operating system functioned as the system 

controller. The controller was coded using the C 

programming language. The data flow of the system is shown 

in Figure 4. 

 

 
Figure  4. Data flow of the on-the-go variable rate 

application system 

The system protocol is described as follows. The controller 

receives a start or stop command from an operator through 

the user interface. Once received, it commands the sensor to 

start measurements and reads the raw data. It also reads 

geolocation data from a local GNSS module. The data is 

processed and used as inputs to the SVM model which is 

implemented in the controller. The output of the model is 

mapped into a numerical value and fed to the actuator of the 

variable rate applicator. The variable rate applicator then 

sends the status of the commanded output. The controller 

sends a copy of the application rate value, the system 

geolocation data and a heartbeat to the user interface. The 

user interface displays all the data fed to it by the controller. 

It then graphically displays the application rate map to the 

user. 

 
3. Performance evaluation 

 
The system was evaluated in an experiment that was carried 

out in the main season of 2019 between April and August. The 

experiment used the same rice variety as the ones used for 

model development. Two strategies (a blanket strategy and a 

variable rate strategy) were used to apply N fertilizer with the 

developed system. The experiment was done using a 

randomized complete block design. In all, 18 rice plots, each 

of size 0.12 ha were used.  

For the blanket strategy, the plots were given one of three N 

fertilizer treatments (0, 120, 200 kg N ha-1). The N fertilizer 

treatment of 120 kg N ha-1 was chosen because it was the 

farmers’ normal practice. The rate of 0 kg N ha-1 was chosen 

to simulate an area of low N nutrient content. The rate of 200 

kg N ha-1 was chosen to simulate a high N nutrient content 

area.  The plots were given the specified N fertilizer treatment 

as four splits, 20% at the tillering stage, 35% at stem 

elongation stage, 35% at panicle initiation stage and 20% at 

heading stage. The blanket strategy served as the baseline for 

the system performance. 

For the variable rate strategy, the plots were given one of 

three N fertilizer treatments (0, 120, 200 kg N ha-1) at the first 

application stage, i.e. the tillering stage. Subsequent 

treatments were determined by the on-the-go variable rate 

application system developed in this work as follows: 

 

 if 𝑥i  ∈  "Low"  then 𝑦i =  𝑦b + 0.2𝑦b, (3) 

Start/Stop

Base App Rate

Application stage

Geolocation data

Active canopy 
sensor

Variable rate 
applicator

User interface

Controller

GNSS

Application rate

Geolocation data Raw data

Start/stop

Status

Heartbeat
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 if 𝑥i  ∈  "Medium"  then 𝑦i =  𝑦b, (4) 

 if 𝑥i  ∈  "High"  then 𝑦i =  𝑦b − 0.3𝑦b. (5) 

 
In Equations ((3)) to ((5)), 𝑥i  is the active canopy sensor 

data point in a plot, 𝑦i is the output N application rate, and 𝑦b 

is the N fertilizer base application rate. Here, 𝑦b = 120 kg ha-

1. The base rate corresponded to the farmers’ normal practice. 

The coefficients 0.2 and -0.3 were determined heuristically 

by gauging local farmers’ intuition and experience on how 

they would increase or decrease the fertilizer rate according 

to the nutrient status of the plants. The coefficients 

correspond to the percentage of fertilizer rate to be added or 

subtracted. 

A one-way ANOVA was conducted using the MINITAB 

software package (version 19.0.1) to evaluate the 

performance of the developed system using two different 

fertilizer application strategies (blanket and variable rate). 

 

III. RESULTS AND DISCUSSION 

 

A. Nitrogen Status Prediction Model 

 
Figure 5 shows a sample of the sensor data measured at a 

particular growth stage. The graphs show the relationship 

between the nitrogen nutrition index versus all vegetation 

indices at the panicle initiation stage for the different 

fertilizer treatments where T1 corresponded to 0 kg N ha-1 

and T5 corresponded to 200 kg N ha-1.  These parameter 

values were used in the prediction model. 

The performance of the model in classifying the N status 

into “Low”, “Medium”, “High” for the MR297 rice variety is 

shown in Table 3. The model performed the worst during the 

stem elongation stage of crop growth. The best prediction 

accuracy in this stage was obtained with 6 input features. 

Configurations with 3 and 9 input features predicted the 

correct nutrient status less than 50% of the time.  

The models learned for the panicle initiation and heading 

stages performed better with prediction accuracy ranging 

from 71% to 75%. The model learned when all stages of 

growth were combined had the best performance at 83% 

accuracy.  The reason why the model performed the worst 

during the stem elongation stage was due to the fact that 

during this stage, the plants have not developed a large 

enough biomass for the crop circle sensor to detect. At this 

stage, the background, i.e. water was predominantly detected 

by the sensor.  

 

Table 3. Performance for SVM classification algorithm in 

terms of prediction accuracy across different stages of crop 

growth for increasing number of input features. The input 

features were defined as the spectral measurements output 

by the crop circle sensor (Red, Red Edge and NIR) as well as 

chosen vegetation indices (NDRE, REDVI, RESAVI, 

MRESAVI, RERDVI and CI). For each model, a radial basis 

function kernel was used. 

 

   
The number of features played an important role in the 

performance of the model. It was shown that six input 

features produced the best prediction accuracy. With only 

three input features, the model did not have enough 

information to differentiate between the classes. On the other 

hand, using nine features distorted the prediction capability 

of the learning algorithm. This is because introducing more 

features sometimes only adds noise to the data (Ying, 2019). 

Therefore, the features selected were Red, Red Edge, NIR, 

MRESAVI, RESAVI, RERDVI. It is important to note that in 

addition to the input features, parameters such as the 

regularization terms 𝐶  and 𝛾  for the radial basis function 

kernel were also essential in obtaining a good prediction 

model. In this work, it was observed that after adjusting these 

 

 

SVM Parameters 

Crop Growth Stage 

Stem 

elongation 

Panicle  

Initiation 

 

Heading All Stages 

 

3 Features (Red, 

Red Edge, NIR) 

35 % 63% 60% 67% 

 

6 (Red, Red Edge, 

NIR, RESAVI, 

MRESAVI, 

RERDVI)  

54% 75% 71% 83% 

 

9 (Red, Red Edge, 

NIR, REDVI, 

RESAVI, MRESAVI 

NDRE, RERDVI, 

CI) 

43% 67% 62% 69% 

 1 
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Figure 5. Nitrogen Nutrition Index (NNI) versus all vegetation indices considered in this work. The sensor measurements 

were taken at the panicle initiation stage for the different fertilizer treatments where T1 corresponded to 0 kg N ha-1 and T5 

corresponded to 150 kg N ha-1. 

 

two terms to their optimal values, the input features were the 

dominant factor in determining the model performance. 

In relation to the work done by Cao et al. (2013), the best 

performing vegetation indices from their work were used as a 

guide to choose which input features could be included in our 

model. Synthesizing the different vegetation indices and the 

original spectral bands in the model as well as classifying the 

crop into three ranges of N nutrient content instead of 

determining its exact value enabled the model developed in 

this work to have a higher prediction accuracy. 

 

B. On-The-Go VRT Fertilizer Application System 

 
The model that took into account all the growth stages, i.e. the 

best performing model was incorporated into an on-the-go 

fertilizer application system. The system performance in 

terms of actuator response to commanded set point is shown 

in Figure 6 and 7.  

It was observed that the fertilizer applicator actuator did 

not respond well to the commanded set point. Figure 6 shows 

that the actual response of the actuator to the reference 

output was sporadic. It was found that because the system 

was generating a signal to the fertilizer applicator every 100 

ms, the actuator was not able to achieve its set point because 

it had a response time of roughly 300 ms. This caused the 

valve actuator to respond sporadically. It was also determined 

that even though an area in the field had a certain level of 

nutrient status, there would intermittently be spots with a 

different level of nutrients. This caused the system to react to 

a sudden jump in signal. In order to overcome these issues, a 

filter was used to stabilize the system.  
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Figure 6. Response of actuator valve to reference output 

without filter 

 

 

Figure  7. Response of actuator valve to reference output 

with filter 

 

This filter consisted of a simple voting procedure. Instead 

of sending an output signal to the actuator every 100 ms, the 

controller stored these signals and voted on them. The 

controller would generate a value corresponding to either 

“Low”, “Medium” or “High” signal. After every 20 readings, a 

vote was taken. The signal that had the most votes for the 

current cycle would be sent to the actuator. It corresponded 

to sending a signal to the actuator every 2000 ms. This had 

the effect of stabilizing the system. The actuator was able to 

achieve its set point in time. Figure 7 shows that the actuator 

was able to follow the reference output after a filter was 

introduced.  The response of the actuator valve was calculated 

as the time it took for the actuator to achieve its set point after 

receiving a signal from the system. The actuator valve 

achieved its set point after 320 ms. 

 

C. Field Performance Evaluation 

 
The tuned on-the-go variable rate fertilizer application 

system was used on a field experiment to evaluate its 

performance utilizing two different fertilizer application 

strategies. Table 4 shows the results of the experiment.  

 

Table 4. Comparison of yield obtained and total nitrogen use 

of the blanket rate strategy using conventional fertilizer 

application and variable rate strategy using on-the-go 

variable rate fertilizer application system. Means within 

columns and strategies followed by the same letter are not 

different at p ≤0,05 level. 

 

 
The on-the-go variable rate fertilizer application system 

was able to obtain similar yields for areas with “Medium” and 

“High” nutrient content using the variable rate application 

strategy. On the other hand, the developed system showed the 

yield obtained using the blanket rate strategy corresponded 

to the amount of fertilizer applied.  

The experiment also showed the effect on fertilizer use for 

each strategy. This can be seen in the second column of Table 

4. The developed system using the variable rate strategy 

showed it used less fertilizer for areas with “Medium” and 

“High” nitrogen content compared to the blanket strategy. It 

applied a higher nitrogen rate for the “Low” areas.  

The fields planted with a blanket fertilizer rate strategy can 

be seen as a control to the developed on-the-go variable rate 

fertilizer application method. It was done to show that the soil 

condition was such that the plants depended on the fertilizer 

applied and not from pre-existing nutrients in the soil. As 

more fertilizer was applied, the higher the yield. It can be 

Nitrogen N content Nitrogen N Use (kg N ha-1) Yield 

 (Mg ha-1) 

 

Blanket Rate Strategy 

 

Low 0.0 3.32c 

Medium  120.0 6.31b 

High  200.0 7.64a 

 

Variable Rate Strategy 

 

Low  145.0a 4.82b 

Medium  110.0b 6.35a 

High  96.0c 6.41a 

 1 
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determined that the method developed in this work did 

indeed have an effect on the plants and its yield.  

Conventional practice by farmers in Malaysia was to use a 

blanket 120 kg N ha-1 nitrogen split over three or four 

applications. The results from our experiment showed that 

for areas with “Low” N content, the developed on-the-go 

fertilizer application system was able to sense the nutrient 

status of the crop and apply a higher rate of N. However, the 

yield obtained was lower than the “Medium” and “High” 

areas. Even though it tried to compensate for the lack of N, 

the plants were already deprived of nitrogen needed during 

the early stages of growth and could not recover from it even 

after additional N was applied in the latter stages of growth. 

Here, knowledge of the soil nutrient status could be useful in 

estimating the areas where fertilizer could be given at a higher 

rate in the early stages of growth to offset the limitations of 

the current sensor in use (Aliah Baharom et al., 2015). This 

could be the subject of future research. 

In contrast, the on-the-go variable rate application system 

was able to save fertilizer for areas with “High” and “Medium” 

N content. In the “Medium” areas, the system saved 8% of 

fertilizer compared to conventional farmer’s practice of 120kg 

N ha-1. In the “Medium” N content areas, the system detected 

spots of excess nutrient and hence changed to a lower 

fertilizer application rate. In the “High” N content areas, 20% 

less fertilizer was applied. Even though the set rate was 90kg 

N ha-1, the actual nitrogen use was 96 kg N ha-1. This was 

because the system detected spots of lower nutrient content 

in the field and changed to a higher application rate. 

The developed method has the potential to save not only 

input cost, but also time and effort with its instantaneous on-

the-go application capabilities. These findings are important 

for large estate farmers who are looking to increase 

productivity and efficiency. The findings in this work could 

also be used by the Malaysian government to aid decisions 

when dealing with future policies for rice farmers.  

 

IV. CONCLUSION 

 
This work tackled the issue of instantaneous fertilizer 

application for a local paddy variety MR297. A method was 

developed to apply fertilizer on-the-go by utilizing an active 

crop sensor. A support vector machine learning algorithm 

was used to classify the nitrogen status to “Low”, “Medium” 

and “High”. A model that took into account all stages of plant 

growth together performed the best. The model was then 

incorporated into a practical on-the-go variable rate 

application system. The system was tested and it was found 

that it had the potential to save fertilizer use up to 20% 

compared to conventional blanket fertilizer application 

approach.  

The findings in this work could be used by estate farmers to 

increase their productivity and efficiency in rice farming. 

Future research could include combining the output of a soil 

nutrient sensor as discussed in the previous section with the 

results from this work to determine a suitable fertilizer 

application strategy. This could potentially result in more 

fertilizer savings.  
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