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Carbon monoxide (CO) is a non-irritant toxic and odourless gas produced from the incomplete 

combustion of fossil fuels. Long-term exposures to lower levels of carbon monoxide have wide 

implications for human health. Thus, an early warning system for CO atmospheric concentration 

with an accurate and reliable forecasting method is crucial. Studies for predicting CO atmospheric 

concentration are still limited in Malaysia especially using data science approaches. This study 

aims to develop and predict future CO concentration for the next few hours by using the statistical 

time series approach and machine learning approach. The data used for the project is the air 

quality data of the monitoring station in Langkawi, Malaysia. The data mining tool used for this 

project is RapidMiner Studio. Based on the results, it showed that Time Series analysis with deep 

learning gave a reasonably good CO concentration prediction for the next 3 hours with a relative 

error of approximate 10%. The model developed in this project can be used by authorit ies as public 

health’s protection measure to provide an early alarm for alerting the Malaysian populations on 

the air pollution issue. 
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I. INTRODUCTION 

 
Clean air is a basic requirement to sustain life. Human 

beings need an essential continuous supply of air at 10 m3–

20 m3 per day. “All people should have free access to clean 

air as one of the fundamental human rights”, as said by the 

World Health Organisation (WHO) Director-General during 

the closing of a three-day global conference on air pollution 

and health (Clean air is a human right: WHO, 2018). Clean 

air in nature may have more components difference than 

pure air from a scientific perspective, and thus it is quite 

complicated to precisely define clean air. Figure 1 shows a 

list of gaseous components of natural pure air (Baumbach, 

1996).  

Air pollution is caused by pollutants in the atmosphere in a 

certain concentration and period, which can cause an 

unwanted effect on humans, plants, animal life or property. 

Human activities or even certain natural phenomena can 

become the root cause of the unfavourable concentrations of 

air pollutants. Some examples of traditional pollutants are 

carbon monoxide, hydrogen sulphide, nitrogen oxides, 

sulphur dioxide and haze. 

 

 Figure 1. Natural Composition of Air (Baumbach, 1996) 
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WHO has provided guidelines for public health with regard 

to risks that can occur from several chemicals that are 

commonly present in the air (Penney et. al., 2010; Ambient 

(outdoor) air pollution, 2018). Carbon monoxide (CO) is one 

of the pollutants that need to be given attention. Carbon 

monoxide (CO) is a non-irritant toxic gas that is odourless. 

It is produced from fossil fuels, such as diesel and kerosene 

in the combustion of Otto or Diesel engines, which is mainly 

from automobiles in the street traffic.  

Baumbach (1996) claimed that it is quite impossible to 

eliminate CO in exhaust gas emissions because the complete 

combustion process of carbon to CO2 (carbon dioxide) 

requires an ignition temperature of at least 717°C for a 

certain period. Most of the time this condition cannot be 

achieved because the automobile engines will not be 

operated with a constant number of revolutions and 

constant load. Therefore, automobiles are the main 

contributors of carbon monoxide in the atmosphere. 

Berg et al. (2002) explained that Oxygen (O2) appears as 

oxyhaemoglobin (HbO2) in blood transportation and is 

attached weakly to Fe2+ in haemoglobin. Blood oxygen-

carrying capacity is reduced by CO as it forms a stable 

carboxyhaemoglobin (COHb) by merging with haemoglobin.  

The affinity of haemoglobin for CO is around 200–250 

times stronger than for oxygen (Higgins, 2005). CO can 

poison the haemoglobin oxygen transport system as it 

cannot regenerate the COHb, and thus making haemoglobin 

unavailable for oxygen transport (Vesilind et al., 2013). 

COHb level is determined by variables, such as CO in the 

inhaled air and the exposure period (Penney et al., 2010). In 

Malaysia, the number of studies to predict CO atmospheric 

concentration is still limited, especially by using data science 

approaches.  

This study aims to develop and predict CO concentration 

in the future. The study objectives are: (1) to determine the 

characteristics of CO and its relationship with other 

meteorological parameters by using descriptive statistics 

and data visualisation, (2) to develop a model for CO 

prediction concentration by using time series approach 

(ARIMA), machine learning techniques and deep learning 

techniques, and (3) to determine the best model for 

predicting CO concentration in Langkawi Island, Malaysia.  

The model developed in this project will be a localised 

model that suits Malaysia’s topography and could be 

implemented for public health protection in providing an 

early alarm to alert the Malaysian population on the air 

pollution issue.  

In the next section of this paper, some related works are 

presented. This is followed by the methods used, wherein 

the analytical techniques and data selection are presented in 

the third section. The fourth section discusses further about 

data preparation, which is followed by evaluation in the fifth 

section. Results are further discussed with the help of some 

visualisation in the sixth section. In the seventh section, 

subsequent discussion is presented, focusing on the two 

different approaches used for prediction and the prediction 

with the best model built. In the eighth section of the paper, 

the conclusion is presented.  

 

II. RELATED WORKS 

 
UK AIR (2021) presents a frequently updated air pollution 

forecast and the latest measured air quality, but it is limited 

to the United Kingdom only.  READY (2019) is a system 

which displays meteorological data products by using a 

dispersion model on their Air Resources Laboratory's web 

server. The prediction of air pollutants can be considered as 

a key component in environmental monitoring, for instance, 

to help identify possible trends and as a guideline for 

environmental policies. This can be seen in a report 

presented by Tonellato (2001) on the Italian law which 

required short-term forecasts by public authorities at some 

locations of monitoring stations.  

Hamid et al. (2017) carried out a study to predict the CO 

concentration at two locations in Malaysia, which are Kuala 

Terengganu (in Terengganu) and Bachang (in Melaka). 

Statistical time series models were used. Findings showed 

that in Bachang, the most suitable model was ARIMA (1,0,1) 

whereas, in Kuala Terengganu, the ARIMA (1,0,2) was found 

to be the most appropriate model. 

A study carried out by Shaadan (2019) showed that several 

industrial sites in peninsular Malaysia had different 

temporal behaviour of CO levels. Each industrial site had a 

different best-appropriate model. Therefore, a specified 

model is needed to be developed for a specific location, such 

as Langkawi Island. This model can be used by authorities 
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as a public health protection measure to provide early alerts 

to Malaysia’s population concerning the air pollution issue. 

For instance, the model can be used to alert the tourists on 

the CO forecast in Langkawi Island and help them in their 

planning, i.e., suitability alert for outdoor activities. 

In 2005, Venkatasubramanian (2019) reported on three 

significant ideas that emerged in Data Science, which were 

reinforcement learning, deep or convolutional neural 

networks (CNNs), and statistical machine learning (ML). 

Exploring further in Data Science and air quality prediction, 

techniques like the support vector machine (SVM), mixture 

model and artificial neural network (ANN), had grown to be 

favourable (Heo & Kim, 2004; Lu & Wang, 2008). 

This project used a systematic project life cycle approach 

known as Cross-Industry Standard Process for Data Mining 

(CRISP-DM). It is broadly used in industry (James, 2019) 

(Figure 2). CRISP-DM comprises six phases, which are 

initialised by the phase of (1) business understanding (2) 

data understanding, (3) data preparation, (4) modelling, (5) 

evaluation and, (6) deployment. It iterated as a cyclical 

process. In each phase of the CRISP-DM process, there are a 

few second-level generic activities with specialised 

operations. CRSIP-DM methodology phase is not a one-

direction flow. Some phases are two-way and iterative. 

 

 

Figure 2. The CRISP-DM process Model (James, 2019) 

 

III. DATASET DESCRIPTIONS AND 
ANALYTICAL TECHNIQUES  

 
The data used for the project is the air quality data from a 

monitoring station in Langkawi Island, which is an island in 

Kedah, Malaysia. Langkawi Island was selected as the case 

study area because it is a tourist area with very few 

industrial activities. Therefore, very few air pollution studies 

were carried out. The data were acquired from the 

Department of Environment (DOE), Malaysia. The data 

were presented in excel worksheet format. The dataset 

contained data collection for the year 2004 taken at every 

hour interval.  

The dataset comprised 8 attributes: 1) date, 2) time, 3) 

carbon monoxide concentration (CO Conc), 4) air pollution 

index (API), 5) wind speed (WS), 6) wind direction (WD), 7) 

relative humidity (Humidity) and 8) temperature (Temp). 

All data were in a numerical format and chronological order. 

There were 8,784 records in 2004, which were taken from 1 

January at 1:00 am to 31 December at 24:00 am. The 2004 

data was selected to train the model because it contained 

fewer missing values as compared to the data of other years, 

which had a large amount of missing values and outliers (for 

instance temperature with negative value).  

The data selection approach was also aligned with the 

recommendation by Pyle (2003), who stated fundamental 

principles for the right selection of data which select 

relevant and redundant attributes and ensure that the 

records cover the complete range of between-attributes and 

within attributes behaviours. Figure 3 shows the partial 

dataset for 24 hours on 1 January 2004. 

Besides dataset selection, the selection of a suitable 

learning algorithm is crucial, but this cannot be achieved 

without understanding the data characteristic and 

advantages and limitations of each learning algorithm. For 

this project, the dataset contained the labelled output 

variable for the research project goals - CO concentration. In 

this project, the output was focused on numerical attributes 

with the goal to discover changes in each of the predictor 

meteorological variables that will trigger a change in the 

output variable (CO concentration), and thus a prediction 

that will estimate a numerical value.  

One of the key characteristics of the dataset is that the CO 

concentration is a set of quantitative observations arranged 

in chronological order in the same regularity of the 

observation frequency (every hour). Therefore, the analytical 

techniques used in the project were based on the time series 

approach. 

RapidMiner was used for data visualisation and data 

analysis. RapidMiner was selected because of its ease of use 

and did not require any coding. Therefore, the work can be 
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focused on the analytical methodology rather than on 

programming.  

Alongside with RapidMiner, MATLAB was used for 

plotting a chart for data visualisation. Time series 

forecasting in RapidMiner was based on the Windowing 

concept.  Windowing is terminology for RapidMiner time 

series data which is converted into a generic cross-sectional 

dataset, whereby the target variable and the next time steps 

are predicted by applying ARIMA, Machine Learning or 

Deep Learning algorithms.  

 

 

Figure 3. Partial of the Dataset for the year 2004 

 

IV. DATA PREPARATION  

 

A. Treating Missing Value 

 
The dataset contained records with attributes that have no 

measured values, which is often termed as “missing value” 

in data mining terminology. The possible reasons for 

missing value can be from errors during the gathering 

process, measuring sensor malfunction, and data corruption 

in the way data is processed. When data are missing in a 

variable of a particular case, it is very important to fill this 

attribute with some intuitive data for those algorithms that 

require one, especially for time series forecasting. Although 

the best way to eliminate missing values is to fill them 

through own further research, it is most time-consuming 

and it is not possible for the historical data in this context.  

Therefore, a reasonable estimate of a suitable data value 

for missing data is required rather than leaving it blank. The 

methodology of replacing missing values depends on criteria 

without adding or removing any information from the data 

set and depends on the assumption about the dataset 

pattern. 

One common replacement method is by choosing the 

variable’s mean value as a replacement. Kolehmainen et al. 

(2001) presented a solution for missing data items, whereby 

the data were filled by using the weighted nearest-neighbour 

method for applications of neural networks in the NO2 time-

series, whereby the average of the neighbouring values in 

the series were used as a replacement. For time series 

analysis in this project, forward or backward filled missing 

value by nearest neighbours’ data was more appropriate, it 

may be closer to the true value as compared to mean 

substitution.  

 

B. Features Selection 

 
Features selection is aimed to identify important features in 

the dataset and discard any other features which are 

irrelevant and redundant. The process of feature selection is 

a very important strategy, especially for algorithms that are 

computationally intensive when dealing with large datasets. 

Although additional attributes are added to a model, it may 

be able to predict a number better, but it will lead to the 

problem of slow convergence on those solutions either 

during the iterative learning process or the error 

minimisation process. Therefore, before the data set is used 

for modelling, those attributes to be used as predictors need 

to be selected.  

The features selection for this project was based on 

domain knowledge rather than an analytical approach. From 

the research dataset, there were five independent attributes 

to be selected for modelling, which are wind speed (WS), 

wind direction (WD), relative humidity (Humidity), 

temperature (Temp) and air pollution index (API).  The air 

pollutant index (API) is an indicator used to represent air 

quality status in the area under study. It is determined by 

the sub-index values computed based on the average 

concentration (for air pollutants, namely SO2, NO2, CO, O3, 
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PM2.5 and PM10). The maximum sub-index of all six 

pollutants will be chosen as the API, and thus, it is not 

independent and related to the target variable to be studied 

– CO concentration.  Therefore, the API variable was 

excluded as a predictor variable. 

 

V. EVALUATION 

 
After building a model from the dataset, the quality of the 

model needs to be examined. In the CRISP-DM process 

model, the evaluation phase is one of the major steps. For 

this research project, the historical data of past CO 

concentration experience with its corresponding 

meteorological parameters were given, and the objective was 

to predict the CO concentration when only other 

meteorological parameters were known. A few questions 

need to be answered before the model can be used. For 

example, “Are its predictions sufficiently accurate that 

makes its future application worthwhile?” If the predicted 

CO concentration is not accurate, the data is useless to the 

public and will affect the authorities reputation, which is the 

DOE of Malaysia. There are several different performance 

benchmarks to assess the relative merits of models, such as 

goodness-of-fit, robustness, forecasting accuracy and others.  

Several model metrics can be used to evaluate the 

“goodness” of a model. Yeganeh et al. (2012) used root mean 

squared errors, relative mean errors and mean absolute 

relative error to evaluate model performance in the hourly 

CO concentrations prediction by using SVM (support vector 

machine) regression. Kolehmainen et al. (2001) applied root 

mean squared error (RMSE) to produce the numerical 

description of the goodness of the model estimates. In this 

paper, the selected statistical indicators which produced the 

numerical description of the goodness of estimates, are 

presented as follows: 1) Root mean squared error (RMSE) 2) 

Absolute error 3) Relative Error 4) Akaikes Information 

Criterion. 

 

A. Root Mean Squared Error 

 
The Mean square error (MSE) is often used as an error 

metric. In MSE, the difference in predicted and expected 

values in the records are observed and the value, which is 

then squared to retain the numerical quantity as well as 

eliminate the negative signs. RMSE on the other hand, will 

convert back the mean-squared error to the original data 

scale. RMSE is seen to have a more practical comparison 

because it appears in the same unit as the data.  

 

B. Absolute Error 

 
The absolute error sums up positive and negative errors to 

quantify the accuracy of the overall model, but without a 

clear indication of how the error varies. For example, it may 

seem that the error is almost balanced when both the 

positive and negative values are quite large. For accuracy, 

the performance of the model is reflected for the whole 

scored population. Therefore, this measure can be beneficial 

when one dimension of the error is considered. 

 

C. Relative Error 

 
By using a simple predictor, the relative error correlates the 

total error to the error. A simple model is utilised to be the 

baseline, taking the average value of all the expected values. 

The relative error will then show the difference between the 

model and the simple model.  

 

D. Akaikes Information Criterion 

 
To determine how a trained ARIMA model defines a time 

series, indicators such as Akaikes Information Criterion 

(AIC) and the Bayesian Information Criterion (BIC) can be 

used.  

These performance measures are calculated with the help 

of the ArimaTrainer operator in RapidMiner, and the 

calculated values are generated as a performance vector. The 

Akaike Information Criterion (AIC) measure is used 

extensively for the statistical model, whereby it measures the 

“goodness” of a model. In a comparison carried out between 

two models, the lower value of AIC showed that it was better 

than the one with a higher value.  

 

VI.  RESULTS AND DATA VISUALISATION 

 
The data for the year 2004 was selected for model training. 

This was because the year 2004 data contained less missing 

value as compared to data of other years (Figure 4). There 

was no outlier detected as the minimum and maximum 

values were observed within a common range. There were 

missing data of 26 datapoints of wind speed (WS), 26 
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datapoints of wind direction (WD), 32 datapoints of API, 31 

datapoints of Temperature and 26 datapoints of Relative 

Humidity (Humidity) were imputed. The missing values 

were imputed by filling the missing value with the nearest 

neighbour’s data (Figure 5). 

In Figure 6, it is shown that CO concentration was 

approximately normally distributed. From the scatter plot 

matrix in Figure 7, it was shown that there was no linear 

correlation between CO concentration and meteorological 

variables. In Figure 8, the polar plot also showed that the 

wind direction recorded were random and did not come 

from a particular direction. Therefore, it could be concluded 

that the data quality was good and comply with the 

assumptions of the parametric statistical model as below. 

 

A. Assumption of Independency 

 
Each variable in the documented effects was independent of 

each other. This was in line with the variable independency 

that was stated in Fisher’s mathematics (Nisbet et al., 2018). 

 

B. Assumption of Normality 

 
Nisbet et al. (2018) explained that based on Fisher's 

mathematics, each variable’s distribution of values in a 

dataset will keep on a normal distribution around the mean 

value. The assumptions of normality and independency can 

be made when a classical parametric statistical procedure is 

applied. False assumptions can occur when there are 

significant departures from a normal distribution. These 

significant departures can cause the results to be biased and 

thus become untrustworthy. When some predictor variables 

are firmly linked to one another, it can cause significant 

departures from the assumption of independency, which will 

trigger more issues. 

 

C. Assumption of Stationary  

 
Stationary is a prerequisite before times series data can be 

applied with most statistical forecasting methods. Before the 

modelling starts, it is advised that the trends and seasonality 

found in time series datasets be eliminated. This is because 

trends and seasonality identify time series as non-stationary. 

Eventually, the mean value in trends can be varied, whereby 

there can be changing variance in seasonality. 

A stationary time series has constant statistical properties, 

for instance, mean, variance and so on. The future values in 

stationary time series tend to become more predictable over 

time, and thus making this series simpler to model. To 

identify whether the time series is stationary or not, the line 

plot of series can be observed over time. To identify non-

stationary series, the signs can be observed in series, on 

obvious trends, seasonality, or even some other systematic 

structures. 

 

 

 

Figure 4. Data for the year 2004 before pre-processing 

 

Figure 5. Data for the year 2004 after pre-processing 
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Figure 6. Histogram for CO concentration for the year 2004 

 
From Figure 9 and Figure 10, the time series for the year 

2004 CO concentration over time was stationary. This was 

also confirmed by the study by Hamid et al. (2017) on the 

study of CO concentration time series for Bachang, Melaka 

and Kuala Terengganu, in which after being tested by 

Augmented Dickey Fuller test, it indicated that they were 

stationary. 

 

 

Figure 7. Scatter Plot CO concentration vs meteorological 

variables 

 

Figure 8. Polar coordinate plot wind direction vs wind speed 

 

VII. DISCUSSION 

 
In this section, the discussion is divided into two sections, 

which discuss the two different approaches used for the 

prediction. The first sub-section shows the time series with 

ARIMA approach, and the second subsection will discuss the 

machine learning and deep learning approach. 

 

A. Time Series Approach (ARIMA) 

 
The CO concentration is a set of quantitative observations 

arranged in chronological order and the same regularity of 

every hour, and thus time series analysis with ARIMA was 

used for the prediction. In the ARIMA model, the target 

variable was the CO concentration, and the predictor 

variable was the CO concentrations of the previous hour and 

time. In order to identify the best-fit parameters, various 

window sizes of window operator and ARIMA p,d,q 

parameters were explored, where some different 

combinations of terms were tried out to determine which 

combinations work best in the  RapidMiner.  
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Figure 9. Time series plot for CO concentration 

 

 

Figure 10. Time series plot for various meteorological 

variables (normalised & zoomed in) 

 
ARIMA with p=2, d=0, q=1 is the most suitable model to 

predict the CO concentration in Langkawi Island as its AIC 

was lowest amongst other ARIMA (Table 1). The small AIC 

statistic values indicated the most appropriate model with 

the smallest error. ARIMA (2, 0, 1) or (AR, I, MA) means 

that the model described some response variable (Y). The 

value “0” embodies the 'I' or “Integrative’ part of the model, 

can be ignored in the model, especially for stationary data.  

Table 1 also shows that ARIMA (1,0,1) and ARIMA (1,0,2) 

is also a good model for prediction, these findings also 

aligned with the study by Hamid et al. (2017) in that the best 

model for CO concentration prediction for Bachang, Melaka 

was ARIMA (1,0,1) and the best model for CO concentration 

prediction for Kuala Terengganu was ARIMA (1,0,2). Table 

2 shows the ARIMA prediction with new few hours’ 

prediction. Figure 11 shows the time series plot of predicted 

CO concentration. From Figure 12, it is shown that CO 

concentration in Langkawi Island can be modelled as shown 

in Equation (1).  

 

Xt=0.428+1.652X(t-1)-0.744X(t-2)+0.243e(t-1)+et  (1) 

 

The best model ARIMA (2,0,1) with a window size of 60 

gives prediction ability similar or slightly better than the 

best model reported by Hamid et al. (2017), which are 

ARIMA (1,0,1) and ARIMA (1,0,2) from the study for 

Bachang and Kuala Terengganu, respectively. The results 

reported in Hamid et al. (2017) is shown in Table 3 as 

reference.  

Table 1. ARIMA with various p,d,q settings 

Window 

size 
60 60 60 60 60 

p,d,q 1,0,1 1,1,0 2,0,1 1,1,1 1,0,2 

AIC 
-209.74 

±51.30 

-212.06 

±55.63 

-228.49 

±55.33 

-213.01 

±55.43 

-219.17 

±53.07 

BIC 
-201.37 

±51.30 

-205.82 

±55.63 

-218.02 

±55.33 

-204.70 

±55.43 

-208.70 

±53.07 

Root 

Mean 

Squared 

Error 

0.035 

±0.033 

0.685 

±0.277 

0.030 

±0.031 

0.569 

±0.257 

0.033 

±0.031 

Absolute 

Error 

0.035 

±0.033 

0.685 

±0.277 

0.030 

±0.031 

0.569 

±0.257 

0.033 

±0.031 

Relative 

Error 

7. 26 

±7.6% 

133. 75 

±41.5% 

6. 35 

±7.1% 

111. 89 

±42.8% 

6. 74 

±7.0% 

 

Table 2. ARIMA prediction with new few hours prediction 

Prediction Next 1 hour 
Next 2 

hours 

Next 3 

hours 

AIC 
-228.497 

±55.338 

-228.484 

±55.329 

-228.472 

±55.321 

BIC 
-218.025 

±55.338 

-218.013 

±55.329 

-218.000 

±55.321 

Root Mean 

Squared 

Error 

0.030 

±0.031 

0.050 

±0.044 

0.068 

±0.055 

Absolute 

Error 

0.030 

±0.031 

0.046 

±0.042 

0.061 

±0.05 

Relative 

Error 

6. 35 

±7.17 % 

9. 71 

±10.11 % 

12. 92 

±12.75 % 

 

B. Time series approach (Windowing with 
Machine Learning and Deep Learning) 

 
In the time series with windowing, the target variable was 

CO concentration. Five predictor variables used to train the 

time series model were CO concentration of previous hour, 

Wind Speed, Wind Direction, Temperature and Humidity. 

Amongst a few algorithms used in prediction for the data 



ASM Science Journal, Volume 16, 2021  
 

9 

year 2004 in the Windowing, deep learning gave the most 

accurate result, as shown in Table 4. RapidMiner deep 

learning operator was based on H2O open-source platform, 

a multi-layer feed-forward artificial neural network that is 

trained with stochastic gradient descent by using back 

propagation. It can contain a large number of hidden layers 

consisting of neurons with various activation functions.  

After further optimised the parameters (window = 24 

hours, Epochs = 20, with rectifier activation function), deep 

learning gave a relative error of 5.02 % for the next one-hour 

prediction, as shown in Table 5. It is shown that time series 

analysis with deep learning gave reasonably good CO 

concentration prediction for the next 3 hours with a relative 

error of less than or approximate 10%.  

 

 

Figure 11. ARIMA (2,0,1) CO prediction for next 1 hour 

 

VIII. PREDICTION WITH THE BEST MODEL 
BUILT 

 
The result was reproducible from the model trained for the 

year 2004 data, applied to the data from the year 2006, 

giving a similar performance. After the optimum model of 

deep learning was built by using the year 2004 data; data 

from the year 2006 with a few purposely deleted values was 

fed into the model to test the model performance, as shown 

in Figure 13. The results were found to be satisfactory, as 

shown in Figure 14 and Figure 15, where the prediction for 

the next 1 hour and the next 3 hours gave a satisfactory 

result. However, for more the next 24 hours, the model was 

unable to give an accurate result, as shown in Figure 16. 

 

 

Figure 12. ARIMA (2,0,1) model performance result and 

parameters 

 

Table 3. CO prediction with ARIMA for Bachang and Kuala 

Terengganu, Malaysia (Hamid et al., 2017) 

 

 

Table 4. Comparison of algorithm in Windowing 
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Root Mean 

Squared Error 

0.037 

±0.001 

0.038 

±0.001 

0.054 

±0.002 

0.034 

±0.001 

0.084 

±0.003 

0.137 

±0.003 

Absolute Error 0.027 

±0.00 

0.027 

±0.001 

0.038 

±0.001 

0.026 

±0.001 

0.064 

±0.002 

0.101 

±0.003 

Relative Error 5. 93 

±0.24% 

5. 75 

±0.23% 

8. 20 

±0.28% 

5.61 

±0.26% 

14. 91 

±0.76% 

22. 73 

±1.02% 
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Table 5. Deep learning prediction with new few hours 

Prediction Next 1 hour 
Next 2 

hours 

Next 3 

hours 

Root 

Mean 

Squared 

Error 

0.032 

±0.001 

0.050 

±0.002 

0.063 

±0.002 

Absolute 

Error 

0.023 

±0.001 

0.037 

±0.001 

0.047 

±0.01 

Relative 

Error 

5. 02 

±0.29 % 

7. 89 

±0.20 % 

10. 13 

±0.42 % 

 

 

Figure 13. Data set of year 2006 used to test model 

 

 

Figure 14. Deep learning CO prediction for next 1 hour 

 

 

Figure 15. Deep learning CO prediction of next 3 hours 

 

 

Figure 16. Deep learning CO prediction for next 24 hours 

 

IX. CONCLUSION 

 
It is very important to design air pollution forecasting 

models appropriately, as the models can help improve the 

management of air quality.  Together with the 

implementation of such models, the efforts to improve the 

techniques of forecasting accuracy are also very significant. 

The temporal elements (time series) are the important 

variable to make an accurate CO concentration prediction.  

From this study, both time series approaches in 

RapidMiner- (1) ARIMA and (2) Windowing with deep 

learning gave satisfactory results, where Windowing with 

deep learning was more superior. Regardless, time series 

with ARIMA gave more interpretable results where the 

model can be translated into mathematics equations.  

However, Windowing with deep learning was more 

superior not only in terms of low relative error but also in 

terms of more variables that can be used in the model 

building. In ARIMA, only a univariate variable (CO 

concentration at a particular time) was used in model 
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building. But for Windowing with deep learning, besides CO 

concentration and time, other variables such as wind 

direction, wind speed, temperature and humidity 

parameters were also used as the predicator variables. This 

gave a more accurate and generalised model. In this work, it 

was demonstrated that RapidMiner Studio is a useful tool 

for CO prediction. Therefore, in future work, model 

deployment features in RapidMiner Studio can be further 

explored. 
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