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This article discusses modifications to the SEIL model that involve logistical growth. This model is 

used to describe the dynamics of the spread of tuberculosis disease in the population. The existence 

of the model's equilibrium points and its local stability depends on the basic reproduction number. 

If the basic reproduction number is less than unity, then there is one equilibrium point that is locally 

asymptotically stable. The equilibrium point is a disease-free equilibrium point. If the basic 

reproduction number ranges from one to three, then there are two equilibrium points. The two 

equilibrium points are disease-free equilibrium and endemic equilibrium points. Furthermore, for 

this case, the endemic equilibrium point is locally asymptotically stable. 
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I. INTRODUCTION 

 
Death cases of tuberculosis between 2000 and 2015 

decreased to 22%. According to a WHO report in 2016, this 

disease still ranks as the 10th highest death cause globally. 

The incidence of transmission of tuberculosis in 2016 globally 

was 10.4 million cases. The incidence is equivalent to 120 

cases per 100,000 population. India, Indonesia, China, the 

Philippines, and Pakistan are the five countries with the 

highest tuberculosis cases. Therefore, attention to 

tuberculosis is still a priority in global health problems and is 

even one of the SDGs (Sustainability Development Goals).  

Control of this disease transmission problem needs to do 

with predictive data on the number of infected cases in the 

future. Estimating the number of cases of prolonged 

tuberculosis infection requires a mathematical approach. 

Mathematical models and numerical simulations are 

approaches that are easy to manage, inexpensive, relatively 

fast, and quite productive. Mathematical models need to be 

used to explain and predict the behaviour of the spread of 

tuberculosis. Waaler et al. first introduced the model. They 

classified the population into three sub-populations and 

compiled a model based on the spread of tuberculosis 

(Waaler, Geser & Andersen, 1962). The tuberculosis spread 

model developed by Revelle et al. involves a non-linear 

system of ordinary differential equations. They first introduce 

tuberculosis transmission, depending on its prevalence 

(Revelle, Lynn & Feldmann, 1967). Castillo et al. described 

several mathematical models for the dynamics of tuberculosis 

transmission. These models discuss two infected classes, the 

distributed delayed tuberculosis model, the exogenous-

reinfection tuberculosis, and the age-structured tuberculosis 

model. They analyse each model's stability by involving basic 

reproduction numbers (Castillo-Chavez & Feng, 1997). 

Castilo and Song reviewed various models of tuberculosis and 

developed a different concept for reconstructing the 

tuberculosis model (Castillo-Chavez & Song, 2004). The 

dynamics model of tuberculosis transmission considers the 

factors of disease progression, treatment, vaccination, 

immigration, and others presented in articles (Jia et. al., 

2008; Athithan & Ghosh, 2013; Wangari, Trauer & Stone, 

2018). Over the years, mathematical models have been 

continuously developed to study the transmission dynamics 

of tuberculosis. Zhao et al. investigated the role of age in 
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tuberculosis transmission in mainland China and found that 

the BCG vaccine is only useful for young people (Zhao, Li & 

Yuan, 2017). Then, Moualeu et al. developed a dynamic 

model of tuberculosis transmission and applied it to existing 

data in Cameroon (Moualeu et al., 2015). 

The theoretical framework related to optimal control in the 

model also has been used to propose control tuberculosis 

measures. Jung et al. first introduced an optimal control 

strategy in a dynamic tuberculosis disease transmission 

(Jung, Lenhart & Feng, 2002). Then, Whang et al. applied the 

model to the spread of tuberculosis in the Republic of Korea 

(Whang, Choi & Jung, 2011). Kim et al. also used the model 

to spread disease in the Philippines (Kim, de los Reyes & Jung, 

2018). Choi and Jung also provided practical policies by 

explaining the comparison of government budgets related to 

tuberculosis control with optimal control results (Choi & 

Jung, 2014). Villasin et al. describes a dynamic model of 

tuberculosis transmission in the Philippines. The model 

proposed by Villasin et al. consider the effect of vaccination 

and estimate parameters from current data. Some 

parameters are used to investigate intervention strategies. 

Villasin et al. concluded that enhancing partial immunity, 

maximising treatment duration, and rapidly detecting new 

cases will effectively reduce the incidence and prevalence of 

tuberculosis than increasing vaccine coverage (Villasin & Lao, 

2017).  

All discussions about dynamic models of tuberculosis that 

have been described above involve exponential growth in the 

population. Therefore, it is necessary to study these models 

by applying exponential growth in the population. This article 

discusses a dynamic model of tuberculosis transmission 

adapted from Kim et al. (Kim, de los Reyes & Jung, 2018). 

This model was modified to explain the dynamics of the 

spread of tuberculosis involving logistical growth factors. 

 

II. MATERIALS AND METHOD 

 
The method used in this study is a literature review. The 

author read several reputable international articles related to 

the tuberculosis model. The author later developed the 

concepts found in these articles.  

The first step in this article's discussion is to read all items 

related to the tuberculosis model. The next step identifies the 

concepts developed in the tuberculosis model. They are then 

forming a tuberculosis model according to this concept. The 

model constructed is then analysed using the theory in the 

book written by Perko et al. (2001). Model analysis includes 

an equilibrium point, the existence of the basic production 

number, and the equilibrium point's stability. The final 

section of the discussion gives a numerical simulation to 

check the analysis results obtained. 

 

III. RESULT AND DISCUSSION 

 

A. Model Formulation 

 
The model presented in this article is a modification of the 

previous model discussed in Kim et al. article. The total 

population in time 𝑡 denoted by 𝑁(𝑡).  The population is 

divided into five epidemiological classes, i.e. the susceptible 

class, the high-risk class, the infected class and the low-risk 

class. The number of people in the susceptible class in time 𝑡 

denoted by 𝑆(𝑡). The number of people in the class of exposed 

to high-risk in time 𝑡 denoted by 𝐸(𝑡).  The number of 

population in the infected class in time 𝑡 denoted by 𝐼(𝑡). The 

number of people in the class of exposed to low-risk in time 𝑡 

denoted by 𝐿(𝑡). Birth in all classes is assumed to enter the 

susceptible class directly, and its growth follows exponential 

growth (Kim, de los Rayes & Jung, 2018). The assumptions 

that distinguish the model from the models discussed in this 

article are that the population growth in the susceptible class 

is assumed to follow logistical growth. This model also 

assumes that the class of infected or exposed to low or high-

risk does not contribute to births and deaths in the 

susceptible class. The modified tuberculosis disease epidemic 

model is based on these two assumptions given in the 

following system of non-linear differential equations: 

 
𝑑𝑆

𝑑𝑡
= 𝑏𝑆 (1 −

𝑆

𝐾
) − 𝛽𝑆𝐼                  

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 − (𝛼 + 𝛾 + 𝜇)𝐸 + 𝑝𝑟𝐼

𝑑𝐼

𝑑𝑡
= 𝛾𝐸 − (𝜇 + 𝑟 + 𝑑)𝐼              

 
𝑑𝐿

𝑑𝑡
= (1 − 𝑝)𝑟𝐼 + 𝛼𝐸 − 𝜇𝐿          }

  
 

  
 

     (1)  

with a non-negative initial value and 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) +

𝐼(𝑡) + 𝐿(𝑡) . The parameter 𝑏  is the intrinsic rate of the 

susceptible class. 𝐾 is the carrying capacity of the susceptible 

class in an area. The natural death rate for all classes is 

denoted by 𝜇 . Susceptible individuals can expose to 

tuberculosis disease through contact with individuals 
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infected with tuberculosis disease with transmission at the 

rates 𝛽. The rate of treatment in the high-risk class is denoted 

by 𝛼 . Some patients who are not maximal in receiving 

treatment in the high-risk class will develop into infected 

patients who are admitted to the infectious class at the rates 

𝛾. Treatment to the infected class at the rates 𝑟. Then some of 

the patients in that class their regular treatment at the rates 

(1 − 𝑝)𝑟 with 0 < 𝑝 < 1. Recovered patients are transferred 

to low-risk exposure classes because treatment cannot 

eradicate tuberculosis in the patient's body. Therefore, 

recovered patients and individuals exposed to low-risk were 

classified into one class only, namely the low-risk exposure 

class. The death rate of tuberculosis disease denoted by 𝑑. All 

parameters used in this model are positive. 

Let 𝑋(𝑡) = (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝐿(𝑡)), 𝑋′(𝑡) = (
𝑑𝑆

𝑑𝑡
,
𝑑𝐸

𝑑𝑡
,
𝑑𝐼

𝑑𝑡
,
𝑑𝐿

𝑑𝑡
), 

 𝑓 = (𝑓1, 𝑓2, 𝑓3, 𝑓4) and 𝑓: 𝑋 → 𝑋′ then the system (1) can write 

in the following system: 

 
𝑋′(𝑡) = 𝑓(𝑋(𝑡)   (2) 

with  

𝑓1(𝑋) = 𝑏𝑆 (1 −
𝑆

𝐾
) − 𝛽𝑆𝐼   (3) 

 𝑓2(𝑋) = 𝛽𝑆𝐼 − (𝛼 + 𝛾 + 𝜇)𝐸 + 𝑝𝑟𝐼  (4) 

𝑓3(𝑋) = 𝛾𝐸 − (𝜇 + 𝑟 + 𝑑)𝐼   (5) 

𝑓4(𝑋) = (1 − 𝑝)𝑟𝐼 + 𝛼𝐸 − 𝜇𝐿  (6) 

and initial values 𝑋(0) = (𝑆0, 𝐸0, 𝐼0, 𝐿0) ∈ {0} ∪ 𝑅+
4 . 

Theorem 1.  

System (2) with non-negative initial conditions has a unique 

non-negative solution 𝑋(𝑡)  and finite. The solution 𝑋(𝑡)  is 

non-negative. 

Proof. 

Equation (3) - (6) is a continuously differentiable function. 

According to the theorem of existence solution (Perko, 2001), 

system (2) has a unique solution 𝑋(𝑡)  for every 𝑡  non-

negative. The implicit solution of the first equation in the 

system (2) can obtain using the integration factor method    

(Li et al., 2017) and (Mengistu & Witbooi, 2019). The 

following solutions 𝑆(𝑡) obtained  

 

𝑆(𝑡) = 𝑆0 exp(∫(𝑏 −
𝑏𝑆(𝑢)

𝐾
− 𝛽𝐼(𝑢))

𝑡

0

𝑑𝑢) ≥ 0,∀ 𝑡 ≥ 0 

 

Solution 𝑆(𝑡)  is non-negative for every 𝑡  non-negative. 

Analogous to the solution 𝑆(𝑡) specified above, it can show 

that the solution 𝐸(𝑡), 𝐼(𝑡) and 𝐿(𝑡) is also non-negative. If 

the total population changes with time 𝑡, that is                   

𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝐿(𝑡) 

𝑑𝑁

𝑑𝑡
 =

𝑑𝑆

𝑑𝑡
+
𝑑𝐸

𝑑𝑡
+
𝑑𝐼

𝑑𝑡
+
𝑑𝐿

𝑑𝑡
 

        = 𝑏𝑆 (1 −
𝑆

𝐾
) − 𝜇(𝐸 + 𝐼 + 𝐿) − 𝑑𝐼 < 𝑏𝑆 (1 −

𝑆

𝐾
) − 𝜇𝑁 

then there exist 𝑀 = max{𝑆0, 𝐾} such that lim
𝑡→∞

sup𝑁(𝑡) ≤
𝑏𝑀

𝜇
. 

It shows that the solutions are limited. So, Theorem 1 is 

proven. 

 

B. Equilibrium and Basic Reproduction Number 

 
The equilibrium point of system (2) is the solution of system 

(2), which does not change with time (constant solution). The 

constant solution of the system (2) is obtained from the 

following equation. 

𝑋′(𝑡) = 𝑓(𝑋(𝑡)) = 0 

Let 𝑃 = (𝑆∗, 𝐸∗, 𝐼∗, 𝐿∗) is the equilibrium point for the system 

(2) with  

 𝑓1(𝑋) = 0  ⟹                   𝑏𝑆∗ (1 −
𝑆∗

𝐾
) − 𝛽𝑆∗𝐼∗ = 0 (7) 

 𝑓2(𝑋) = 0  ⟹  𝛽𝑆∗𝐼∗ − (𝛼 + 𝛾 + 𝜇)𝐸∗ + 𝑝𝑟𝐼∗ = 0 (8) 

 𝑓3(𝑋) = 0  ⟹                     𝛾𝐸∗ − (𝜇 + 𝑟 + 𝑑)𝐼∗ = 0 (9) 

  𝑓4(𝑋) = 0   ⟹             (1 − 𝑝)𝑟𝐼∗ + 𝛼𝐸∗ − 𝜇𝐿∗ = 0 (10) 

From Equation (9), we obtained 

𝐸∗ =
𝑛

𝛾
𝐼∗    (11) 

If Equation (11) substituted in Equation (8), we have 

(𝛽𝑆∗ −
𝑚𝑛

𝛾
+ 𝑝𝑟) 𝐼∗ = 0   (12) 

with 𝑚 = 𝛼 + 𝛾 + 𝜇 and 𝑛 = 𝜇 + 𝑟 + 𝑑. 

Based on Equation (12), the value of 𝐼∗  can divide into two 

cases, i.e. 𝐼∗ = 0 and 𝐼∗ ≠ 0. 

For the first case, If  𝐼∗ = 0, then 𝐸∗ = 𝐿∗ = 0 obtained. If 

𝐼∗ = 0 substituted to Equation (7), then 𝑏𝑆∗ (1 −
𝑆∗

𝐾
) = 0, so 

that we obtained 𝑆∗ = 0 or 𝑆∗ = 𝐾. Thus, for the case 𝐼∗ = 0, 

there exist two equilibrium points for the system (2), i.e.                 

𝑃0 = (0, 0, 0, 0) and 𝑃1 = (𝐾, 0, 0, 0). The equilibrium point 𝑃0 
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is a trivial solution for the system (2). The equilibrium point 

𝑃0  stable means that the human population will eventually 

disappear. Thus, the equilibrium point 𝑃0 not discussed. The 

equilibrium point 𝑃1 defined as a condition with a population 

that is susceptible to tuberculosis disease as much 𝐾, and no 

one exposes to a low, high, or even infection risk. The disease-

free equilibrium 𝑃1  means that no patient is infected, no 

patient exposed to high-risk, and no patient is exposed to low 

risk (zero value). For the second case, if 𝐼∗ ≠ 0  then from 

Equation (12) it must be 

𝛽𝑆∗ −
𝑚𝑛

𝛾
+ 𝑝𝑟 = 0, 

So that we obtained 

𝑆∗ =
𝑚𝑛−𝛾𝑝𝑟

𝛽𝛾
   (13) 

with 𝑚 = 𝛼 + 𝛾 + 𝜇 and 𝑛 = 𝜇 + 𝑟 + 𝑑. It is clear that 𝑆∗ > 0, 

because 𝑚𝑛 contains the term 𝛾𝑟 and 0 < 𝑝 < 1. If Equation 

(13) is substituted to Equation (7), we have  

𝐼∗ =
𝐾𝛾𝛽𝑏+𝑏𝛾𝑝𝑟−𝑏𝑚𝑛

𝛽2𝐾𝛾
  (14) 

If Equation (11) substituted to Equation (10), we obtained 

𝐿∗ = (
𝛾(1 − 𝑝)𝑟 + 𝛼𝑛

𝜇𝛾
) 𝐼∗, 

So, for the case 𝐼∗ ≠ 0, we obtained 𝑃∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝐿∗) with 

𝑆∗ =
𝑚𝑛 − 𝛾𝑝𝑟

𝛽𝛾
 

𝐸∗ =
𝑛

𝛾
𝐼∗ 

𝐼∗ =
𝐾𝛾𝛽𝑏 + 𝑏𝛾𝑝𝑟 − 𝑏𝑚𝑛

𝛽2𝐾𝛾
 

𝐿∗ = (
𝛾(1 − 𝑝)𝑟 + 𝛼𝑛

𝜇𝛾
) 𝐼∗. 

The basic reproduction number is the average number of 

new infection cases caused by an infected patient coming into 

contact with someone from a susceptible class. The basic 

reproduction number can be determined using the next 

generation method (Driessche van den, 2017). Based on the 

equations in the system (1), we obtained: 

𝐹 = [
0 𝛽𝐾 + 𝑝𝑟
0 0

] 

 

 

and 

𝑉 = [
𝑚 0
−𝛾 𝑛

] 

The next-generation matrix for the system (1) that is 

𝐹𝑉−1 = [
𝛽𝐾𝛾 + 𝛾𝑝𝑟

𝑚𝑛

𝛽𝐾 + 𝑝𝑟

𝑛
0 0

] 

The basic reproduction number for the system (1) is the 

spectral radius of 𝐹𝑉−1, that is 

ℜ0 = 𝜌(𝐹𝑉
−1) =

𝛾𝛽𝐾+𝛾𝑝𝑟

𝑚𝑛
  (15) 

The relationship between the basic reproduction number and 

𝐼∗ in Equation (14) can write as follows: 

𝐼∗ =
𝑏𝑚𝑛

𝐾𝛾𝛽2
(ℜ0 − 1), 

So that we obtain 

𝐸∗ =
𝑏𝑚𝑛2

𝐾𝛾2𝛽2
(ℜ0 − 1), 

and 

𝐿∗ =
((1 − 𝑝)𝑟𝛾 + 𝛼𝑛)𝑏𝑚𝑛

𝐾𝜇𝛾2𝛽2
(ℜ0 − 1), 

The existence of a disease-free and endemic equilibrium 

point of system (1) in relation to the basic reproduction 

number it can be concluded that if ℜ0 < 1, then there is one 

equilibrium point, namely the disease-free equilibrium point 

𝑃1 = (𝐾, 0, 0, 0) . Conversely, if ℜ0 > 1 , then there are two 

equilibrium points, namely the disease-free equilibrium 

point 𝑃1 = (𝐾, 0, 0, 0)  and the endemic equilibrium point    

𝑃∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝐿∗).  

 

C. Local Stability Analysis 

 
This subsection discusses the analysis of the local stability of 

the disease-free and endemic equilibrium points of the 

system (1). Equations (3), (4), and (5) do not depend on 𝐿 so 

that the fourth equation does not need to be analysed to 

simplify calculations. System (1) can reduce to 

 
𝑑𝑆

𝑑𝑡
= 𝑏𝑆 (1 −

𝑆

𝐾
) − 𝛽𝑆𝐼           

      
𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 − (𝛼 + 𝛾 + 𝜇)𝐸 + 𝑝𝑟𝐼

𝑑𝐼

𝑑𝑡
= 𝛾𝐸 − (𝜇 + 𝑟 + 𝑑)𝐼        }

 
 

 
 

  (16) 
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The disease-free and endemic equilibrium point's local 

stability is determined using the eigenvalues of the Jacobian 

System matrix (16). In general, the Jacobian matrix from the 

system (16) can write as follows: 

𝐽 = [
𝑏 −

2𝑏𝑆

𝐾
− 𝛽𝐼 0 −𝛽𝑆

𝛽𝐼 −𝑚 𝛽𝑆 + 𝑝𝑟
0 𝛾 −𝑛

] 

Therefore, the local stability analysis of the system's 

equilibrium points (16) can present in the following theorem. 

Theorem 2. 

If ℜ0 < 1, then the disease-free equilibrium 𝑃1 = (𝐾, 0, 0, 0) 

of system (1) is locally asymptotically stable and 𝑃1 unstable 

if ℜ0 > 1 with ℜ0 =
𝛾𝛽𝐾+𝛾𝑝𝑟

𝑚𝑛
. 

Proof. 

The Jacobian matrix at the equilibrium point 𝑃1 = (𝐾, 0, 0, 0) 

that is 

𝐽(𝑃1) = [

−𝑏 0 −𝛽𝐾
0 −𝑚 𝛽𝐾 + 𝑝𝑟
0 𝛾 −𝑛

] 

The characteristic equation of 𝐽(𝑃1), that is 

(𝜆 + 𝑏)(𝜆2 + (𝑚 + 𝑛)𝜆 + 𝑚𝑛 − 𝛾𝛽𝐾 − 𝑝𝑟) = 0          (17) 

If Equation (17) involves the basic reproduction number, we 

obtained 

(𝜆 + 𝑏)(𝜆2 + (𝑚 + 𝑛)𝜆 − 𝑚𝑛(ℜ0 − 1)) = 0    (18) 

From Equation (18), one of the eigenvalues of 𝐽(𝑃1)  

obtained, i.e.  𝜆1 = −𝑏 < 0 . 𝜆1  is negative because 𝑏  is a 

positive parameter. The other eigenvalues of 𝐽(𝑃1) depends 

on the basic reproduction number. If ℜ0 < 1, then based on 

the Routh-Hurwitz criterion, all of the eigenvalues of 𝐽(𝑃1) 

negative. Based on the theorem of stability (Perko, 2001), if 

the real part of all eigenvalues of the Jacobian matrix 𝐽(𝑃1) 

negative, then the equilibrium point 𝑃1 = (𝐾, 0, 0, 0) is locally 

asymptotically stable. Conversely, if ℜ0 > 1, then there is a 

positive eigenvalue of the Jacobian matrix 𝐽(𝑃1); as a result, 

the equilibrium point 𝑃1 = (𝐾, 0, 0, 0) is unstable. 

 

Theorem 3. 

If 1 < ℜ0 < 3, then there exist the endemic equilibrium point 

𝑃∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝐿∗)  of the system (1) which is locally 

asymptotically stable with  

ℜ0 =
𝛾𝛽𝐾 + 𝛾𝑝𝑟

𝑚𝑛
 , 

𝑆∗ =
𝑚𝑛 − 𝛾𝑝𝑟

𝛽𝛾
> 0, 

𝐼∗ =
𝑏𝑚𝑛

𝐾𝛾𝛽2
(ℜ0 − 1) , 

𝐸∗ =
𝑏𝑚𝑛2

𝐾𝛾2𝛽2
(ℜ0 − 1) , 

𝐿∗ =
((1 − 𝑝)𝑟𝛾 + 𝛼𝑛)𝑏𝑚𝑛

𝐾𝜇𝛾2𝛽2
(ℜ0 − 1) , 

𝑚 = 𝛼 + 𝛾 + 𝜇 and 𝑛 = 𝜇 + 𝑟 + 𝑑. 

Proof. 

Clearly that if ℜ0 > 1 , then there exist the endemic 

equilibrium point 𝑃∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝐿∗)  of the system (1). The 

Jacobian matrix at the equilibrium point 𝑃∗ = (𝑆∗, 𝐸∗, 𝐼∗) , 

that is 

𝐽(𝑃∗) =

[
 
 
 
 −
𝑏𝑆∗

𝐾
0 −𝛽𝑆∗

𝛽𝐼∗ −𝑚
𝑚𝑛

𝛾
0 𝛾 −𝑛 ]

 
 
 
 

 

The characteristic equation of 𝐽(𝑃∗) that is 

𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3 = 0       (17) 

with 

𝑎1 =
𝑏𝑆∗

𝐾
+𝑚 + 𝑛 

𝑎2 =
𝑏𝑆∗

𝐾
(𝑚 + 𝑛) 

𝑎3 = 𝛽
2𝑆∗𝐼∗ 

It is clear that 𝑎1 > 0, 𝑎2 > 0,  and 𝑎3 > 0. We have 

𝑎1 𝑎2 − 𝑎3 = (
𝑏𝑆∗

𝐾
+𝑚 + 𝑛) (

𝑏𝑚𝑆∗

𝐾
+
𝑏𝑛𝑆∗

𝐾
) − 𝛽2𝛾𝑆∗𝐼∗ 

=
𝑏2𝑚𝑆∗2

𝐾2
+
𝑏2𝑛𝑆∗2

𝐾2
+
𝑏𝑚2𝑆∗

𝐾
+
𝑏𝑛2𝑆∗

𝐾
+
2𝑏𝑚𝑛𝑆∗

𝐾

−
𝑏𝑚𝑛𝑆∗

𝐾
(ℜ0 − 1) 

=
𝑏2𝑚𝑆∗2

𝐾2
+
𝑏2𝑛𝑆∗2

𝐾2
+
𝑏𝑚2𝑆∗

𝐾
+
𝑏𝑛2𝑆∗

𝐾
+
3𝑏𝑚𝑛𝑆∗

𝐾
−
𝑏𝑚𝑛𝑆∗ℜ0

𝐾
  

=
𝑏2𝑚𝑆∗2

𝐾2
+
𝑏2𝑛𝑆∗2

𝐾2
+
𝑏𝑚2𝑆∗

𝐾
+
𝑏𝑛2𝑆∗

𝐾
+
𝑏𝑚𝑛𝑆∗

𝐾
(3 − ℜ0)           

As observed in Equation (18), we know that 𝑎1 𝑎2 − 𝑎3 > 0 

can hold if ℜ0 < 3  . Thus, based on the Routh-Hurwitz 

criterion, the real part of all eigenvalues are negative if      

ℜ0 < 3. Meanwhile, the conditions ℜ0 > 1 must also hold to 



ASM Science Journal, Volume 16, 2021  
 

6 

ensure the existence of an endemic equilibrium point. Thus, 

the endemic equilibrium point 𝑃∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝐿∗)  exist and 

locally asymptotically stable if 1 < ℜ0 < 3. 

 

D. Numerical Simulation 

 
In the following, the system (1) discusses numerically to 

support the analysis results that have been obtained. The 

numerical simulation in the system (1) carried out by 

reviewing three cases, i.e., simulation for cases ℜ0 < 1,     1 <

ℜ0 < 3 and ℜ0 > 3. The parameters used for each case given 

in the following table. 

 

Table 1. Parameter Values for Cases ℜ0 < 1 

Parameter 
Estimated 

(per year) 
Source 

𝑏 0,04 (Kim et al., 2018) 

𝛽 1,5 × 10−7 (Mengistu & Witbooi, 2019) 

𝜇 0,02 (Kim et al., 2018) 

𝛼 0,2 (Kim et al., 2018) 

𝛾 0,023 (Mengistu & Witbooi, 2019) 

𝑝 0,2 (Kim et al., 2018) 

𝑟 0,546 (Mengistu & Witbooi, 2019) 

𝑑 0,17 (Mengistu & Witbooi, 2019) 

𝐾 5 × 107 Assumed 

𝑆0 3,8 × 107 (Mengistu & Witbooi, 2019) 

𝐸0 1,19 × 107 (Mengistu & Witbooi, 2019) 

𝐼0 3,73 × 105 (Mengistu & Witbooi, 2019) 

𝐿0 2,18 × 107 (Mengistu & Witbooi, 2019) 

 

Based on the values of the parameters in Table 1, we have 

ℜ0 = 0,98. The numerical solution of system (1) for this case 

is given in Figure 1. 

Figure 1 shows that the number of population in the 

susceptible class 𝑆(𝑡) initially decreases, then rises towards 

the number 5 × 107 and stabilises at that number. In contrast, 

the population in the low-risk class 𝐿(𝑡) initially grows, then 

falls towards zero and stabilises at zero. The population in the 

high-risk class 𝐸(𝑡) and the infected class 𝐼(𝑡) drops to zero 

and stabilises at that number. It means that the solution of 

system (1) is stable and is heading for a disease-free 

equilibrium point 𝑃1(5 × 10
7, 0, 0, 0) . In other words, the 

disease-free equilibrium point 𝑃1(5 × 10
7, 0, 0, 0)  is locally 

asymptotically stable if ℜ0 < 1. The numerical simulation for 

this case supports the analysis results obtained in Theorem 1. 

 

 

 

 

Figure 1. Graph 𝑆𝐸𝐼𝐿 of the model versus time  

for case ℜ0 < 1 

 
The following are the parameters used to simulate the model 

in case 1 < ℜ0 < 3. 

 

Table 2. Parameter Values for Cases 1 < ℜ0 < 3 

Parameter 
Estimated 

(per year) 
Source 

𝑏 0,04 (Kim et al., 2018) 

𝛽 1,6 × 10−7 (Mengistu & Witbooi, 2019) 

𝜇 0,02 (Kim et al., 2018) 

𝛼 0,2 (Kim et al., 2018) 

𝛾 0,023 (Mengistu & Witbooi, 2019) 

𝑝 0,2 (Kim et al., 2018) 



ASM Science Journal, Volume 16, 2021  
 

7 

𝑟 0,546 (Mengistu & Witbooi, 2019) 

𝑑 0,05 (Kim et al., 2018) 

𝐾 5 × 107 Assumed 

𝑆0 3,8 × 107 (Mengistu & Witbooi, 2019) 

𝐸0 4 × 106 Assumed 

𝐼0 105 Assumed 

𝐿0 2,18 × 107 (Mengistu & Witbooi, 2019) 

 

Based on the values of the parameters in Table 2, we have 

ℜ0 = 1,28. The numerical solution of the system (1) for this 

case is given in the following graph. 

 

 

Figure 2. Graph 𝑆(𝑡) and 𝐿(𝑡) of the model versus time  

for case 1 < ℜ0 < 3 

 
Figure 2 shows the number of population in the susceptible 

class 𝑆(𝑡)  and the latent class 𝐿(𝑡)  at first, there was a 

dynamic (fluctuating). However, for 𝑡 → ∞  the number of 

population in the two classes, respectively, approaches to 

 4 × 107and 1,46 × 107 and is stable at that number. 

 

 

Figure 3. Graph 𝐸(𝑡) of the model versus time  

for case 1 < ℜ0 < 3 

 

Figure 3 shows the population in the exposed class 𝐸(𝑡) at 

first, there was a dynamic (fluctuating). However, for 𝑡 → ∞ 

the number of people in that class approaches to 1,56 × 106 

and is stable at that number. 

 

 

Figure 4. Graph 𝐼(𝑡) of the model versus time  

for case 1 < ℜ0 < 3 

 
Figure 4 shows the population in the infected class 𝐼(𝑡)at 

first; there was a dynamic (fluctuating). However, for 𝑡 → ∞ 

the number of people in that class is getting to a number 

5 × 104 and is stable at that number. It means that for the 

case 1 < ℜ0 < 3, the solution System (1) is stable and towards 

the endemic equilibrium point 𝑃∗(4 × 107, 1,56 × 106, 5 ×

104, 1,46 × 107) . In other words, the endemic equilibrium 

point 𝑃∗(4 × 107, 1,56 × 106, 5 × 104, 1,46 × 107)  is locally 

asymptotically stable if 1 < ℜ0 < 3 . The numerical 

simulation for this case supports the analysis results obtained 

in Theorem 2. 

 

Table 3. Parameter Values for Cases ℜ0 > 3 

Parameter 
Estimated 

(per year) 
Source 

𝑏 0,04 (Kim et al., 2018) 

𝛽 1,6 × 10−7 (Mengistu & Witbooi, 2019) 

𝜇 0,02 (Kim et al., 2018) 

𝛼 0,2 (Kim et al., 2018) 

𝛾 0,05 Assumed 

𝑝 0,2 (Kim et al., 2018) 

𝑟 0,29 (Kim et al., 2018) 

𝑑 0,05 (Kim et al., 2018) 

𝐾 5 × 107 Assumed 

𝑆0 3,8 × 107 (Mengistu & Witbooi, 2019) 

𝐸0 1,19 × 107 (Mengistu & Witbooi, 2019) 

𝐼0 3,73 × 105 (Mengistu & Witbooi, 2019) 

𝐿0 2,18 × 107 (Mengistu & Witbooi, 2019) 
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Based on the values of the parameters in Table 3, we 

obtained ℜ0 = 4,26. The numerical solution of the system (1) 

for this case is given in the following graph. 

 

 

Figure 5. Graph 𝑆 and 𝐿 class versus time for the case ℜ0 > 3 

 

 

Figure 6. Graph 𝐸 and 𝐼 class versus time for the case ℜ0 > 3 

Figure 6 shows that the population in the susceptible and 

the latent class oscillates to infinity. It means that the 

endemic equilibrium point 𝑃∗ is unstable for the case ℜ0 > 3. 

 

IV. CONCLUSION 

 
Tuberculosis disease spread models involving logistical 

growth have been presented in this article. This model is the 

SEIL model in Kim2016 paper, which is modified to the 

system (1). Next, determine the equilibrium points and the 

basic reproduction number (ℜ0) of the system (1). The result 

shows that equilibrium points in the system (1) depend on the 

basic reproduction number. If ℜ0 < 1 , then there exist a 

unique equilibrium point, that is, the disease-free 

equilibrium point 𝑃1 = (𝐾, 0, 0, 0). Conversely, if ℜ0 > 1 there 

are two equilibrium points, the disease-free equilibrium point 

𝑃1 = (𝐾, 0, 0, 0)  and the endemic equilibrium point 𝑃∗ =

(𝑆∗, 𝐸∗, 𝐼∗, 𝐿∗).  

The local stability of the two equilibrium points is analysed 

using the Jacobian matrix. The results show that the disease-

free equilibrium point 𝑃1  is locally asymptotically stable if 

ℜ0 < 1 . While the endemic equilibrium point 𝑃∗  is locally 

asymptotically stable if 1 < ℜ0 < 3 . The numerical 

simulation for each case shows a graph of the solution of the 

system (1). The results obtained from the numerical 

simulation support the analysis results that have been 

obtained. 
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