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Huntington’s disease (HD) is an inherited autosomal-dominant neurodegenerative disorder that 

occurs due to mutations in the polyglutamine expansions of the Huntingtin protein (Htt). HD is 

characterised by the loss of cognitive and motor functions, as well as the development of emotional 

and psychiatric disturbances. The HD pathology is manifested through the cellular changes that arise 

due to the toxic functions of mutant Htt (mHtt). Autophagy is a lysosomal pathway that functions to 

remove damaged intracellular components while mitophagy is a selective form of autophagy 

involving mitochondria; and PINK1/Parkin-mediated mitophagy is the most well-understood 

pathway. Mitochondrial dysfunction and defects in mitophagy can be linked to the pathogenesis of 

HD. Previous research has shown that the presence of mHtt hinders mitophagy; while 

PINK1/Parkin-mediated mitophagy provides neuroprotection in HD. Hence, this review discusses 

the roles and regulations of mitophagy, along with an overview of mitophagy in HD. 
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I. INTRODUCTION 

 
Huntington’s disease (HD) was named in the 1980s, from the 

original name of Huntington’s chorea given by George 

Huntington in 1872, following the discovery of other non-

motor symptoms caused by the disease (Bruyn, 1968; 

Huntington’s Disease Collaborative Research Group, 1993). 

HD is a progressive brain disorder characterised by the loss 

of motor and cognitive function, as well as the presence of 

emotional and psychiatric disturbances (Ross & Tabrizi, 

2011). The average lifespan of an individual following the 

onset of these symptoms ranges from 15 to 20 years; and the 

common causes of mortality are infections such as 

pneumonia, and injuries associated with falls (Sturrock & 

Leavitt, 2010). Juvenile HD is a rare form of the disease that 

develops during childhood, which also results in motor 

dysfunction, cognitive disability, as well as mental 

disturbances (Tost et al., 2004). HD occurs mostly in the 

Lake Maracaibo district of Venezuela, with a prevalence of 

700 per 100000 people, due to the inheritance of the allele 

from the same ancestor (Dayalu & Albin, 2015; Frank, 2014). 

Following Venezuela, European countries and United States 

recorded the next highest prevalence of HD. On the other 

hand, Japan and Finland have a low HD prevalence (Frank, 

2014). The treatment of HD is purely symptomatic, as there 

are no known effective disease-modifying drugs that 

currently available for the disease (Cubo et al., 2006). 

Symptoms of HD are treated with either standard psychiatric 

drugs, physiotherapy or speech therapy (Phillips et al., 

2008). 

HD is an autosomal dominant neurodegenerative disease 

that arises when there is an expansion of CAG trinucleotide 

sequence repeats, which code for the polyglutamine (polyQ) 

region in the Huntingtin (Htt) protein. The polyQ region 

functions to stabilise protein-protein interactions and 

prevent protein misfolding, while the Htt protein plays a role 

in chemical signalling and protection from apoptosis. The Htt 

protein produced in normal individuals has less than 36 

repeated glutamines in their polyQ region (Walker, 2007). 

The mutant Htt (mHtt) protein is a misfolded protein 

produced when these CAG repeats undergo abnormal 
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expansion, forming more than the normal number of repeats 

(Sapp et al., 2007). The Htt gene is inherited equally between 

both genders, and those possessing a mutated copy of the 

gene will acquire the disease as it has high penetrance 

(Walker, 2007).  

The HD pathology is manifested by the various cellular 

changes that occur due to the toxic functions of mHtt. As Htt 

can interact with multiple proteins, the presence of mHtt will 

affect numerous biological functions such as cell signals, 

transcription and intracellular transportation (Harjes & 

Wanker, 2003; Sapp et. al., 2007; Walker, 2007; Clelland et 

al., 2008). The mHtt protein has a high tendency to undergo 

cleavage, creating shorter fragments that consist of the 

polyglutamine expansion (Rubinsztein & Carmichael, 2003). 

These protein fragments then undergo aggregation prior to 

forming inclusion bodies within cells, which subsequently 

affect neuronal function (Rubinsztein & Carmichael, 2003; 

Bates et al., 2015). The aggregated mHtt proteins cause cell 

death by affecting chaperone proteins, impairing cellular 

energy production and affecting genes expression (Sadri-

Vakili & Cha, 2006; Bates et al., 2015). As a result, this could 

contribute to the manifestation of neurodegenerative 

diseases (Kumar & Ratan, 2016). This review aims to give an 

overview of the functions, regulations and processes of 

mitophagy, as well as its roles in the pathogenesis of HD. 

 

II. AUTOPHAGY 

 
Autophagy is a strictly regulated lysosomal pathway that 

plays an imperative role in the removal of damaged 

intracellular components (Eskelinen, 2008; Kundu & 

Thompson, 2008). The autophagy mechanism is activated in 

the presence of stress, for instance during amino acid 

starvation or accumulation of unfolded proteins (Ahlberg et 

al., 1982). The process of autophagy can be divided into three 

types (Figure 1), based on its route of delivering the 

intracellular components to lysosomes. Macroautophagy 

involves sequestration of the cargo away from the lysosome, 

whereby autophagosomes is used to sequester cargo and 

subsequently transport it to the lysosome (Yorimitsu & 

Klionsky, 2005). Chaperone-mediated autophagy (CMA) 

does not use membranous structures to sequester cargo, but 

instead uses chaperones to identify cargo proteins that 

contain a particular pentapeptide motif. These substrates are 

then unfolded and translocated individually directly across 

the lysosomal membrane (Massey et al., 2004). In 

microautophagy, protrusions of the lysosomal membrane are 

used to capture cargo (Mijaljica et al., 2011).  

Macroautophagy is the most common form of autophagy 

and is often referred to as autophagy itself. Macroautophagy 

generates nutrients during fasting under the control of amino 

acids and hormones, and contributes to the turnover and 

rejuvenation of cellular components (Bergamini et al., 2004). 

In this process, the portion of intracellular components 

intended for degradation is first sequestered inside 

specialised organelles known as autophagosomes. The 

autophagosomes then combine with lysosomal vesicles and 

subsequently delivered to the lysosomal hydrolytic enzymes 

to be degraded (Ahlberg et al., 1982). CMA is a proteolytic 

pathway whereby chaperones recognise the specific sequence 

signal on the cytosolic proteins and translocate them to the 

lysosomes through CMA receptors which are formed by 

lysosome-associated membrane glycoprotein 2 (LAMP-2A) 

proteins (Cuervo & Dice, 1996). CMA has been involved in 

physiological and pathological processes such as lipid and 

carbohydrate metabolism, and neurodegenerative diseases, 

respectively (Alfaro et al., 2019). Microautophagy is the 

process whereby a portion of the cytoplasm containing the 

degradative components is engulfed by the lysosomal 

membrane and subsequently degraded by lysosomal 

hydrolytic enzymes (Ahlberg et al., 1982).   In a previous 

study, isolated rat liver lysosomes were shown to engulf 

Percoll particles by protrusions of the lysosomal membrane, 

forming vesicles within the lysosome. Some of these particles 

were seen free-floating within the lysosomal lumen, 

presumably through rupture/lysis of the vesicles (Marzella et 

al., 1980). In addition, endosomal microautophagy 

transports soluble cytosolic proteins to the vesicles of late 

endosomal multivesicular bodies (Sahu et al., 2011). 

Microautophagy has a broad range of functions in 

biosynthetic transport, metabolic adaptation, organelle 

remodeling and quality control (Schuck, 2020). 

Autophagy is an essential process that has many roles and 

functions in cells. Some of these include survival during 

amino acid starvation, clearance of proteins that are prone to 

aggregate, regulation of programmed cell death, regulation of 

cell growth, protection against intracellular pathogens and 
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antigen presentation (Jurilj & Pfeifer, 1990; Cuervo & Dice, 

1996; Kabeya et. al., 2000; Ishihara et. al., 2001; Mizushima 

et. al., 2001; Suzuki et. al., 2001; Kim et. al., 2002; Nazarko 

et. al., 2005; Hosokawa et. al., 2006; Klionsky, 2006; Schmid 

& Münz, 2007; Xie & Klionsky, 2007). These functions are 

further elaborated in Table 1. The mechanisms of autophagy 

can be categorised into selective and non-selective autophagy 

(Wang & Qin, 2013). In non-selective autophagy, cytoplasmic 

constituents are engulfed randomly into autophagosomes 

before getting transported to lysosomes for degradation 

(Stolz et al., 2014). On the other hand, selective autophagy 

carries out the degradation of specific substances. Mitophagy 

is an example of the selective autophagy (Stolz et. al., 2014; 

Veljanovski & Batoko, 2014). 

 
 

Figure 1. The different autophagy pathways in the degradation of cellular products. In macroautophagy, the portion of 

intracellular components intended for degradation is first sequestered into autophagosomes. The autophagosomes then 

combine with lysosomal vesicles and subsequently delivered to the lysosomal hydrolytic enzymes to be degraded. In 

chaperone-mediated autophagy (CMA), the chaperones recognise the specific sequence signal on the cytosolic proteins and 

translocate them to the lysosomes through CMA receptors which are formed by lysosome-associated membrane 

glycoprotein 2 (LAMP-2A) proteins. In microautophagy, a portion of the cytoplasm containing the degradative components 

is engulfed by the lysosomal membrane and subsequently degraded by lysosomal hydrolytic enzymes. 
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III. MITOPHAGY 

 
Mitochondria are essential organelles present in most 

eukaryotes that mainly function to regulate cellular energy 

homeostasis. Mitophagy is the mechanism responsible for 

the clearing and removal of damaged mitochondria. In this 

process, autophagosomes enclose the entire mitochondria 

and subsequently transport them to the lysosomes to be 

degraded (Ashrafi & Schwarz, 2013). There are several 

types of mitophagy which differ from one another based 

on their process of mitochondrial engulfment, prior to its 

delivery to the lysosomes. These mitophagy processes 

follow a common receptor-mediated mechanism involving 

the binding of receptors in the autophagosomal membrane 

to the mitochondria (Wild et al., 2014). 

Phosphatase and tensin homolog (PTEN)-induced putative 

kinase protein 1 (PINK1)/Parkin-mediated mitophagy is the 

most well-understood type of mitophagy (Figure 2) (Kitagishi 

et al., 2017). In this process, PINK1 is responsible for the 

activation of mitophagy, subsequently providing a protective 

role against apoptosis and mitochondrial dysfunction. 

Mutations in mitochondrial deoxyribonucleic acid (DNA), 

accumulation of dysfunctional mitochondria, as well as an 

increase in reactive oxygen species (ROS) production cause a 

decrease in the mitochondrial membrane potential. This 

prevents the degradation of PINK1, causing it to accumulate 

on the outer mitochondrial membrane. This subsequently 

causes the translocation and phosphorylation of Parkin 

(Geisler et. al., 2010; Lazarou et al., 2012). Parkin 

ubiquitylates outer mitochondrial membrane proteins which 

subsequently induces mitophagy by combining with targeted 

mitochondria. The ubiquitinated mitochondria are then 

degraded by lysosomes while proteasomes degrade the outer 

mitochondrial membrane proteins (Arano & Imai, 2015; 

Maguire et al., 2017). 

 
Table 1. A summary of the roles and functions of autophagy 

Role and function Description 

Protection against 

intracellular pathogens 

Autophagy induction bypasses the maturation defect, which results in the production of 

autophagolysosomes that subsequently kill the bacteria and intracellular pathogens 

(Cuervo & Dice, 1996).              

Clearance of                    

aggregate-prone 

proteins 

Autophagy plays a vital role in intracellular quality control by clearing the toxic aggregate-

prone proteins which are harmful to post-mitotic cells such as neurons (Klionsky, 2006). 

Regulation of cell 

growth 

Autophagy negatively controls cell growth (Jurilj & Pfeifer, 1990; Hosokawa et al., 2006). 

Survival during                     

amino acid starvation 

Macroautophagy is induced shortly after amino acid starvation in order to supply energy 

and metabolites to the cells by degrading intracellular cargo (Kabeya et al., 2000). 

Regulation of                                   

programmed cell death 

In cells that are unable to undergo apoptosis, autophagy proteins are required for the 

autophagic cell death, which is also known as type II programmed cell death. Additionally, 

autophagy plays a protective role during starvation by providing the cells with nutrients in 

order to prevent apoptosis (Ishihara et. al., 2001; Mizushima et. al., 2001; Suzuki et. al., 

2001; Kim et. al., 2002; Nazarko et. al., 2005; Xie & Klionsky, 2007). 

Antigen presentation Macroautophagy functions in antigen presentation by delivering the products of lysosomal 

proteolysis to the major histocompatibility complex (MHC) class II molecules, which then 

being presented for differentiation of T helper (CD4+) cells (Schmid & Münz , 2007). 

 

In cardiolipin-mediated mitophagy, the phospholipid 

cardiolipin functions as a mitophagy receptor in response to 

depolarisation (Chu et. al., 2013; Maguire et al., 2017). 

Cardiolipin recruits the autophagosome machinery once it is 

externalised at the outer mitochondrial membrane as it 

contains a microtubule-associated protein light chain (LC)3-

binding motif (Chu et al., 2013). The mitochondrial 

membrane receptor-mediated mitophagy on the other hand, 

https://www.sciencedirect.com/science/article/pii/S1074761307003408#!
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is the pathway in which outer mitochondrial membrane 

proteins such as B-cell lymphoma 2 and  adenovirus E1B 19 

kilodalton interacting protein 3 (BNIP3), FUN14 domain-

containing protein 1 (FUNDC1) and BNIP3-like protein 

(NIX) act as mitophagy receptors. The mitophagy process 

occurs under specific conditions in cells that possess these 

proteins as these proteins have the specific motifs required to 

facilitate interactions between mitochondria and the 

mitochondrial membrane protein, LC3 (Maguire et al., 2017). 

Mitophagy is an essential mechanism that has various 

functions in both the normal physiological state and 

pathological conditions. In the normal state, mitophagy 

functions primarily in mitochondrial quality control, whereby 

it selectively clears damaged mitochondria and subsequently 

induces the generation of new mitochondria (Zhu et al., 

2013). Besides, mitophagy regulates cell development and 

differentiation by removing redundant mitochondria 

(Sandoval et al., 2008). It also prevents cell death by 

removing damaged mitochondria that cause cell stress and 

apoptosis (Kubli & Gustafsson, 2012). Another role of 

mitophagy is regulation of immune response. Through the 

removal of damaged mitochondria, mitophagy suppresses 

hyperactivation of inflammatory complexes which arise 

following an infection by foreign pathogens (Kim et al., 2016). 

 

 

Figure 2. The PINK1/Parkin-mediated mitophagy process. Mutations in mitochondrial deoxyribonucleic acid (DNA), 

accumulation of dysfunctional mitochondria, as well as an increase in reactive oxygen species (ROS) production cause a 

decrease in the mitochondrial membrane potential. This prevents the degradation of PINK1, causing it to accumulate on the 

outer mitochondrial membrane. This subsequently causes the translocation and phosphorylation of Parkin. Parkin 

ubiquitylates outer mitochondrial membrane proteins which subsequently induces mitophagy by combining with targeted 

mitochondria. The ubiquitinated mitochondria are then degraded by lysosomes while proteasomes degrade the outer 

mitochondrial membrane proteins. 
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Mitophagy is also important in the control and regulation 

of pathological conditions. One of the examples is 

suppression of cancer development. Mitophagy is crucial in 

the removal of dysfunctional mitochondria which produce 

ROS. The increase in ROS production facilitates cancer 

development by inducing DNA damage and increasing 

abnormalities in gene expression (Palikaras et al., 2015). 

Additionally, mitophagy prevents development of certain 

heart and liver diseases. It provides cardioprotection to the 

heart in response to various stresses (Huang et al., 2011) 

while for the liver, it provides protection from potential injury 

and steatosis due to alcohol consumption (Williams et al., 

2016). A reduction of mitophagy is associated with aging-

related dysfunctions of muscles and organs such as cardiac 

muscles, skeletal muscles, liver and the brain (Sun et al., 

2015).  

Mitophagy also plays a significant role in the prevention of 

neurodegenerative diseases. The maintenance of 

mitochondrial homeostasis is crucial for neuronal cell 

functions. As such, mitophagy is important in the eradication 

of damaged mitochondria, thereby preventing neuronal cell 

death (Kubli & Gustafsson, 2012). If mitophagy is impaired, 

the accumulation of damaged mitochondria and increase in 

neuronal cell death will lead to neurodegenerative diseases 

(Cha et. al., 2015; Nah et al., 2015).  

 

IV. AUTOPHAGY AND MITOPHAGY IN 
HUNTINGTON’S DISEASE 

 
Autophagy plays an imperative role in the clearance of 

damaged and misfolded proteins, thereby preventing 

accumulation and toxic effects of the abnormal proteins 

(Menzies et al., 2011). In HD, the presence of mHtt affects the 

autophagosome motility and vesicle trafficking, hence 

causing the autophagy disruption. To be specific, recognition 

of cargo by autophagosomes as well as subsequent axonal 

transport and substrate degradation are diminished in HD 

(Martinez-Vicente et. al., 2010; Wong & Holzbaur, 2014). 

Brattås et al. (2021) found that overexpression of human 

transcription factor EB, a master regulator of autophagy, did 

not decrease mHTT aggregation while beclin 1 (an autophagic 

regulator that plays a key role in autophagosome formation) 

partially cleared mHTT aggregates. However, beclin 1 was 

only effective when administered early in the disease 

progression. Rhes GTPase interacts with beclin 1 and hence is 

required for autophagy (Mealer et al., 2014).  

On the other hand, observations from some studies showed 

that experimental models expressing greater polyQ length of 

mHtt did not alter the autophagic functions, and the 

clearance of necessary substrates could still occur (Heng et al., 

2010). These findings indicate that despite the presence of a 

polyQ mutation, Htt would still be able to carry out its 

function as a crucial player in autophagy and vesicle 

trafficking, if present in high numbers. Although it could 

possibly be beneficial to focus on the upregulation of 

autophagy alone, additional efforts should also be taken to 

correct the specific mechanistic defects to ensure the efficient 

clearance of mHtt and mitigation of its toxicity (Wong & 

Holzbaur, 2014). 

Interestingly, previous study found that HD could modulate 

autophagy function to have both toxic and protective effects 

on cells. mHTT could sequester the negative regulator of 

autophagy, mammalian target of rapamycin, to induce a 

higher rate of autophagy flux and protect against mHTT 

cytotoxicity (Ravikumar et al., 2004). 

Mitophagy is necessary in the protection of neurons 

through the degradation of damaged mitochondria and 

maintenance of normal mitochondrial function (Zhang, 

2013). Past studies have shown that the mitophagy process is 

affected in the presence of mHtt. The activation of 

PINK1/Parkin-mediated mitophagy however, has been 

shown to improve mitochondrial integrity and provide 

neuroprotection in HD models (Khalil et. al., 2015; Quinn et 

al., 2020). The mitophagic clearance of damaged and 

dysfunctional mitochondria is essential for the maintenance 

of neuronal cell homeostasis. Htt plays a role in mitophagy by 

enhancing the physical proximity of various protein 

complexes during the initiation of the process, as well as 

recruiting the essential receptors required in facilitating the 

binding of dysfunctional mitochondria to the 

autophagosomes. According to a study carried out by Franco-

Iborra and colleagues (2020), the formation of these protein 

complexes is affected in the presence of mHtt, thereby 

leading to disruption of mitophagy. The presence of mHtt has 

been found to cause neurotoxicity and neurodegeneration in 

HD due to defect of mitophagy and disturbances in the 

normal mitochondrial dynamics (Bossy-Wetzel et. al., 2008; 
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Franco-Iborra et al., 2020). Disruption of mitophagy leads to 

the accumulation of dysfunctional mitochondria and 

increased levels of oxidative stress, which contribute to the 

neurodegeneration in HD (Franco-Iborra et al., 2020). 

Additionally, defects in normal mitochondrial dynamics, 

along with other disturbances caused by mHtt such as 

compromised fission, fusion and organelle trafficking, give 

rise to bioenergetic failure, neuronal dysfunction and 

neuronal cell death in HD (Bossy-Wetzel et al., 2008). 

PINK1/Parkin-mediated mitophagy is the main clearance 

pathway of dysfunctional mitochondria (Pickrell & Youle, 

2015). However, presence of mHtt affects normal interaction 

between the C-terminal of Htt and the autophagic receptors 

such as BCL2/adenovirus E1B 19 kDa protein-interacting 

protein 3 (BNIP3) and p62, resulting in compromised 

mitophagy in HD. This subsequently disrupts the recognition 

of ubiquitinated mitochondria by the LC3-containing 

isolation membranes, thereby preventing its degradation and 

resulting in its accumulation (Martinez-Vicente et. al., 2010; 

Ney, 2015; Rui et al., 2015). Khalil and colleagues (2015) 

investigated the role of impaired mitophagy in HD using 

Drosophila fly models which expressed neuronal Htt-ex1p-

Q93. When observations were made on the mitochondrial 

morphology affected by mHtt, abnormal ring-shaped 

mitochondria were found to be present in the photoreceptor 

neurons. As these ring-shaped mitochondria were previously 

detected in mitophagy-deficient cells, further analysis was 

done to study the effects of PINK1 on these cells. It was found 

that the formation of abnormal mitochondria in HD fly 

models were reduced in the presence of PINK1 

overexpression, which indicated its ability to counteract the 

toxic functions of mHtt. The neuroprotective properties of 

PINK1 was further observed by its ability to improve neuronal 

integrity and increase the survival rates of adult flies. 

Similarly, from the HD striatal cells derived from HdhQ111 

knock-in mice, a decrease in the amount of ubiquitinated 

mitochondria targeted to autophagosomes, following 

mitophagy impairment was noted. This study also reported 

the ability of PINK1 overexpression in restoring mitophagy. 

These findings suggest that mitophagy is affected in the 

presence of mHtt, however, increasing the PINK1/Parkin-

mediated mitophagy process might improve mitochondrial 

integrity and provide neuroprotection in HD (Khalil et al., 

2015). 

 

V. CONCLUSION 

 
HD in general, is a devastating neurodegenerative disorder in 

which a cure is yet to be found. Autophagy and mitophagy are 

the essential process required for the maintenance of cellular 

homeostasis that plays a critical role in the prevention of 

several neurodegenerative diseases, including HD. Further 

understanding on the relationship between authophagy, 

mitophagy and HD is necessary for the development of 

treatment for HD.  
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