Study on Photocatalytic Efficiency of Hybrid Titanium Dioxide Nanowires/Reduced Graphene Oxide (TiO$_2$NWs/RGO) for Degradation of Methyl Orange Dye

Basirah Mohd Azam1, Mohd Hasmizam Razali1,2,* and Muhammad Amir Fikri Md Fauzi1

1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
2Advanced Nanomaterials Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

The major concern of this research is to improve photocatalytic efficiency by implementation of hybrid TiO$_2$NWs/RGO for dye degradation. The TiO$_2$NWs/RGO was prepared using fabrication method. Titanium (IV) oxide powder and graphite were used as precursors to synthesis of TiO$_2$NWs and RGO, respectively. Physical and chemical properties of the photocatalyst was investigated by Fourier Transform Infrared (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Adsorption-desorption nitrogen analysis and their photocatalytic efficiency was studied for methyl orange (MO) degradation. The hybrid almost achieved 100% of MO degradation within 210 minutes and shows the highest photocatalytic activity. Furthermore, It was fixed to the Langmuir–Hinshelwood model and the degradation of MO dye by each sample obeys first-order reaction kinetics that it shows a good performance of photodegradation rate of dyes by heterogenous catalyst. This is due the 1D/2D heterostructures of TiO$_2$NWs/RGO hybrid that has a large surface area, unique optical properties, flexible structure and excellent mobility of charge carriers.

Keywords: nanocomposites; photocatalyst; graphene; degradation; dye

I. INTRODUCTION

The industry is using various chemicals including dye in processes of textile manufacture has created a huge pollution problem as it is one of the most chemically intensive industries on earth, and the no. 2 polluter of clean water after agriculture (Khan et al., 2019). Dyes can be converted to the carcinogenic compounds or toxic. Seriously, it affects the aesthetic quality and transparency of water bodies such as rivers, lakes and others, leading to damage to the aquatic environment (Kamalan et al., 2018). There are many process of water treatment including traditional chemical, electrochemical and biological treatment, but this approach is limited due to low degradation performance, chemical consumption and the generation of secondary pollution (Abdel-Messih et al., 2013). To find a suitable process to remove these harmful pollutants, the photocatalysis seems to be a very economical and efficient approach to this issue (Makal & Das, 2019). An organic compound from dye can decompose into water (H$_2$O) and carbon dioxide (CO$_2$) in photodegradation of materials, which involve the generation of hydroxyl radicals (OH) that is powerful, non-selective chemical oxidant and acts very rapidly with most of the organic compounds (Pandey et al., 2015) in sufficient quantity to effect water purification. Recent research has shown that the Titanium Dioxide (TiO$_2$) materials synthesised by hydrothermal method can be used as photocatalyst to degrade a variety of organic contaminants (Zhao et. al., 2010; Santhi et al., 2019).

*Corresponding author’s e-mail: mdhasmizam@umt.edu.my
because of their being able to control particle size and nanostructure at low temperatures as well as being a cost-effective synthesis method accomplished of large-scale production (Asiah et al., 2013). Despite all the amazing properties of TiO₂ such as photostability, intrinsic electronic and surface properties, non-toxicity, cost-effectiveness, and environmental friendliness (Kumar & Devi et al., 2011; Schneider et al., 2014), it suffers from the small surface area, large band gap which inhibits about 4% of the sunlight and cause separation possibility of photo-induced electron-hole pairs in photocatalysts is low (Najafi et al., 2017). New ways to produce more effective photocatalysts like combining semiconductors, noble metal doping, and loading that recently gotten a lot of attention from many researchers. In addition, TiO₂-carbon composites can also show good photocatalytic activity under UV light (Liu & Zeng, 2008). As one of the most popular two-dimensional (2D) graphitic carbon materials, graphene possesses excellent physical and chemical properties (Zhao et al., 2014). Graphene and graphene derivatives are being used because of their special properties of high optical transparency, high electrical conductivity, and charge transport as well as have a large surface area (Gao et al., 2012; Li et al., 2018). Hybrid catalysts containing graphene oxide (GO) or reduced graphene oxide (RGO) seem to have greater absorptivity (Xie et al., 2015), rapid bonding of organic molecules to the surface active sites with functional groups (Wei et al., 2019), rapid charge separation, increased photocatalytic activity, and high conductivity with a large surface area (Akyüz et al., 2016). For instance, RGO shows a specific narrow band gap energy and visible light response eliminates deficiencies in degradation of dye (Gonçalves et al., 2019; Singh et al., 2020). RGO also was used as supports to remove the cationic impurities such as cationic dyes and heavy metal cations (Putri et al., 2016). In addition, The Langmuir–Hinshelwood Kinetic model was used to investigate the kinetics of photocatalyst in dye degradation (Bhatia & Verma, 2017). Because it allows one to assess photocatalytic activity irrespective of the earlier adsorption duration in the dark and the concentration of solute left in the solution, the apparent rate constant (k) has been chosen as the basic kinetic parameter for the various photocatalysts. Therefore TiO₂ nanowires (TiO₂NWs) was synthesised and coupled with Reduced Graphene Oxide (RGO) to produce TiO₂NWs/RGO hybrid photocatalyst for degradation of methyl orange dye.

II. MATERIALS AND METHOD

All chemicals and solvents were purchased from Merck (Germany). The apparatus and glassware were used are beakers (50ml, 100ml, 250ml and 500ml), Measuring cylinder (10ml, 50ml, 100ml), magnetic stirrer, hotplate stirrer, spatula, petri dishes, brush, pH paper, filter paper and 200 ml teflon autoclave reactor. Volumetric flask (1L), 10ml syringe and 0.5μm filter membrane of syringe, Buchner funnel, filter flask, thermometer and crucible.

A. Synthesis of Titanium Dioxide Nanowires (TiO₂NWs)

An amount 1g of TiO₂ was added to aqueous solution of 10M NaOH (100 ml) and the solution was stirred with the magnetic stirrer for 30 minutes to form homogeneous suspension and the resulting suspension solution was transferred into 80 ml Teflon-lined autoclave reactor for hydrothermal treatment at 160°C for 10 hours in the furnace. When the reaction is complete, the white precipitate was obtained was washed with deionised water followed by 0.1M HCl. The solution was filtered and washed with deionised water and ethanol, respectively to remove residual Na⁺. Then, the white precipitate was dried at 40°C for 24 hours in an oven. Lastly, the synthesised of TiO₂ was anneal at temperatures 500°C for 2 hours to form TiO₂ nanowires structure.

B. Synthesis of Reduced Graphene Oxide (RGO)

RGO was prepared from the source of graphite and using modified Hummers method that is usually used to generate GO due to the more stable nature in order to create more harmless and non-toxic including the addition of sodium nitrate, rather than the use of nitric acid as a solvent, to form nitric acid in the original site, and the use of potassium permanganate (KMnO₄) as an oxidiser instead of potassium chloride (KClO₃), which produces toxic chlorine dioxide gas (Smith et al., 2019). In a typical synthesis, 3 g of graphite powder and 1.5 g of NaNO₃ was poured into 23 ml of H₂SO₄ under rapid stirring to exfoliate the graphite flakes. After 30
minutes, 4 g of KMnO₄ was added into the reaction mixture slowly (maintain the temperature under 10 °C to avoid vigorous stirring) and the colour of the mixture turned purple-green. Next, the mixture solution was transferred into water bath and diluted with 46 ml of deionised water causing brown vapour evolution, resulting from the oxidation of KMnO₄ and the temperature was raised up to 98 °C. The mixture solution was diluted again with 140 ml of deionised water and the reaction was ended by addition 10 ml of H₂O₂ to eliminate residual KMnO₄ (the brown suspension changed to yellow colour). Further, the mixture solution was washed with 5% of HCl and repeated centrifuging with deionised water to completely remove residual H₂SO₄. To get in powder form, the synthesised product was dried in oven at 50 °C overnight. Dark brown precipitate as a GO is obtained and then put into the furnace at 500 °C for 2 hours to completely graphene oxide reduced.

C. Fabrication of TiO₂NWs/RGO Nanocomposites

1g of TiO₂NWs was added in 50 ml deionised water and put into ultrasonic for 30 minutes so that the solution was dispersed well. Next, the solution drop-wise into 1g of RGO nanosheets which dispersed in 100 ml deionised water. Then, the mixture solution mixed in ultrasonic for 3 hours. The obtained precipitate was centrifuged at 4000rpm (30 minutes). Finally, the precipitates were washed with deionised water several times and dried at 50 °C for 12 hours to remove residual H₂O and get TiO₂NWs/RGO in powder form.

D. Sample Characterisation

FTIR spectra were conducted on Niconet 5700 FTIR spectrometer with the sample was dispersed in potassium bromide (KBr). The analysis was done from 400 – 4000 cm⁻¹ wavenumber. X-ray diffraction (XRD) was utilised to study the crystal structure and XRD patterns were acquired on Bruker D8 Advance X-ray diffractometer (Bruker AXS, German) at a scanning speed of 0.2° s⁻¹ from 10 to 90° of 2θ. The surface morphology of catalyst was determined using scanning electron microscopy (SEM) JEOL JSM 6360LA at the operational voltage of 10 kV. N₂ adsorption-desorption isotherms were recorded using Micromeritics TriStar II, at −196.2 °C. Prior to this characterisation, samples were degassed at 120 °C for 2 h with nitrogen purging. Surface area, pore size and volume were determined using BET method. UV–Vis absorption spectra were analysed using a UV–Vis spectrophotometer (UV-2550, Shimadzu, Japan).

E. Photocatalytic Activity

An amount of catalyst was dissolved into 100ml of methyl orange solution (20ppm). Photocatalytic degradation was carried out in dark for 30 minutes to attain adsorption/desorption equilibrium between dye and photocatalyst. Next, the solution (10ml) of initial concentration (Co) was taken out and then the solution continuously stirred was exposed to UV light. UV light irradiation was provided by two 15 W of UV-B lamps with a fixed distance of 50cm between samples and lamp. To determine the degradation of dye, samples were filter by using 0.5 µm filter membrane after regular intervals (30 min) during the reaction. The progress of MO dye degradation was monitor by considering the change in absorption peaks at 300nm to 600nm range in UV-Vis spectra. The photo-degradation efficiency (η) was calculated using Equation (1):

Percentage degradation (%) = (Ao - At / Ao) X 100 \hspace{1cm} (1)

Where Ao and At are the initial photocatalytic activity and the after photocatalytic activity various intervals of time (t), respectively.

III. RESULT AND DISCUSSION

The prepared photocatalyst samples were characterised using various techniques in order to study their physical and chemical properties. The photocatalytic activity was evaluated for degradation of methyl orange (MO) under dark and ultra-violet (UV) irradiation. The last part elaborates result and finding on kinetic studies that contribute to the good performance of photocatalyst.

A. Functional Group Analysis

The FTIR spectra of TiO₂NWs, RGO and TiO₂NWs/RGO hybrid photocatalyst samples were shown in Figure 1. Water (H₂O) molecules were present on the pure RGO and TiO₂NWs/RGO hybrid surfaces attributing to the existence of a broad peak around 3500-3400 cm⁻¹, which is assigned
to O-H stretching mode of H₂O. Pure TiO₂NWs sample free from a water molecule and other contamination as an only single broad band was observed below 1000 cm⁻¹ with maximum intensity at 498 cm⁻¹ due to the metal and oxygen bond of O-Ti-O stretching (Makal & Das, 2019). For pure RGO sample Figure 1(ii), a peak around 1600 cm⁻¹ was observed with low-intensity corresponding to the C=O aromatic of RGO molecule structure. On top of that, C-O stretching mode within 1250-1050 cm⁻¹ suggesting the formation of RGO (Maruthamani et al., 2015). The Peak at 1719 cm⁻¹ corresponds to the carbonyl group (C=O) of carboxylic acid located at the surfaces of RGO nanosheets, indicating deoxidation of graphene oxide as during RGO synthesis (Bashiri et al., 2020). The stretching band corresponds to C-OH and C-O symmetric stretching respectively at 1385 cm⁻¹ and 1049 cm⁻¹ (Khan et al., 2019). Complete GO reduction was accomplished because no apparent peaks could be detected, indicating that all functional groups of carbon-oxygen existed, but their characteristic peaks are only very small. C=C stretching mode shifted slightly to a higher wavelength number 1616 cm⁻¹, probably due to the interaction of TiO₂NWs with RGO. While the peak belongs to Ti-O-Ti vibration is remained almost similar with the pure TiO₂ sample. In addition, the high absorption bands measured in the range 400–1000 cm⁻¹ indicated the existence of Ti–O–C and Ti–O–Ti bonds in the samples representing the chemical bonding between the TiO₂ surface hydroxyl groups and the graphene oxide functional group (Nguyen-Phan et al., 2011).

![Figure 1. FTIR spectra of TiO₂NWs, RGO and TiO₂NWs/RGO](image)

B. Crystal Structure and Crystallinity

Figure 2(i) shows the XRD pattern of TiO₂NWs containing the peaks at 25.3, 37.8, 48.0, 53.9, 55.1, 62.7, 68.8, 70.3, and 75.0° can be indexed to (101), (004), (200), (105), (211), (204), (116), (220) and (215) tetragonal crystal planes of anatase TiO₂, as reported by other researchers previously (AlShammari et al., 2020). Interestingly, no peaks assigned to the rutile and brookite phase were observed even though the sample had been calcined at 500°C during the preparation of TiO₂NWs. Anatase is most stable at low particle sizes (< 22 nm), while rutile phase is more stable in its bulk form. Because of its stability in the nanometer range, anatase is considered more suitable for catalytic applications (Barnard & Curtiss, 2005). Anatase phase has a stronger photocatalytic property due to the higher electron mobility in the anatase crystal structure and stable at high temperature compared to rutile and brookite metastable at high temperature (Marien et al., 2016; Hatefi et al., 2021).

The structure modification of anatase TiO₂ is used to decrease electron-hole recombination due to its low electron mobility, oxygen vacancy defects in surface TiO₂ and poor structural stability against UV light (Shymanovska et al., 2021). Anatase has an indirect band gap while rutile and brookite have direct band gaps. The indirect band gap helps in delaying the recombination of photogenerated electron–hole pairs (Piler et al., 2020). Also, the photogenerated charge carriers or excitons in anatase can easily diffuse to the surface to take part in photoreduction and photooxidation reactions as they have the lightest average effective mass when compared to rutile and brookite (Piler et al., 2020).

The characteristic diffraction of TiO₂NWs/RGO in Figure 2(iii) at approximately 25.4°, 40°, and 49.3° are corresponding to the (101), (004), and (200) plane and all the diffraction peak can be indexed to anatase TiO₂ phase structured (JCPDS: No.71–1166), which indicate the existence of TiO₂ in the targeted hybrid samples. The strong (101) plane reflections of the TiO₂NWs also masked the weak and broad characteristic peak of RGO at 2θ ~ 25° (Maruthamani et al., 2015). On top of that in Figure 2(iii), it can be seen that the intensity of the TiO₂ anatase peaks decreases after modification with RGO and pure RGO shows a broad peak that could be easily overlapped with the anatase peak when the amount of graphene in the prepared
sample is relatively low, suggesting that homogeneous mixture of TiO$_2$NWs and RGO in nanocomposite materials was obtained.

![XRD patterns for TiO$_2$NWs, RGO and TiO$_2$NWs/RGO](image)

Figure 2. XRD patterns for TiO$_2$NWs, RGO and TiO$_2$NWs/RGO

RGO was formed from the source of graphite, a sharp peak was observed at 26.5° assigned to (002) together with the extra peaks at 45° and 55° attributed to the (101) and (004) planes of aromatic graphite in Figure 3(i), respectively. In contrast Figure 3(ii), the peaks of (002) shifted to a lower 2θ value from 26.5° to 11.8° for graphene oxide (GO) sample suggesting that the oxidation of graphite had occurred. Interestingly, it can be observed that the sharp peak at 11.8° which is assigned to (002) planes of aromatic GO is disappeared and shifted with low intensity when the GO has been converted into RGO. The reformation of the peak at 2θ = 25.7° confirmed the production of RGO attributed to the restoration of C-C bonding resulted from the reduced graphene oxide sheets in Figure 3(iii) (Ikram et al., 2020).

![XRD patterns for Graphite, GO and RGO](image)

Figure 3. XRD patterns for Graphite, GO and RGO

![SEM image for TiO$_2$NWs, RGO and TiO$_2$NWs/RGO](image)

Figure 4. SEM image for TiO$_2$NWs, RGO and TiO$_2$NWs/RGO

C. Surface Morphological Analysis

SEM analysis was carried out to investigate the surface morphology of TiO$_2$NWs/RGO. The SEM image of the TiO$_2$NWs/RGO hybrid in Figure 4 displayed that TiO$_2$NWs around 20-30 nm in size are unevenly immobilised on the RGO layers (two-dimensional structure interlinking with wrinkles on the edge). In addition, the SEM image of the TiO$_2$NWs/RGO (Figure 4) demonstrated the presence of 0.35 nm interlayer spacing coincides with the (101) lattices spacing of anatase TiO$_2$ (Geng et al., 2019; Boruah et al., 2019), and there are abundant oxygen holes on the anatase TiO$_2$ (101) crystal surface, which can be used as electron adsorption centres in the photocatalytic process, thereby efficiently promoting the photocatalytic reaction of methyl orange dye.

D. Surface Textural Analysis

Surface texture study the Brunauer-Emmet-Teller (BET) theory is well-known as a valuable method for studying the surface texture properties of solid powders. The typical N$_2$ adsorption-desorption isotherms of individual and hybrid samples are illustrated in Figure 5. As shown, adsorption and desorption divisions are close for each isotherm, representing the formation of uniform pores in the sample
(Norouzi et al., 2021). The specific surface area and porosity influence the efficiency of the photocatalyst. The S_{BET} has shown that the surface areas of pure TiO$_2$ are low only 29.97 m2/g attributed to their agglomerated elongated TiO$_2$ nanowires in bulk form. On the other hand, both pure RGO and TiO$_2$NWs/RGO hybrid samples had large surface areas which is 103.61 m2/g and 102.05 m2/g, respectively. The samples display a similar pattern which is type IV having a hysteresis loop at relative pressure between 0.6 and 1, indicating pore size distributions in the mesoporous region (2 to 50 nm) as shown in Figure 4. Meanwhile, the hysteresis observed in the isotherms plot is matched with the H$_3$ type characteristic for the slit-shaped pores. A large specific surface area could provide more surface-active sites and facilitate the migration of charge carriers, which is useful to improve the photocatalytic performance, this benefits the photodegradation efficiency (Norouzi et al., 2021). Somehow, the surface area of the TiO$_2$NWs/RGO hybrid sample is slightly lower as compared to pure RGO due to the presence of TiO$_2$NWs into/onto layered RGO which will block their pores (Prasad et al., 2020). A similar pattern was obtained for the pore volume of the samples as RGO displays the highest values with 0.574 cm3/g followed by TiO$_2$NWs/RGO hybrid and pristine TiO$_2$NWs samples which are 0.490 cm3/g, and 0.233 cm3/g, respectively.

E. Photocatalytic Activity

Figure 6 shows the photocatalytic activity of pristine TiO$_2$NWs, RGO and TiO$_2$NWs/RGO hybrid samples were investigated for methyl orange (MO) degradation under dark conditions and UV light. After 30 minutes, in dark condition the removal of MO was found to be 11%, 19%, 33% for TiO$_2$NWs, RGO and TiO$_2$NWs/RGO, respectively. Highest removal of MO using hybrid sample because of the synergy effect from TiO$_2$NWs and RGO. RGO has excellent in the mobility of charge carrier bring out fast absorption (Singh et al., 2020) while elongated TiO$_2$ nanowires support further on adsorption of MO onto the hybrid sample. Moreover, the adsorption capacity of RGO has reached the maximum level after 2 hours. However, pure TiO$_2$NWs cannot fully degrade MO even after 3.5 hours of reaction due to their limited active site and fast electron and hole recombination in Figure 5. Figure 6 below shows the photodegradation reactions which take place on the surface of photocatalyst.

![Figure 5](image_url)

Figure 5. N2 adsorption-desorption isotherms of (a) TiO$_2$NWs, (b) RGO and (c) TiO$_2$NWs/RGO

![Figure 6](image_url)

Figure 6. Percentage degradation of TiO$_2$NWs, RGO and TiO$_2$NWs/RGO within 210 minutes
Interestingly, in this study, the TiO$_2$NWs/RGO hybrid photocatalyst sample gave the highest degradation rate of MO with 92% at 210 minutes reaction. These results could be correlated to the enlargement of the active sites accessible to the pollutant molecules. Therefore, the combination of TiO$_2$NWs with other high surface materials could enhance their photocatalytic activity. However, Table 1 compiles the results found in the literature for MO dye degradation with different photocatalysts for comparison with the TiO$_2$NWs/RGO hybrid catalyst presented here, which showed increased photocatalytic activity.

In a typical heterogeneous photocatalytic process, when an equilibrium adsorption process of the oxidant and the reductant species occurs based on the Langmuir type of adsorption, the adsorption extent of these materials plays a highly important role in the rate of the photodegradation process (Nourouzi et al., 2021). Thus, the Langmuir-Hinshelwood (L-H) model has been widely used for studying the kinetic futures of heterogeneous photocatalysis processes. Generally, the presence of both the oxidant and the reductant in a monolayer at the solid-liquid interface is known as the controlling factor for the rate-determining step of the reaction (Sajjad et al., 2010). Considering that the solid catalyst is present in a heterogeneous solid phase in the heterogeneous photocatalysis process and its amount is also important in the photodegradation rate, the process is considered as an apparent first-order equation (Sajjad et al., 2010).

However, reaction kinetics is studied in this research to estimate the order of photocatalytic degradation reaction and the adsorption capacity of the different materials. Hybrid TiO$_2$NWs/RGO has a percentage dye removal efficiency of 92.42%. Figure 7 shows the correlation coefficient for the pseudo-first-order kinetic model is good for heterogeneous catalyst. Photocatalytic activity occurs as a result of the interaction of photocatalyst and UV irradiation that yields highly reactive hydroxyl radicals, which are believed to be the main species responsible for oxidation (Sakka, 2013). It has been found that for degradation of MO dye each sample obeys first-order reaction kinetics. It was fixed to the Langmuir–Hinshelwood model by plotting ln (C$_0$/C$_t$) against the irradiation time (t) to obtain straight lines with linear regression coefficients (R2). Where C$_0$ and C$_t$ (both in mgL$^{-1}$) are the initial and remaining concentration of MO in solution, respectively, and C$_t$ is the absorbance at any irradiation time. The pseudo-first-order rate constants, k (min$^{-1}$) for every photocatalyst were calculated from the slopes of the plots and are presented in Table 2. This study confirms that TiO$_2$NWs/RGO is responsible for the rapid degradation of MO dye.

Table 1. Summary of recent research reports on methyl orange degradation activity

<table>
<thead>
<tr>
<th>Photocatalyst</th>
<th>Mo Dye</th>
<th>Efficiency (%)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO$_2$NWs/RGO (0.1 g)</td>
<td>20 ppm (100 ml)</td>
<td>92% after 210 min under UV light</td>
<td>This study</td>
</tr>
<tr>
<td>CoFe$_2$O$_4$-Ag$_2$O (3 g)</td>
<td>20 ppm (200 ml)</td>
<td>85% after 240 min under UV light</td>
<td>Sun et al., 2020</td>
</tr>
<tr>
<td>Cu-doped ZnO (0.1g)</td>
<td>20 ppm (100 ml)</td>
<td>88% after 240 min under UV light</td>
<td>Fu et al., 2011</td>
</tr>
<tr>
<td>SnSO$_4$-TiO$_2$ (0.3g)</td>
<td>20 ppm (75 ml)</td>
<td>91.3% after 14 hours under visible light</td>
<td>Yao et al., 2021</td>
</tr>
<tr>
<td>TiO$_2$/ZnO/rGO (0.5g)</td>
<td>20 ppm (1L)</td>
<td>44.2% after 180 min under UV light</td>
<td>Hieu et al., 2019</td>
</tr>
<tr>
<td>Ag/TiO$_2$ (0.1 g)</td>
<td>30 ppm (100 ml)</td>
<td>35% after 120 min under UV light</td>
<td>Zheng et al., 2019</td>
</tr>
</tbody>
</table>
IV. CONCLUSION

The TiO$_2$NWs/RGO nanocomposite was made using a fabrication method. FTIR analysis shows the presence of functional group of TiO$_2$NWs, RGO and XRD pattern confirmed the existence of both materials. Agglomerated TiO$_2$ nanowires (1D) and a layered structure (2D) of RGO were shown by SEM micrographs. The large surface area of the hybrid increases the photocatalytic efficiency of methyl orange dye degradation. The successful separation of photogenerated carriers and the wide optical absorption, both owing to the interaction developed between TiO$_2$NWs/RGO contributed to the photocatalytic efficiency capability.

V. ACKNOWLEDGEMENT

The authors are grateful to Universiti Malaysia Terengganu (UMT) for facilities and Malaysia Ministry of Higher Education for the financial support vote (FRGS/1/2019/STG07/UMT/02/2).

VI. REFERENCES

Sun, F, He, J, Wu, P, Zeng, Q, Liu, C & Jiang, W 2020, 'Magnetic photocatalyst CoFe2O4-Ag2O with magnetic aggregation bed photocatalytic reactor for continuous photodegradation of methyl orange', Chemical Engineering Journal, pp. 125-397.

