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This work is aimed at obtaining the energy eigenvalues for one-dimensional quantum harmonic and 

anharmonic oscillators perturbed by linear, quadratic, cubic and polynomial potentials. To obtain the 

solutions of the energy eigenvalues, we employed the time-independent perturbation theory to calculate 

the first and the second-order energy correction, which we used to obtain the complete generalised energy 

eigenvalues of the quantum harmonic oscillators with linear, quadratic, cubic and polynomial 

perturbation potential of the same unperturbed Hamiltonian (𝐻). 
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I.      INTRODUCTION 

 
The quantum harmonic and anharmonic oscillators have 

important applications in all areas of physics. Specifically, a 

harmonic oscillator is a model that has an important analogy 

when describing physical systems (Halil, 2018; Habtamu, 

2019). Harmonic oscillator eigenvalue problems can be 

solved analytically (Mojtaba & Davood, 2002); but in cases 

where the exact solution of a problem cannot be found, it is 

more appreciable to use approximation methods such as 

perturbation theory, variational method or Wentzel, Kramers 

and Brillouin (WKB). The perturbation theory approach has 

been adopted in several ways to obtain the energy eigenvalues 

of the harmonic oscillator (David, 2016; Nouredine et al., 

2009). 

Most quantum mechanical problems are solved by 

harmonic oscillator analogy with appropriate boundary 

conditions. Eigenvalue perturbation theory was first used by 

Lord Rayleigh in acoustics and Schrodinger in his 

fundamental series introduced the quantum theory in the 

20th century (Mbagwu et al.,   2020). In remembrance of their 

contributions, the series is called Rayleigh–Schrodinger 

perturbation theory but the mathematical foundations were 

only adopted by Rellich a few years ago (Barry, 1991; Rellich, 

1937). In recent years, immense contributions have been 

made to develop mathematical methods for solving 

eigenvalues and eigenfunctions of the quantum harmonic 

and anharmonic oscillators such as the SU (2) group method 

(SGM) (Kunihiro, 1993). However, perturbation theory is a 

method used in obtaining an approximate solution of an 

exact harmonic oscillator problem (Sergei, 2006). Thus, 

numerical and analytical procedures can be used to calculate 

these perturbed harmonic oscillators with theoretical 

contributions (Louisell, 1973; Peidaee et al., 2007).  

The anharmonic oscillator is one of the key models in 

solving problems in physics (Bender & Wu, 1969; Bhaumik & 

Dutta, 1975; Hioe et al., 1978). It can be solved using either 

the analytical method or approximation method (Hsue & 

Chern, 1984; Chahjilany et. al., 1991; Bacus et al., 1995). The 
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anharmonic quantum oscillator with quartic potential has 

been solved using a different approach (McRae & Vrscay, 

1997; Ivanov, 1998; Ferńandez & Guardiola, 1993). Quantum 

anharmonic oscillator with sextic, octic, decatic and the 

generalised nth term of the potentials has equally been solved 

recently (Sќala et. al., 1999; Sharma & Fiase, 2000; 

Speliotopoulos, 2000). A lot of studies have been done on an 

anharmonic oscillator with only one perturbation term 

(Jafarpour et. al., 2003; Vinett & Čižek, 1991; Matamala & 

Maldonado, 2003). The goal of this work is to calculate the 

first and second-order energy correction and obtained the 

generalised energy eigenvalues for the quantum harmonic 

and anharmonic oscillator with linear, quadratic, cubic and 

polynomial potential by using the perturbation method 

whose Hamiltonian as in (Ariel & Philippe, 2018) is given by: 

 

𝐻0 =  
𝑃2

2𝑚
+  

1

2
 𝑚𝜔2𝑥2                                                                    (1)  

 

where 𝑥 𝑖𝑠 𝑡ℎ𝑒  position operator, 𝑚 𝑖𝑠 𝑡ℎ𝑒 mass of the 

particle, 𝑝 𝑖𝑠 𝑡ℎ𝑒 linear momentum operator and 𝜔 𝑖𝑠 𝑡ℎ𝑒 

angular frequency. 

 

II.   ONE DIMENSIONAL QUANTUM                   
HARMONIC OSCILLATOR WITH LINEAR 

PERTURBATION POTENTIAL 
 

Considering a particle with a linear perturbation Potential 

given as; 

 
 𝐻′ =  𝜆1𝑥                                                                                          (2) 

 
where 𝜆1 is the perturbation coefficient. Hence, the total 

Hamiltonian then becomes;  

 
 𝐻 = 𝐻0 + 𝐻′                                                                                    (3) 

 

Such that; 

 

 𝐻 =  
𝑃2

2𝑚
+ 

1

2
 𝑚𝜔2𝑥2 + 𝜆1𝑥                                                        (4) 

 

At this point, we seek to determine the correction of first-

order energy and second-order energy by using first order 

and second order energy shift formulas. 

 

 

A. First Order Energy Shift 
 

 𝐸𝑛
1 =  〈𝜓𝑛

0│𝐻′│𝜓𝑛
0〉                                                                 (5) 

 

where 𝐻′ is the perturbed Hamiltonian of the system and 𝜓𝑛
0 

is the unperturbed wave function of the system. Hence, 

substituting Equation (2) into Equation (5) that is; 

 

 𝐸𝑛
1 =  𝜆1〈𝜓𝑛

0│𝑥│𝜓𝑛
0〉                                                               (6) 

 

If 𝜓𝑛
0 = 𝑛 in which 𝑛 is the 𝑛𝑡ℎ  eigenfunction. Therefore, we 

have that;  

 

 𝐸𝑛
1 =  𝜆1〈𝑛│𝑥│𝑛〉                                                                         (7) 

 

For the harmonic oscillator the position function 𝑥 is 

expressed in terms of ladder operators coined from Dirac 

Operator Technique which is; 

 

 𝑥 =  √
ћ

2𝑚𝜔
 [𝑎† + 𝑎]                                                                      (8)   

 

where 𝑎† is the step-up (creation) operator and 𝑎 is the step-

down (annihilation) operator. Note: If they don’t have the 

same number of step-up or step-down operators the function 

will not be part of the state because they will annihilate each 

other and hence alter the state (Mbagwu et al., 2021).  

Thus, substituting Equation (8) into Equation (7), we then 

have;    

 𝐸𝑛
1 =  𝜆1√

ћ

2𝑚𝜔
                                                                              (9) 

 

Applying the operator properties that is; 

𝑎†│𝑛⟩ √𝑛 + 1 │𝑛 + 1⟩                                                             (10𝑎)         

 

𝑎│𝑛⟩ √𝑛│𝑛 − 1⟩                                                                         (10𝑏)   

 

Substituting Equation (10a) and (10b) into Equation (9) so 

we have; 

𝐸𝑛
1 = 𝜆1√

ћ

2𝑚𝜔
 (√𝑛 + 1 ⟨𝑛 │𝑛 + 1⟩ + √𝑛 ⟨𝑛 │𝑛 − 1⟩)     (11) 
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From the orthogonality condition of ket and bra of;  

 

〈𝑚│𝑛 〉 =  {
1 𝑖𝑓 𝑚 = 𝑛
0 𝑖𝑓 𝑚 ≠ 𝑛

   

 

The ket and bra function in Equation (11) are not equal, thus 

we can generalise that; 

 

 𝐸𝑛
1 = 0                                                                                          (12) 

 

Therefore Equation (12) is the first-order energy correction 

to the eigenvalue 𝐸𝑛 of a one-dimensional quantum harmonic 

oscillator with a linear perturbation potential. 

 

B. Second-Order Energy Shift 
 

Here we seek to obtain the second-order energy correction, 

using the eigenvalue fundamental equation of the second-

order perturbation theory which is given as (Habtamu, 2019). 

𝐸𝑛
2 = ∑

│〈𝜓𝑚
0│𝐻′│𝜓𝑛

0〉│2

𝐸𝑛
0 − 𝐸𝑚

0                                        (13)

𝑛 ≠𝑚

 

 

𝜓𝑚
0 and 𝜓𝑛

0in Equation (13) represents the eigenstates 

for 𝑚th𝑎𝑛𝑑 𝑛th 𝑖𝑛𝑔𝑒𝑟𝑠, where 𝐸𝑛
0𝑎𝑛𝑑 𝐸𝑚

0 are the ground 

state energy of a harmonic oscillator for 𝑚th𝑎𝑛𝑑 𝑛th 𝑖𝑛𝑔𝑒𝑟𝑠 

and 𝐻′ is the perturbation Hamiltonian. 

Solving the numerator of the function in Equation (13) 

separately which is: 

 

〈𝜓𝑚
0│𝐻′│𝜓𝑛

0〉                                                                             (14)   

                                       

Hence substituting Equation (2) into Equation (14) we have 

that; 

 

  〈𝜓𝑚
0│𝐻′│𝜓𝑛

0〉 =  𝜆1                                                                   (15) 

 

where 𝜓𝑚
0 = 𝑚 and  𝜓𝑛

0 = 𝑛; in which 𝑚 𝑎𝑛𝑑 𝑛 are the 𝑚th 

and 𝑛th eigenfunction. Therefore, substituting Equation (8) 

into Equation (15), hence we have; 

 

〈𝜓𝑚
0│𝐻′│𝜓𝑛

0〉 = 𝜆1 √
ћ

2𝑚𝜔
〈𝑚│𝑎† +  𝑎│𝑛〉                        (16)  

 

Applying the operator properties in Equation (10a) and 

(10b) into Equation (16), thus having that;  

 

 〈𝜓𝑚
0│𝐻′│𝜓𝑛

0〉 =  𝜆1√
ћ

2𝑚𝜔
 (√𝑛 + 1 ⟨𝑚 │𝑛 + 1⟩                       

+ √𝑛 ⟨𝑚 │𝑛 − 1⟩)                                         (17) 

 

Applying the Kronecker delta function, it is important to 

note from Equation (17) that; 

 

⟨𝑚 │𝑛 + 1⟩ =  𝛿𝑚,𝑛+1                                                          (18a) 

⟨𝑚 │𝑛 − 1⟩ =  𝛿𝑚,𝑛−1                                                          (18b) 

 

Therefore, substituting Equation (18a) and (18b) into 

Equation (17), thus we have; 

 

〈𝜓𝑚
0│𝐻′│𝜓𝑛

0〉 =  𝜆1√
ћ

2𝑚𝜔
 (√𝑛 + 1 𝛿𝑚,𝑛+1

+ √𝑛 𝛿𝑚,𝑛−1)                                                  (19) 

 

Hence putting Equation (19) into Equation (13), Equation 

(20) becomes; 

𝐸𝑛
2 = ∑

│𝜆1√ ћ
2𝑚𝜔

 (√𝑛 + 1 𝛿𝑚,𝑛+1 + √𝑛 𝛿𝑚,𝑛−1)│2

𝐸𝑛
0 − 𝐸𝑚

0   (20)

𝑛 ≠𝑚

 

 

here 𝐸𝑛
0𝑎𝑛𝑑  𝐸𝑚

0 are the ground state energy of a harmonic 

oscillator given by;  

 

𝐸𝑛
0 =  (𝑛 +

1

2
) ћ𝜔                                                                     (21a)       

𝐸𝑚
0 =  (𝑚 +

1

2
) ћ𝜔                                                                   (21b) 

 

𝐸𝑛
2 =

𝜆1
2

2𝑚𝜔2
∑

│√𝑛 + 1 𝛿𝑚,𝑛+1 + √𝑛 𝛿𝑚,𝑛−1│2

𝑛 − 𝑚
       (22)

𝑛 ≠𝑚

 

 

If 𝑚 =  𝑛 + 1;  𝑚 =  𝑛 − 1 we obtain that; 

𝐸𝑛
2 =

𝜆1
2

2𝑚𝜔2                                                                                     (23)  

 

Therefore Equation (23) is the second-order energy 

correction to the eigenvalue 𝐸𝑛 of a one-dimensional 
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quantum harmonic oscillator with a linear perturbation 

potential. Thus, to get the complete eigenvalue of the system. 

The general expression of energy function due to 𝐻′ for any 

perturbation is given by; 

 𝐸𝑛 = 𝐸𝑛
0 + 𝐸𝑛

1 + 𝐸𝑛
2

                                                               (24) 

 

Therefore, inserting Equation (21a), (12) and (23) into 

Equation (24) to obtain the general expression of the energy 

correction. That is; 

 

 𝐸𝑛 =  (𝑛 +
1

2
) ћ𝜔 +

𝜆1
2

2𝑚𝜔2                                                          (25) 

 

where n is a positive integer (𝑛 =  0, 1, 2, 3 … . . ). Therefore 

Equation (25) gives the exact correction to the energy and 

also the complete eigenvalues for the first and second 

approximation of one-dimensional quantum harmonic 

oscillator perturbed by a linear potential.  

 

III.      ONE DIMENSIONAL QUANTUM 
HARMONIC OSCILLATOR WITH 

QUADRATIC PERTURBATION POTENTIAL 
 

Now consider a quantum harmonic oscillator with 

unperturbed Hamiltonian (𝐻0), which is already stated in 

Equation (1). Suppose that the system is perturbed with a 

quadratic potential so that; 

 
 𝐻′ =  𝜆2𝑥2                                                                                     (26) 

 
Equation (26) is added to the unperturbed 

Hamiltonian (𝐻0), in Equation (3). Hence we have that;    

 

 𝐻 = 𝐻0 + 𝐻′ =
𝑃2

2𝑚
+  𝜆2𝑥2                                                      (27) 

 

At this point, we seek to determine the correction of the first 

and second-order energy by applying the first and second-

order energy shift formulas. 

 

A. First Order Energy Shift 
 

Since the formula for the first-order energy correction in 

Equation (5) is; 𝐸𝑛
1 = 〈𝜓𝑛

0│𝐻′│𝜓𝑛
0〉. Thus, putting Equation 

(26) into Equation (5), we have that;  

 

 𝐸𝑛
1 =  𝜆2〈𝜓𝑛

0│𝑥2│𝜓𝑛
0〉                                                           (28) 

 

If  𝜓𝑛
0 = 𝑛 in which 𝑛 is the 𝑛th eigenfunction then;

 

𝐸𝑛
1 =  𝜆2〈𝑛│𝑥2│𝑛〉                                                                           (29) 

 

Applying the ladder operators stated in Equation (8) that is; 

 

        𝑥 =  √
ћ

2𝑚𝜔
 [𝑎† + 𝑎] but for 𝑥2 we have that 

𝑥2  =  
ћ

2𝑚𝜔
 [𝑎† + 𝑎]

2
                                                                   (30)   

 

Hence inserting Equation (30) into Equation (29), we now 

have that; 

  

 𝐸𝑛
1 =  𝜆2 ( 

ћ

2𝑚𝜔
) 〈𝑛│[𝑎† + 𝑎]

2
│𝑛〉                                       (31) 

 

Expanding the ladder operator in Equation (31) we then 

have that; 

𝐸𝑛
1 =  

𝜆2ћ

2𝑚𝜔
 〈𝑛│𝑎†𝑎† + 𝑎𝑎 + 𝑎†𝑎 + 𝑎𝑎†│𝑛〉              (32) 

 

Applying the operator properties in Equation (10a) and 

(10b) we now have that; 

 

                     𝐸𝑛
1      =        

 𝜆2ћ

2𝑚𝜔
 (√(𝑛 + 1)(𝑛 + 2) ⟨𝑛 │𝑛 + 2⟩

+ √(𝑛 − 1)𝑛 ⟨𝑛 │𝑛 − 2⟩ + 2𝑛

+  1⟨𝑛 │𝑛⟩)                                                    (33) 

Applying the orthogonality condition, we have; 

 

 𝐸𝑛
1 =  

 𝜆2ћ

𝑚𝜔
(𝑛 +

1

2
)                                                                      (34) 

 

Therefore Equation (34) is the first-order energy correction 

to the eigenvalue 𝐸𝑛 of a one-dimensional quantum harmonic 

oscillator. 

 

B. Second-Order Energy Shift 
 

Here we seek to obtain the second-order energy correction 

using the eigenvalue fundamental equation of the second-

order perturbation theory which is already stated in Equation 
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(13); substituting Equation (26) into the numerator of 

Equation (13) we the have; 

 

〈𝜓𝑚
0│𝐻′│𝜓𝑛

0 = 𝜆2〈𝑚│𝑥2│𝑛〉  〉                                     (35) 

 

Therefore, substituting Equation (30) into Equation (35) 

hence we have that;  

〈𝜓𝑚
0│𝐻′│𝜓𝑛

0〉 = 𝜆2 ( 
ћ

2𝑚𝜔
) 〈𝑚│[𝑎† + 𝑎]

2
│𝑛〉        (36) 

 

Expanding the ladder operator in Equation (36) hence we 

have that; 

  =
𝜆2ћ

2𝑚𝜔
〈𝑚│𝑎†𝑎† + 𝑎𝑎 + 𝑎†𝑎 + 𝑎𝑎†│𝑛〉                      (37) 

 

Applying the operator properties in Equation (10a) and 

(10b) into Equation (32), thus having that; 

 

〈𝑚│𝐻′│𝑛〉 =  
𝜆2ћ

2𝑚𝜔
 (√(𝑛 + 1)(𝑛 + 2) 𝛿𝑚,𝑛+2  +

                          √(𝑛 − 1)𝑛 𝛿𝑚,𝑛−2 + (2𝑛 + 1)𝛿𝑚,𝑛)                  (38)    

 

 
Inserting Equation (38) into Equation (13) then we have that; 

 

𝐸𝑛
2 = ∑

│
𝜆2ћ

2𝑚𝜔
 (√(𝑛 + 1)(𝑛 + 2) 𝛿𝑚,𝑛+2 + √(𝑛 − 1)𝑛 𝛿𝑚,𝑛−2 + (2𝑛 + 1)𝛿𝑚,𝑛) │2

𝐸𝑛
0 − 𝐸𝑚

0  

                 
 

             (39)

𝑛 ≠𝑚

 

 

From Equation (39), the first term contributes when 𝑚 =

 𝑛 + 2, the second term contributes when 𝑚 = 𝑛 − 2, but the 

third term contributes only when 𝑚 = 𝑛, which is excluded in 

our relation. Hence substituting Equation (21a) into 

Equation (39), we get;  

 

𝐸𝑛
2 =  

𝜆2
2ћ

4𝑚2𝜔3
[−

1

2
(𝑛 + 1)(𝑛 + 2) +

1

2
𝑛(𝑛 − 1)]               (40) 

 

Solving Equation (40) further we finally obtain that; 

 

 𝐸𝑛
2 = − 

𝜆2
2ћ

2𝑚2𝜔3  (𝑛 +
1

2
)                                                            (41) 

 

Therefore Equation (41) is the second-order energy 

correction to the eigenvalue 𝐸𝑛 of a one-dimensional 

quantum harmonic oscillator with a quadratic perturbation 

potential. Hence, inserting Equation (21a), (34) and (41) into 

Equation (24) to get the complete eigenvalue of the system. 

The general expression of energy function due to 𝐻′ for any 

perturbation now becomes; 

 

 𝐸𝑛 = ћ𝜔 (𝑛 +
1

2
) +

𝜆2ћ

𝑚𝜔
(𝑛 +

1

2
) −  

𝜆2
2ћ

2𝑚2𝜔3  (𝑛 +
1

2
)             (42) 

 

 

 

Equation (42) can be solved further to obtain that; 

 

 𝐸𝑛 = ћ𝜔 (𝑛 +
1

2
) [1 +

𝜆2

𝑚𝜔2
+

𝜆2
2

2𝑚2𝜔4
 ]                                    (43) 

 

where n is a positive integer 𝑖. 𝑒. (𝑛 =  0, 1, 2, 3 … . . ). Therefore 

Equation (43) gives the exact correction to the energy and 

also the complete eigenvalues for the first and second 

approximation of one-dimensional quantum harmonic 

oscillator perturbed by a quadratic potential.   

 

IV.  ONE DIMENSIONAL QUANTUM                      
HARMONIC OSCILLATOR WITH CUBIC 

PERTURBATION POTENTIAL 
 

This time we will consider a cubic potential perturbing on the 

same unperturbed Hamiltonian(𝐻0). The cubic perturbation 

potential is given as; 

 
 𝐻′ = 𝜆3𝑥3                                                                                      (44) 

 
Inserting Equation (44) and Equation (1) into Equation (3) 

so that the total Hamiltonian become;  

 

  𝐻 =  
𝑃2

2𝑚
+ 

1

2
 𝑚𝜔2𝑥2 + 𝜆3𝑥3                                                  (45) 
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To solve for the correction of the first-order energy and 

second-order energy by using the first order and second order 

energy shift formula, we adopted the method of perturbation 

theory. 

A. First Order Energy Shift 
 

Adopting Equation (5) which is 𝐸𝑛
1 = 〈𝜓𝑛

0│𝐻′│𝜓𝑛
0〉. Thus, 

putting Equation (44) into the equation we have that;  

 

 𝐸𝑛
1 = 𝜆3〈𝜓𝑛

0│𝑥3│𝜓𝑛
0〉                                                           (46) 

 

If  𝜓𝑛
0 = 𝑛 in which 𝑛 is the 𝑛th eigenfunction, therefore; 

 

𝐸𝑛
1 =  𝜆3〈𝑛│𝑥3│𝑛〉                                                              (47) 

 

Applying the ladder operators stated in Equation (8) that is; 

 𝑥 =  √
ћ

2𝑚𝜔
 [𝑎† + 𝑎] , but for 𝑥3 we have that 

𝑥3  =  (
ћ

2𝑚𝜔
)

3

2
 [𝑎† + 𝑎]

3
                                                            (48)   

 

Hence inserting Equation (48) into Equation (47), we now 

have that;  

 

 𝐸𝑛
1 =   𝜆3 (

ћ

2𝑚𝜔
)

3

2 〈𝑛│[𝑎† + 𝑎]
3

│𝑛〉                                      (49) 

 
Expanding the ladder operator in Equation (49) we then 

have that; 

𝐸𝑛
1 = 𝜆3 (

ћ

2𝑚𝜔
)

3
2

 〈𝑛│𝑎†𝑎†𝑎† + 𝑎𝑎𝑎† + 𝑎†𝑎†𝑎 + 𝑎𝑎†𝑎†

+ 𝑎†𝑎†𝑎 + 𝑎𝑎𝑎 + 𝑎†𝑎𝑎

+ 𝑎𝑎𝑎†│𝑛〉                                                      (50) 

 

𝐸𝑛
1 = 𝜆3 (

ћ

2𝑚𝜔
)

3
2

(√(𝑛 + 1)(𝑛 + 2)(𝑛 + 3) 〈𝑛 │𝑛 + 3〉

+ (𝑛 + 1)√𝑛 〈𝑛 │𝑛 − 1〉

+ (𝑛 + 1)√𝑛 + 1 〈𝑛 │𝑛 + 1〉

+ (𝑛 + 2)√𝑛 + 1 〈𝑛 │𝑛 + 1〉

+ 𝑛√𝑛 + 1〈𝑛 │𝑛 + 1〉

+ √𝑛(𝑛 − 1)(𝑛 − 2)〈𝑛 │𝑛 − 3〉 + (𝑛

− 1)√𝑛  〈𝑛 │𝑛 − 1〉

+ 𝑛√𝑛 〈𝑛 │𝑛 − 1〉)                                        (51) 

Applying again the orthogonality condition; Equation (51) 

reduces to; 

 

 𝐸𝑛
1 = 0                                                                                          (52) 

 
Therefore Equation (52) is the first-order energy correction 

to the eigenvalue 𝐸𝑛 of a one-dimensional quantum harmonic 

oscillator with a cubic perturbation potential. 

B.  Second-Order Energy Shift 
 

At this point, we seek to obtain the second-order energy 

correction using the eigenvalue fundamental equation of the 

second-order perturbation theory as stated in Equation (13). 

 

〈𝜓𝑚
0│𝐻′│𝜓𝑛

0〉 = 𝜆3 〈𝑚│𝑥3│𝑛〉                                      (53) 

 

Therefore, substituting Equation (48) into Equation (53) 

hence we have that;  

 〈𝑚│𝐻′│𝑛〉 = 𝜆3 (
ћ

2𝑚𝜔
)

3

2 〈𝑚│[𝑎† + 𝑎]
3

│𝑛〉                         (54) 

 

From the expression obtained in Equation (53) if we 

substitute the ket function Equation (51) can be rewritten as; 

 

〈𝑚│𝐻′│𝑛〉 = 𝜆3 (
ћ

2𝑚𝜔
)

3
2

(√(𝑛 + 1)(𝑛 + 2)(𝑛 + 3) 𝛿𝑚,𝑛+3

+ (𝑛 + 1)√𝑛 𝛿𝑚,𝑛−1

+ (𝑛 + 1)√𝑛 + 1 𝛿𝑚,𝑛+1

+ (𝑛 + 2)√𝑛 + 1 𝛿𝑚,𝑛+1 + 𝑛√𝑛 + 1𝛿𝑚,𝑛+1

+ √(𝑛 − 2)(𝑛 − 1)𝑛𝛿𝑚,𝑛−3 + (𝑛

− 1)√𝑛  𝛿𝑚,𝑛−1 + 𝑛√𝑛 𝛿𝑚,𝑛−1)                 (55) 

 

Contributions of these terms in Equation (53) lies 

when  𝑚 = 𝑛 + 3, 𝑚 = 𝑛 − 1, 𝑚 = 𝑛 = 1 , 𝑚 = 𝑛 − 3; hence it 

will be more appreciable to solve these relations separately to 

obtain an appropriate function thus; 

 

Case I:   𝑚 = 𝑛 + 3 

│〈𝑛 + 3│𝐻′│𝑛〉│2 =  │𝜆3 (
ћ

2𝑚𝜔
)

3
2

√(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)│2

= 𝜆3
2 (

ћ

2𝑚𝜔
)

3

(𝑛 + 1)(𝑛 + 2)(𝑛

+ 3)                                                                   (56) 
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Case II:  𝑚 = 𝑛 − 1. Since it has three terms in the relation, 

hence we will obtain the single relation by adding the terms 

up so therefore we have that;  

 

│〈𝑛 − 1│𝐻′│𝑛〉│2 = │𝜆3 (
ћ

2𝑚𝜔
)

3
2

𝑛 + 1√𝑛 + 𝑛 − 1√𝑛

+ 𝑛√𝑛│2 =  𝜆3
2 (

ћ

2𝑚𝜔
)

3

9𝑛3                    (57) 

Case III: 𝑚 = 𝑛 + 1. Since it has three terms in the relation, 

hence we will obtain the single relation by adding the terms 

up so therefore we have that;  

 

│〈𝑛 + 1│𝐻′│𝑛〉│2 =  │𝜆3 (
ћ

2𝑚𝜔
)

3

2
𝑛 + 1√𝑛 + 1 + 𝑛 +

2√𝑛 + 1 + 𝑛√𝑛 + 1│2 = 𝜆3
2 (

ћ

2𝑚𝜔
)

3
9(𝑛 + 1)3                      (58)   

 

Case IV: 𝑚 = 𝑛 − 3 

│〈𝑛 − 3│𝐻′│𝑛〉│2 = │𝜆3 (
ћ

2𝑚𝜔
)

3
2

√(𝑛 − 2)(𝑛 − 1)𝑛│2

= 𝜆3
2 (

ћ

2𝑚𝜔
)

3

(𝑛 − 2)(𝑛 − 1)𝑛               (59) 

 

Hence combining the contributions from all these terms 

obtained from Equation (56) to Equation (59) substituting 

them into Equation (13) we then have; 

 

𝐸𝑛
2 =

𝜆3
2(

ћ

2𝑚𝜔
)

3
[(𝑛+1)(𝑛+2)(𝑛+3)+(𝑛−2)(𝑛−1)𝑛+9(𝑛+1)3+9𝑛3]

𝐸𝑛
0−𝐸𝑚

0      (60) 

 

Substituting Equation (21a) and (21b) into Equation (60) 

we obtain; 

 𝐸𝑛
2 =          𝜆3

2 (
ћ

2𝑚𝜔
)

3 1

ћ𝜔
[−

1

3
(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)   

+
1

3
(𝑛 − 2)(𝑛 − 1)𝑛 − 9(𝑛 + 1)3

+ 9𝑛3]                                                              (61) 

 

With little effort in algebra we can solve further to obtain; 

 

𝐸𝑛
2 = −

1

8

𝜆3
2ћ2

𝑚3𝜔4 [30 (𝑛 +
1

2
)

2

+
7

2
]                                 (62) 

 
Therefore Equation (62) is the correction to the eigenvalue 

𝐸𝑛 of a one-dimensional quantum harmonic oscillator with a 

cubic perturbation potential. Thus, inserting Equation (21a), 

(52) and (62) into Equation (24) to get the complete 

eigenvalue of the system. The general expression of energy 

function due to 𝐻′ for any perturbation now becomes; 

 

𝐸𝑛 = ћ𝜔 (𝑛 +
1

2
) −

1

8

𝜆3ћ2

𝑚3𝜔4
[30 (𝑛 +

1

2
)

2

+
7

2
]            (63) 

 

where n is a positive integer 𝑖. 𝑒. (𝑛 =  0, 1, 2, 3 … . . ). Therefore 

Equation (63) gives the exact correction to the energy and 

also the complete eigenvalues for the first and second 

approximation of one-dimensional quantum harmonic 

oscillator perturbed by a cubic potential.   

 

V.       ONE DIMENSIONAL QUANTUM                          
ANHARMONIC OSCILLATOR WITH    

POLYNOMIAL PERTURBATION 
POTENTIAL 

 

This time we will consider a polynomial potential perturbing 

on the same unperturbed Hamiltonian (𝐻0) as stated in 

Equation (1). Polynomial perturbation potential for integral 

values of 𝑘; where 𝑘, the order of the polynomial, is a positive 

integer 𝑖. 𝑒. (𝑘 =  0, 1, 2, 3 … . . ). as given in (Barry S, 1991); 

 

 𝐻′ =  𝜆𝑘𝑥𝑘                                                                                    (64) 

 

Equation (64) is the generalised perturbation. Hence, 

inserting it and Equation (1) into Equation (3) so that the 

total Hamiltonian will now become;  

 

 𝐻 =  
𝑃2

2𝑚
+ 

1

2
 𝑚𝜔2𝑥2 + 𝜆𝑘𝑥𝑘                                                   (65) 

 
Similarly, to solve for the correction of the first-order 

energy and second-order energy by using the first order and 

second order energy shift formula, we adopted the method of 

perturbation theory. 

 

A. First Order Energy Shift 
 

Adopting Equation (5) which is 𝐸𝑛
1 = 〈𝜓𝑛

0│𝐻′│𝜓𝑛
0〉. Thus, 

putting Equation (63) into the equation we have that;  

 𝐸𝑛
1 = 𝜆𝑘〈𝜓𝑛

0│𝑥𝑘│𝜓𝑛
0〉                                                          (66) 

 

If 𝜓𝑛
0 = 𝑛 in which 𝑛 is the 𝑛th eigenfunction, therefore; 
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𝐸𝑛
1 =   𝜆𝑘〈𝑛│𝑥𝑘│𝑛〉                                                            (67) 

 
Applying the ladder operators stated in Equation (8) that is; 

 

𝑥 =  √
ћ

2𝑚𝜔
 [𝑎† + 𝑎] but for 𝑥𝑘 we have that 

𝑥𝑘  =  (
ћ

2𝑚𝜔
)

𝑘
2

 [𝑎† + 𝑎]
𝑘

                                                            (68) 

 

 Inserting Equation (68) into Equation (67), we now have 

that;  

 

 𝐸𝑛
1 =   𝜆𝑘 (

ћ

2𝑚𝜔
)

𝑘

2 〈𝑛│[𝑎† + 𝑎]
𝑘

│𝑛〉                                     (69) 

 

Solving the ladder operator in Equation (69) which is a 

binomial expansion of the power 𝑘 we then have that; 

 

 [𝑎† + 𝑎]
𝑘

= 𝑎𝑘+𝑘𝐶1𝑎†𝑎𝑘−1+. . +𝑘𝐶𝑟𝑎†𝑟𝑎𝑘−𝑟 + ⋯

+ 𝑎†𝑘                                                                 (70) 

 

For any integral values of 𝑘 as given in (Pathak, 2000). Is 

expressed as; 

 

[𝑎† + 𝑎]
𝑘

= ∑ 𝑡𝑟
𝑘𝑘

𝑟=0,2,4... 𝐶𝑟(𝑎† + 𝑎)
𝑘−𝑟

                               (71) 

 

𝑡𝑟 =  
(𝑟 − 1)!

2
(

𝑟
2

−1) (
𝑟
2

− 1) !
   𝑓𝑜𝑟 𝑟 ≥ 4    𝑎𝑛𝑑 𝑡0 = 𝑡2 = 1       (72) 

 

𝐸𝑛
1 =  𝜆𝑘 (

ћ

2𝑚𝜔
)

𝑘
2

〈𝑛│ ∑ 𝑡𝑟
𝑘

𝑘

𝑟=0,2,4...

𝐶𝑟(𝑎† + 𝑎)
𝑘−𝑟

│𝑛〉     (73) 

 

= 𝜆𝑘 (
ћ

2𝑚𝜔
)

𝑘
2

〈𝑛│ ∑ 𝑡𝑟
𝑘

𝑘

𝑟=0,2,4...

𝐶𝑟
𝑘−𝑟𝐶𝑘−𝑟

2

 𝑎†
𝑘−𝑟

2 𝑎
𝑘−𝑟

2 │𝑛〉 

 

=   𝜆𝑘 (
ћ

2𝑚𝜔
)

𝑘
2

∑ 𝑡𝑟
𝑘

𝑘

𝑟=0,2,4...

𝐶𝑟
𝑘−𝑟𝐶𝑘−𝑟

2

𝑛𝐶𝑘−𝑟
2

(
𝑘 − 𝑟

2
) !   (74) 

 

Equation (74) is the total correction to the energy 

eigenvalues for the first approximation of a one-dimensional 

quantum anharmonic oscillator perturbed by a polynomial 

potential. It involves summations that are more easily to 

evaluate.  

B. Second-Order Energy Shift 

At this point, we seek to obtain the second-order energy 

correction using the eigenvalue fundamental equation of the 

second-order perturbation theory as stated in Equation (13). 

Inserting Equation (64) into the numerator function of 

Equation (13). Thus, we then have that;  

 

 〈𝜓𝑚
0│𝐻′│𝜓𝑛

0〉 = 𝜆𝑘〈𝑚│𝑥𝑘│𝑛〉                                            (75) 

 
Therefore, substituting Equation (68) into Equation (75) 

we have that;  

 

  〈𝑚│𝐻′│𝑛〉 = 𝜆𝑘 (
ћ

2𝑚𝜔
)

𝑘

2 〈𝑚│[𝑎† + 𝑎]
𝑘

│𝑛〉                       (76) 

 

Equation (71) can be substituted into Equation (76) to 

obtain that; 

 

 〈𝑚│𝐻′│𝑛〉 = 𝜆𝑘 (
ћ

2𝑚𝜔
)

𝑘
2

〈𝑚│ ∑ 𝑡𝑟
𝑘

𝑘

𝑟=0,2,4...

𝐶𝑟(𝑎†

+ 𝑎)
𝑘−𝑟

│𝑛〉                                                    (77) 

 
As functions of 𝑡𝑟 as stated by (Pathak, 200). Thus, we can 

have the total correction to the energy eigenvalues for the 

second approximation of one-dimensional quantum 

anharmonic oscillator perturbed by a polynomial potential by 

substituting Equation (77) into (13) as;      

                                                                                                               

𝐸𝑛
2 =  𝜆2

𝑘 (
ћ

2𝑚𝜔
)

𝑘
∑

│〈𝑚│ ∑ 𝑡𝑟
𝑘𝑘

𝑟=0,2,4… 𝐶𝑟(𝑎†+𝑎)
𝑘−𝑟

│𝑛〉│2

𝐸𝑛
0−𝐸𝑚

0𝑛 ≠𝑚     (78) 

 

Equation (78) can be rewritten by substituting Equation 

(21a) & (21b). 

 

  𝐸𝑛
2 = 𝜆2

𝑘 (
ћ

2𝑚𝜔
)

𝑘
∑

│〈𝑚│ ∑ 𝑡𝑟
𝑘𝑘

𝑟=0,2,4... 𝐶𝑟(𝑎†+𝑎)
𝑘−𝑟

│𝑛〉│2

(𝑛+
1

2
)ћ𝜔   −(𝑚+

1

2
)ћ𝜔 

𝑛 ≠𝑚    (79) 

 

Solving further we have;                                                                

𝐸𝑛
2 = 𝜆2

𝑘 (
ћ

2𝑚𝜔
)

𝑘
∑

│〈𝑚│ ∑ 𝑡𝑟
𝑘𝑘

𝑟=0,2,4... 𝐶𝑟(𝑎†+𝑎)
𝑘−𝑟

│𝑛〉│2

ћ𝜔(𝑛−𝑚)𝑛 ≠𝑚        (80) 

 
Therefore, Equation (80) is the second-order energy 

correction to the eigenvalue 𝐸𝑛 of a one-dimensional 

quantum anharmonic oscillator with a polynomial 

perturbation potential. Thus, inserting Equation (21a), (75) 
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and (80) into Equation (24), we get the complete eigenvalue 

of the system. The general expression of energy function due 

to 𝐻′ for any perturbation now becomes; 

 

 𝐸𝑛 = ћ𝜔 (𝑛 +
1

2
) +

𝜆𝑘 (
ћ

2𝑚𝜔
)

𝑘

2 ∑ 𝑡𝑟
𝑘𝑘

𝑟=0,2,4… 𝐶𝑟
𝑘−𝑟𝐶𝑘−𝑟

2

𝑛𝐶𝑘−𝑟

2

(
𝑘−𝑟

2
) !  +

  𝜆2
𝑘 (

ћ

2𝑚𝜔
)

𝑘
∑

│〈𝑚│ ∑ 𝑡𝑟
𝑘𝑘

𝑟=0,2,4… 𝐶𝑟(𝑎†+𝑎)
𝑘−𝑟

│𝑛〉│2

ћ𝜔(𝑛−𝑚)
                     (81)𝑛 ≠𝑚  

 

where n, m and k are positive integers 𝑖. 𝑒. (𝑛, 𝑚, 𝑘 =

 0, 1, 2, 3 … . . ). Therefore Equation (82) gives the exact 

correction to the energy and also the complete eigenvalues for 

the first and second approximation of one-dimensional 

quantum anharmonic oscillator perturbed by a polynomial 

potential.  

 

VI.    CONCLUSION 
 

In this work, we have reported the solutions of one-

dimensional quantum harmonic and anharmonic oscillator 

perturbed by a linear, quadratic, cubic and polynomial 

potential using the time-independent perturbation theory 

method. We presented the correction to first and second-

order energy using the first and second-order energy shift 

equations. From the analysis, we observed that the first-order 

energy eigenvalues for linear and cubic potential are zero, but 

non-zero for a quadratic potential. The general expression of 

the energy eigenvalues due to 𝐻′ for the linear, quadratic, 

cubic and polynomial potential was obtained, and the values 

of the energy function depend on the values of n and the order 

of polynomial k. The solutions could find applications in 

nonlinear deterministic equations encountered in quantum 

field theory and the qubit when quantum degrees of freedom 

in a potential well is either bound, free or scattered. More so, 

the solutions of the quantum anharmonic oscillator could be 

used to describe as well as predict the time evolution of 

quasiclassical systems employed in modelling equations 

describing stochastic processes such as probability 

distributions of stock price return which dynamics of its 

movement is considered an analogue of the motion of a 

quantum particle. 
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