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Sequential fences is a simple graphical method that is used for detecting outliers. This method is 

advantageous to the analysts in constructi ng fences which adjusted for various sample sizes. It is a 

helpful way to to detect the single and multiple outliers especially in normal or approximately normal 

data. However, when the distributions of the data are skewed, sequential fences method tends to 

result in misleading outcome. This paper proposes solution to deal with this problem. The proposed 

approach with modified algorithm namely Split sample sequential fences with bootstrap (SSFB) is 

an alternative way to improve sequential fences which can lead to higher accuracy in the detection 

of outliers and can be applied to a wide range of distributions data. The validity of the new technique 

has been checked by constructing fences around the true 95% values of different distributions. It was 

found that  the sequential fences constructed by the modified technique not only can detect the 

outliers in positively skewed distribution but also has smaller bias and smaller root of mean squares 

error (RMSE) which proves it superiority on the existing techniques.  
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I.  INT RODUCTION  

 
Outliers are the observations which lie far away from the 

majority of cases in the dataset. Boxplot is one of the widely 

used graphical method which is introduced by Tukey (1977) 

to identify outliers.  Inner fences are situated at a distance of 

1.5 IQR below  ή and above ή which are denoted as  

ή ρȢυ ὍὗὙȟ   ή ρȢυ ὍὗὙ.                (1) 

Outer fences can be constructed at a distance of 3 IQR below 

ή  and above ή which are computed as 

ή σ ὍὗὙȟ   ή σ ὍὗὙ.                  (2) 

The Tukeyôs box plot displays distribution of data based on 

statistics summary which are minimum, maximum, median, 

first and third quartiles. The whiskers of boxplot are plotted 

1.5 multiply the interquartile range from the median. In the 

past years, the boxplot has been modified and changed by 

different researchers, as well as variations in the definition of 

quantile.  

Schewertman and de Silva (2007) proposed sequential 

fences as another useful technique to detect the outliers in the 

data. In this study, the sequential fences proposed by 

Schewertman and de Silva is henceforth referred as SDSF. 

This technique identifies outliers sequentially based on the 

specific sample size and the pre-specified outside rate. The 

rate is the probability that an unco ntaminated observation 

beyond the fences. The fences are defined as  

Ὂȟ ή
ȟ
ὍὗὙ                            (3) 
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where  ή is median, IQR is interquartile range, Ὧ and   

are values that are obtained from Table 1 and Table 2 in 

Schewertman and de Silva (2007) to construct ά fences, 

ὸ ȟ  is the value obtained from t distribution based on 

specified outside rate,   and degree of freedom, ὨὪ which 

is calculated using Equation (4). For sample size between 20 

and 100, the least squares quadratic equation for obtaining 

the degree of freedom, ὨὪ approaching t distribution based 

on the sample size is  

ὨὪ χȢφψπωυςτπȢυςωτρυφὲ πȢππςσχὲ.      (4)  

For the construction of sequential fences, the sample sizes 

are adjusted using Poisson model in order to decrease the tail 

probabilities. The adjustment is similar to the adjustment 

done in Davies and Gather (1993) and Gather and Becker 

(1997). SDSF increases the accuracy to identify the outliers, 

reduces the swamping effect and less likely to misclassify 

uncontaminated observations as outliers in large sample size. 

By using Poisson model, the ά contaminated observations 

can be checked. Let ὢ be the number of observations outside 

the computed fences. Based on the Poison model,  

ὖὢ ά Ὡ ρ ὲ
ὲ

ςȦ
Ễ

ὲ

ά ρȦ
    

           ρ Ȣ                                                                          (5) 

The solution of Equation (5) for ὲ  for  0.05, 0.025 and 

0.005 can be referred to Table 2 which is adapted from 

Schewertman and de Silva (2007). The probability of at most 

ά ρ  uncontaminated observations beyond the 

constructed fences is ρ . In short, there is  probability of 

at least ά  uncontaminated observations outside the fence. 

For instance, in order to check for the first outlier, compute 

the first fence, ά ρ, with  πȢρπȢ This means that there is 

0.10 probability that an observation which lies beyond the 

first fence is uncontaminated. SDSF method can identify 

outliers using different outside rates in lower and upper tail 

separately. Thus, the characteristic of SDSF which allows to 

use different outside rates on both tails  is suitable to some 

occasions when the number of outliers in either tail of the 

distribution are unequal.  

 

 

 

Table 1. Conversion coefficients for IQR to ʎ )12Ëʎ 

ὲ Ὧ ὲ Ὧ ὲ Ὧ 
5 1.65798 22 1.33333 39 1.38071 
6 1.28351 23 1.4023 40 1.34165 
7 1.51475 24 1.33753 41 1.38021 
8 1.32505 25 1.40096 42 1.34104 
9 1.50427 26 1.33587 43 1.37779 
10 1.31212 27 1.39455 44 1.34226 
11 1.45768 28 1.33894 45 1.37737 
12 1.32968 29 1.39355 46 1.34175 
13 1.45268 30 1.3377 47 1.37536 
14 1.32353 31 1.38876 48 1.34278 
15 1.42975 32 1.34004 49 1.37501 
16 1.33318 33 1.38799 50 1.34235 
17 1.42684 34 1.33909 60 1.34394 
18 1.32959 35 1.38428 70 1.34429 
19 1.41322 36 1.34092 80 1.34514 
20 1.33568 37 1.38367 90 1.34535 
21 1.41132 38 1.34017 Њ 1.34898 

 

Table 2. Constants ὅ ὲ  

1-ɾ m=1 2 3 4 

0.75 0.287682 0.961279 1.72730 2.53532 
0.80  0.223144 0.824388  1.53504 2.29679 
0.90  0.1053605 0.531812 1.10207 1.74477 
0.95 0.0512932 0.355362 0.817691 1.36632 
0.975 0.025318 0.242209  0.618672 1.08987 
0.99 0.0100503  0.148555 0.436045 0.823249 
0.995 0.005013 0.103495 0.337873 0.672207 
 

Hyndman and Fan (1996) made a conclusion by 

recommending the use of median-unbiased estimator, since 

median contains most of the desirable properties of a quantile 

estimator and can be defined independently from the 

underlying distribution. Besides, some boxplots use 

multipliers other than  1.5 for the whiskers of boxplots or 

substitute the extreme with constant quantile such as 

minimum and maximum or 2% and 98% (Frigge et al., 1989). 

There are also other graphical elements used to display the 

distributional characteristics such as kurtosis (Aslam & 

Khurshid, 1991), skewness and multimodality (Choonpradub 

& McNeil, 2005), and mean and standard error (Marmolejo -

Ramos & Tian, 2010). 

For skewed distribution data, some researchers (Kimber, 

1990; Aucremanne et al., 2004) made adjustments for the 

boxplot by introducing lower and up per semi-interquartile 

range, ὛὍὗὙὒὗ ὗ   and ὛὍὗὙὟὗ ὗ , in order to 

replace the interquartile range. In that case, the fences are 

defined as ὗ σὛὍὗὙὒȠ ὗ σὛὍὗὙὟ. Huber and 

Vandervieren (2008) pointed out that the boxplot usin g ὛὍὗὙ 

does not sufficiently adjust itself for skewness of distribution. 

There is enlargement in the whisker part and consequently 
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lead to a number of uncontaminated observations is flagged 

as outliers.  

Babura et al. (2017) improved the boxplot for extreme data 

by adjusting fences constant using a robust skewness 

measure, namely Bowley coefficient. This modified boxplot 

able to identify unusual data and solve the major restriction 

to outlier detection in different distributions for 

generalisation aim.  Besides, this approach is capable to show 

the location parameter region of Gumbel or Generalised 

Extreme Value Distribution (GEV) fitted extreme data. Wong 

and Fitrianto (2019) proposed an outlier detection method, 

namely Adjusted Sequential Fences (ASF) by making some 

adjustments to the sequential fences (2007)  with the 

combination of a robust skewness.  The adjusted sequential 

fences method takes into account the skewness of the 

underlying distribution of data by incorporating the robust 

Bowley coefficient of skewness, ‒ , into the 

sequential fences to adjust lower and upper cut off values. The 

fences for detecting outliers with a continuous distribution 

are able to identify outliers in skewed and/or heavy -tailed 

data. This technique is able to identify atypical observations 

as it is exclusively constructed based on the skewness of 

distributions. Moreover, it is robust with respect to the 

outliers.  

Thus, the adjusted sequential fences (ASF) are as follows: 

  
when ‒ πȟ 

ὗ
ȟ
Ὡ ὍὗὙȟ

ὗ
ȟ
Ὡ ὍὗὙȟ

                   (6)  

when ‒ π, 

           
ὗ

ȟ
Ὡ ὍὗὙȟ

ὗ
ȟ
Ὡ ὍὗὙȢ

                   (7)  

Median and interquartile range (IQR) are commonly used 

in the computation of boxplot and fences which are robust 

way to provide better summaries of data. Median and IQR are 

non-parametric univariate statistics which is used to obtain 

center and spread for quantitative variables. The benefit of 

this non-parametric technique is that it requires less 

assumptions, thus the non-parametric technique can be 

applied for a wider range of applications. In addition, the 

non-parametric technique is simpler compared to parametric 

technique. When the data are not normally distribute d, not 

measured on an interval scale or the sample size is small, 

median and IQR are good measures to summarise the 

distribution (Iftikhar, 2011). Therefore, median and IQR 

shares some similarity as the mean and standard deviation to 

measure the centre and spread of data. However, mean and 

standard deviation are easily distorted by the presence of 

outliers.  

Both Tukeyôs boxplot and SDSF use median and 

interquartile range in the formulation of fences for the outlier 

detection. These methods concern only the central half of the 

data which is the interval from 25 th percentile to 75th 

percentile of the data. Meanwhile, skewed distributions have 

narrower tail in either side and the skewness of interval 

between 12.5th and 37.5th percentile and 62.5th and 87.5th 

percentile are dissimilar. This motivates us to make 

adjustment to the sequential fences by considering the 

different skewness of the distribution on both sides. The data 

lying in the tails parts should be considered in computing the 

fences. 

Data screening is necessary before beginning a data 

analysis. (Tabachnick & Fidell , 2001). Monte Carlo 

simulation  is a type of simulation that relies on repeated 

random sampling and statistical analysis to compute the 

results (Samik, 2008) . Data analysis is done based on the 

data that is generated by computer. However, researchers do 

not aware about the accuracy of the generated data and just 

proceed the data analysis process by interpreting and making 

conclusions from the results (Anwar & Habshah, 2011). This 

can lead to erroneous conclusions. Thus, the data generating 

process does not give warranty the data is free from outliers. 

I t is necessary to screen for the data before conducting data 

analysis.  

Process of data screening has become a part in data 

analysis. This process has become a procedure that 

researchers have to face with. Statistical tests for outliers are 

included in the data validation process. After the data are 

screened and evaluated in numerous ways, the data are then 

kept in data bank and to be used for population parameters 

estimations and decisions making. The data screening for air 

quality data and validation procedures have been discussed 

by Nelson et al. (1980). Bootstrapping  is a statistical 

technique for making an estimation of  the sampling 



ASM Science Journal, Volume 17, 2022  

 

4 

distribution of an estimator by sampling  with  replacement 

from the  actual sample. The technique allocates measures of 

precision to sample estimates with bias and root of mean 

square error. 

In order to address the problems, in this study, an 

adjustment to the sequential fences SDSF involving bootstrap 

resampling is proposed. The objectives of this study are i) to 

increase the coverage of the data that lie on either side of the 

tails so that it can be applied to different  types of distributions 

and various sizes of data, ii) to modify the algorithm of the 

sequential fences technique by incorporating procedure of 

data screening, and iii) to show accuracy of parameter 

estimations after outliers  is detected by the proposed method 

and the existing methods, SDSF and Tukeyôs boxplot. 

The remainder of the paper is organized as follows. Section 

2 reviews data screening and robust estimation. Section 3 

presents the procedures of the proposed approach in detailed. 

In  section 4, we illustrated the performance of the techniques 

in outliers detection in various distributions with different 

sample sizes data. Furthermore, bootstrap resampling was 

performed to estimate the robust parameters in 

uncontaminated and contaminated data in order to s how the 

efficiency of the techniques in different conditions.  

 
II.  LITERATURE REVIEWS  

 

A. Data Screening 

 
In statistical analysis, it is important to screen the data 

before analysing the data to prevent the occurrence of 

misleading results. Computer is utili sed to simulate and 

analyse the data. However, the generated data from a 

simulation might consist of potential outliers or unusual 

observations. 

Tabachnick and Fidell (2001) recommended a procedure 

for screening a data with appropriate sequences. The order of 

the data screening can affect the final decision making. It is 

related to data distribution. When the data is not normal and 

contamination of the data might create problems which lead 

to decision whether discard or transform the data. The 

screening process can make sure the data set is suitable to be 

used. It will help in identification of unusual observation and 

enable us to do necessary adjustment to the data for further 

analysis.   

According to the past literatures such as Beckman and Cook 

(1983), Ahmad et al. (2011), Anwar and Habshah (2011), and 

Tabachnick and Fidell (2011), outlier detection is a segment 

of data screening procedures which should be conducted 

prior any statistical analysis. Outliers can present in 

univariate and multivariate data. In symmetrically 

distributed data, the observations which are located at both 

end of the tails are suspected to be outliers. Meanwhile, for 

skewed data, the observations which fall on the longer tail 

might likely to be outlying observations. Therefore, screening 

data is an important first step before beginning a statistical 

analysis. 

B. Bootstrapping in Outlier Detection and Parameter 
Estimation  

 
Simulation  is a procedure to generate random sampling from 

probability distributions such that the simulated data is 

approximately representing real world outcomes. Based on 

simulated outcomes, researchers are able to have a 

perception of the real world.  

Efron (1979) introduced a bootstrap technique . This 

technique implies that the sample has the same connection to 

the population as an empirical distribution produced by 

resampling N samples of the same size as the original sample 

with replacement from the original di stribution  (Denise, 

2021). Determination of the parameter value of a population 

is typically impossible to measure directly from the 

population and might incur a high cost.  

Hence, bootstrap resampling provides solution to overcome 

these problems. The simplicity of bootstrap helps in building 

an estimate of the sampling distribution by drawing a large 

amount of random sample of size ὲ from a population. From 

the estimated standard errors, hypothesis testing and 

confidence intervals, we can make interpretation about the 

corresponding of population parameter.   Furthermore, 

bootstrap method is also easily implemented in statistical 

softwares such as R and SAS  programming to make a 

summary of a sample in order to obtain a general conclusion 

regarding the population.  

Another advantage of the bootstrap can be applied in 

circumstances where standard statistical tools are 

unavailable or in situations where the usual statistical 

methods are inappropriate due to the violation of  the 
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underlying assumptions (Hansen et al., 1999). Furthermore, 

using bootstrap resampling and other theoretical 

computations, standard error can be calculated for any 

complex estimator.  For example, the basic summary statistic 

such as sample mean fluctuates from sample to sample. 

Analysts would like to identify the magnitude of the 

fluctuations about the  corresponding population parameter 

in an overall sense which is called margin of errors. All the 

possible values of the sample statistics of the entire display is 

presented in probability distribution or sampling 

distribution. Thus, it provides a good approximation of the 

sample distribution.  

Bootstrap method has been applied to outlier detection 

procedure. Singh and Xie (2003) proposed a bootstrap based 

outlier detection plot or known as bootlier plot which is a 

non-parametric graphical tool to identify the outliers. The 

bootstrapping sample statistics called ómean ï trimmed 

meanô (MTM) was introduced. From the bootlier plot, 

outliers can be detected by checking the multimodality in the 

density plot of that bootstrap sample statistic.  The 

distribution of bootstrap sample statistic MTM is expressed 

as a combination  of normal distributions with multiple 

modes when the sample has outliers.  

 

C. Estimation of Robust Estimators  

 
In statistics,  based on information acquired from a sample, 

one can make inferences about a population through 

estimation. Researchers utilise sample statistics to estimate 

population  parameters. For instance, sample means and 

sample standard deviation are commonly used to estimate 

the population parameters means and standard deviation, 

respectively. However, sample means and standard 

deviations are vulnerable and sensitive to the outlying values.   

When outliers are present in the data, the distribution of the 

data is usually heavy tailed and outlying observations are 

found in higher proportion and far away from the mean. In 

order to cope with the problem, robust estimators of the 

population mean such as trimmed and winsori sed means 

were introduced. These robust estimators are relatively less 

sensitive to the outliers. Therefore, trimming and 

winsori sation are techniques for decreasing the impacts of 

extreme values in the sample.  

The trimmed mean or truncated mean is a measure of the 

population mean which its standard error is less distorted by 

the departures from normality  where the extreme 

observations are removed (Lix & Keselman, 1998). The 

calculation is usually done after discarding low and high part 

of the end of a probability distribution or sample and usually 

discarding an equal amount on both tails. The number of 

values to be discarded is typically based on the percentage of 

the total number of values,  but may also be a fixed number 

of values to be removed (Boos & Stefanski, 2013). The 

trimmed mean can be defined as the mean of the central ρ

ς  part of the distribution. Before computing the trimmed 

mean, the percentage of trimming has to be specified. This 

can be implemented by eradicating ὲ of the data from each 

end of the distribution. For instance, trimming 0% equal to 

mean while trimming 50% gives second quartile or median. 

The winsorised mean is another robust measure of mean. It 

is a winsorised statistical measure of central tendency which 

is less sensitive to extreme values (Gross, 1976). It involves 

the calculation of the mean after substituting given parts of a 

probability distribution or sample at the low and high end 

with the values that are closest to them (Wilcox, 1995). 

Commonly, a similar amount of both extreme values are 

replaced. 

Meanwhile, the trimmed standard devia tion is a robust 

estimator of scale (Capéràa & Rivest, 1995). The computation 

of trimmed standard deviation is the average trimmed sum of 

squared deviations around the trimmed mean after 

discarding a certain percentage of observations from the tails. 

For instance, the 50% trimmed standard deviation is the 

standard deviation of the observations between the upper and 

lower quartiles.  

 

III.  IMPLEMENTATION OF  
PROPOSED TECHNIQUE  

 
In this study, a new approach of sequential fences involves 

split sample method and determination of cut off points 

based on bootstrap resampling was proposed. We call this 

approach as Split Sample Sequential Fences based on 

Bootstrap Resampling (SSFB). The technique was then 

compared with Tukeyôs boxplot and SDSF method which was 

proposed by Schewertman and de Silva (2007). Positively 

skewed distribution data  is considered and a one sided 95% 
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confidence level was required for the SDSF and SSFB to 

detect the outliers. The efficiency of the techniques in 

detecting the number of outliers in different skewed 

distributions were examined. Robust estimators such as 

trimmed mean and trimmed standard deviation are also 

computed based on the outliers detected by each method to 

validate the productivity of the methods in correctly identify 

the real outliers.  

 

A. Screening of Data to Generate Clean Data 
 

In this section, simulation study was performed to generate 

data based on various sample sizes, n, and distributions. The 

sample sizes considered were 20, 50 and 100. Different 

distributions such as norm al, log normal and chi-square 

distribution with different parameters were considered.  

In order to ensure the generated data is clean, first, the data 

was screened using the outlier detection method, namely 

Adjusted Sequential Fences method (ASF) (Wong & Anwar, 

2019). The steps to screen a data was proposed and discussed 

by Fitrianto and Hab shah (2011). The procedure that is 

incorporating the ASF approach into the algorithm to 

generate a set of clean data is named as GCD.  

 

 

Figure 1. Flow chart of the GCD algorithm 

The algorithm is shown in Figure 1 and the steps are as 

follows:  

 
Step 1. The regular observations are generated from a 

specified distribution with size n.  

Step 2. The data is screened based on a condition of the 

specified outlier detection technique. In this study, we use 

ASF to check for the existence of outliers in the data. 

Step 3. Carry out outlier identification procedures in the 

generated data using the ASF.  

Step 4. Let Out be a variable to record the presence of outlier. 

If an observation is flagged as outlying observation, then 

assign ó1ô and ó0ô if otherwise. In other words, the variable Out 

consists of a set of binary variable which containing 0 and 1 

values only. 

Step 5. The frequency of number ó0ô value in variable Out is 

counted. If the number of ó0ô equals to Î, then the screening 

procedures is completed, otherwise repeat steps 1 until 4. 

 

B. Detecting Outliers using Split Sample Sequential 
Fences with determination of Cut Off Points based 

on Bootstrap Resampling  
 

Next, the clean distributions data was contaminated with no 

outlier, one outlier, or multiple outliers. All outliers were 

situated in the upper tail . It is a common practice that any 

observation is located beyond the extremes (maximum and 

minimum) as outliers  (Georgy et al., 2013). In order to 

generate outlier in the simulated data, the single outlier for 

the simulations was 10 standard deviations above the largest 

observation. When simulations with two outliers for the 

distribution data were done, the outliers were an addition of 

fixed shift of 10 standard deviation distance from the two 

observations. Similarly, the procedure for three outliers 

contamination was done by contaminating three 

observations with addition of 10 standard deviations.  

 

Figure 2. Flow chart of the SSFB algorithm 

 
For the proposed approach, bootstrap resampling with 

replacement is used to draw the samples randomly of size ὲ 

from the original sample as shown in Figure 2.  

Bootstrap technique is used to estimate the cut off points of 

sequential fences. The following are the details of the 

proposed SSFB procedures: 
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Step 1. Contaminate the data by adding 10 standard deviation 

as a fixed shift to the highest observation. 

Step 2. Generate a bootstrap sample ὄz ὄȟὄȟὄȟȣȟὄ . 

The sample of size ὲ is generated by common standard 

bootstrap resampling with replacement  from the 

contaminated sample.  The number of bootstrap replications 

is set as 2000.   

Step 3. For each bootstrap sample, compute the fences using 

the proposed outlier detection method. The procedurs of the 

construction of the newly proposed fences is discussed 

further in the end of this subsection. In this stu dy, we also 

compute the fences based on Tukeyôs boxplot and SDSF for 

each bootstrap sample, so that a clear picture of the efficiency 

of each method can be obtained.  One sided significance level, 

0.05 was used with the SDSF and SSFB methods.  

Step 4. Arrange the computed fences which were produced in 

each resample in ascending order, then obtain the median of 

the fences. The median of the fences are the cut off points 

which will be used to identify the outliers.  

Step 5. Apply the cut off points to the contaminated sample. 

If an observation falls beyond the cut off points, then it is 

classified as an outlier.  

  
The fences of SDSF are computed using median and 

interquartile range. It is done by separating the data into two 

parts from the median of the data. Then, first and third 

quartile are obtained from each part of the data to calculate 

interquartile range. Split sample method is u sed to obtain a 

better coverage of the fences to the data. The procedures to 

split the sample are based on Iftikhar (2011). First, the data is 

separated into two parts from the median. Then, the data is 

divided again into four parts for each of the separated part in 

order to obtain 12.5th, 37.5th, 62.5th and 87.5th percentile.  

The previous SDSF technique concerns only on the central 

half of the data sets while the proposed approach considers 

for wider coverage of the data. In the skewed distribution 

case, the new approach is expected to be able to build 

coverage that close to the middle 95% values of data which is 

higher coverage compared to the SDSF. The SDSF leaves 

2.5% data on each side of the distribution. Since the 

simulated data is skewly distributed, t he skewness of interval 

between 12.5th and 37.5th percentile is different with the 

skewness of interval between 62.5th and 87.5th percentile. The 

following are the steps to implement the proposed method.  

Let ὼ ὼȟὼȟὼȟȣȟὼ  be sample of size ὲ from an 

unspecified probability distribution. Then, a bootstrap 

sample of sample size, ὼz ὼᶻȟὼᶻȟὼᶻȟȣȟὼz , is generated. 

After ranking the resample values in each bootstrap sample 

from lowest to highest, let us denote these bootstrap values as 

ὼᶻȟὼᶻȟὼᶻȟȣȟὼᶻ . From the ordered bootstrap values, 

determine the 12.5th, 37.5th, 62.5th and 87.5th percentiles in 

each resample. Two thousand observations for each 

percentile ὖ Ȣ  12.5 percentile, ὖ Ȣ  37.5 percentile, 

ὖ Ȣ  62.5 percentile and ὖ Ȣ  87.5 percentile are 

generated by continuously repeating the procedures. 

In each sample, the percentiles are then used to calculate 

the lower and upper interquartile range, ὍὗὙ and ὍὗὙ. The 

computation of the ὍὗὙ and ὍὗὙ are written as 

ὍὗὙ ὖ Ȣ ὖ Ȣ,                            (8)  

ὍὗὙ ὖ Ȣ ὖ Ȣ.                            (9)  

The ὍὗὙ and ὍὗὙ are used in the construction of the 

proposed method. Thus, the split sample sequential fences, 

ὛὛὊὄ, are defined as  

,Ï×ÅÒ ὛὛὊὄȟ ὖ Ȣ
ȟ
ὍὗὙ,              (10) 

5ÐÐÅÒ ὛὛὊὄȟ ὖ Ȣ
ȟ
ὍὗὙ           (11) 

which are lower and upper fences, respectively. 

Compared to the SDSF method, instead of median, 12.5 

percentile and 87.5 percentile are used in order to construct 

the fences. The SSFB technique combines the benefits of 

boxplots and sequential fences (easy of understanding, 

capacity to compare several data sets at the same time) with 

other percentile plots (display all the data, no arbitrary 

choices in construction). The idea is to highlight the middle 

of the data by using width (as in the SDSF) and to provide less 

attention to the more extreme data by continuing to utili se 

width.  

As a result, the SSFB fences are wide in the middle and very 

narrow at the extreme. The width, unlike the boxplot and 

SDSF, provide precise information about the data 

distribution. They contain all of the information found in 

SSFB and allow for quick and precise symmetry evaluation.  
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Furthermore, ὍὗὙ and ὍὗὙ are chosen to substitute the 

interquartile range in SDSF method so that the proposed 

sequential fences can be determined according to the 

skewness of the underlying distribution. If ὍὗὙ is smaller 

than ὍὗὙ, then the distribution is right skewed. If ὍὗὙ is 

greater than ὍὗὙ, then the distribution is left skewed. The 

procedures stated above are summarised as follows: 

 
Step 1. From the data set ὼȟὼȟὼȟȣȟὼ , generate a 

bootstrap sample ὼᶻ ὼᶻȟὼᶻȟὼᶻȟȣȟὼᶻ  with replacement.  

Step 2. Rank the observations in each bootstrap sample in 

ascending order. 

Step 3. Determine the 12.5th, 37.5th, 62.5th and 87.5th 

percentiles in each sample set.   

Step 4. Calculate the lower and upper interquartile range, 

ὍὗὙ and ὍὗὙ by using the Equations (8) and (9). 

Step 5. Determine the degree of freedom, ὨὪ. 

Step 6. Obtain the Ὧ values from Table 1 of Schwertman and 

de Silva (2007) according to the sample size. 

Step 7. For construction of each ά fence, obtain constant   

under specific outside rate by dividing the ὅ  values with ὲ. 

The values of ὅ  can be referred to Table 2 of Schewertman 

and de Silva (2007). 

Step 8. Construct the proposed fence, ά for lower and upper 

side using Equations (10) and (11). Initiate it with first fence 

ά ρ.  

Step 9. There are as many as ὄ number of lower and upper  

fences generated. Then, sort the fences in ascending order 

and obtain the median among the fences and use the obtained 

median as the cut off points .  

Step 10. Apply the cut off points to the original sample data. 

Then, check any outlie r that fall outside  lower and upper cut 

off points . 

Step 11. If the number of outliers detected is ά ρ,  then 

the procedure is stopped. If there is more than or equal to ά 

outliers beyond the fence, then continue the outliers 

identification by repeating steps 8, 9 and 10 until the 

construction of the next fence ά ρ ὸὬ  fence does not 

capture any additional extreme observations beyond the 

fences. 

If there is no observation lies beyond the first fence ά

ρ, this means that there is no outlier detected and the 

identification of outlier is accomplished. Otherwise, if there is 

at least one observation beyond the first fence, then the 

procedures continues by constructing the next fence to check 

whether there are other outlying observations.   It is 

important to check the outliers by constructing the fences 

continuously until there are only ά observations beyond the 

ά ρ ὸὬ fence. 

 

C. Computation of Robust Estimators based on the 
proposed Bootstrap Resampling  

 
In order to study the efficacy of the proposed approach, 

robust estimators such as trimmed mean and trimmed 

standard deviation are studied. Trimmed mean and trimmed 

standard deviation for one sided and two sided are calculated. 

The determination of number o f observation to be trimmed is 

based on the number outliers detected by a particular outlier 

detection method.  

Singh and Xie (2003) introduced bootlier plot which is 

bootstrap based statistical framework involving trimming 

procedures to identify outliers. The direction of the trimming 

is determined by which side(s) of outlying observations 

located. Let Ὧ be the number of outliers detected by a 

particular method. The trimmed mean for one sided and two 

sided can be obtained as follows: 

  
Lower-sided trimmed mean:  

ὼӶ В ὢᶻ                                              (12) 

                    
Upper-sided trimmed mean:  

ὼӶ В ὢᶻ                                           (13) 

                     
Two-sided trimmed mean:  

ὼӶ В ὢᶻ                                         (14)  

                  

For one-sided trimming, the trimmed mean estimator, ὼӶ 

and ὼӶ, are sensitive to the outliers in both lower side and 

upper side. However, for two-sided trimmed mean, similar 

number of data points are trimmed on both sides. In this 

study, since the focus is only on outliers problem that occur 

in positively skewed distribution, one -sided trimmed mean is 
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used to trim the outlying observations that are found on 

either side of tail. Two-sided trimmed mean is also calculated 

whereby equal number of observation is trimmed on both 

tails when outliers are detected on either tail of the data. If 

the number of outliers detected on both tails are different, 

then the larger number of outliers will be selected to be 

trimmed equally on both sides. Similar trimm ing procedures 

are carried out for estimating trimmed standard deviation 

which are simulated as follows:  

 
Lower-sided trimmed standard deviation,  

 ί
В ᶻ Ӷ

                                      (13) 

Upper-sided trimmed standard deviation,  

ί
В ᶻ Ӷ

                                   (14) 

Two-sided trimmed standard deviation,  

ί
В ᶻ Ӷ

                                     (15) 

 
This procedure is denoted as trimmed estimators based on 

bootstrap resampling (TEB). The algorithm of this procedure 

is presented in Figure 3.  

 

 

Figure 3. Flow chart of the TEB algorithm  

 

IV.  RESULT AND DISCUSSION  

 
In this section, detail comparisons between the proposed 

technique with Tukeyôs boxplot and SDSF in symmetric and 

asymmetric distributions were done with various sample 

sizes. Normal distribution  and several positively skewed 

distributions such as log norm al distribution  with parameters 

(5,0.4), (5,0.6) and (5,0.8) and chi square distribution with 

degree freedom 2, 4 and 8. Small  (n=20) , medium (n=50) 

and large (n=100)  sample sizes were investigated. Table 3 

shows a total of twenty one different distributio ns with 

various sample sizes that are used in simulation study. 

The efficacy of the proposed approach (SSFB) was 

examined in terms of the number of outliers detected when 

the clean data was contaminated with certain amount of 

outliers. In order to see the sensitivity of the techniques to the 

outliers, number  of the outliers detected by proposed SSFB, 

SDSF and Tukeyôs boxplot (TB) are compared. 

The construction of fences using SSFB is mainly based on 

the cut off points which were determined using 

bootstrapping. In order to see the performance of 

bootstrapping using the existing methods in identifying 

outliers, determination of cut off points of SDSF and Tukeyôs 

boxplot (TB) using the proposed  bootstrapping techniques, 

namely SDSFB and TBB were utilised .  

 

Table 3. Twenty one different distributions with various 

sample sizes in simulation study 

No.  Distribution  Sample 
size  

1 N(0,1) 20 

2 Log 

Normal(5,0.4)  

20 

3 Log 

Normal(5,0.6)  

20 

4 Log 

Normal(5,0.8)  

20 

5 … ψ 20 

6 … τ 20 

7 … ς 20 

8 N(0,1) 50 

9 Log 

Normal(5,0.4)  

50 

10 Log 

Normal(5,0.6)  

50 

11 Log 50 
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Normal(5,0.8)  

12 … ψ 50 

13 … τ 50 

14 … ς 50 

15 N(0,1) 100 

16 Log 

Normal(5,0.4)  

100 

17 Log 

Normal(5,0.6)  

100 

18 Log 

Normal(5,0.8)  

100 

19 … ψ 100 

20 … τ 100 

21 … ς 100 

 

The results of Figure 4 reveal that in the absence of outlier 

with 0% contamination , most of the methods had similar 

result where no observation was misidentified as outlier. The 

proposed SSFB method also did not flag any observation as 

outlier. However, T B marked two and three non-

contaminated observations in average as outliers in …  and 

… distributions, respectively. Besides that, TBB misclassified 

an observation as outlier in both … and … distributions.  

When there exists single outlier, SSFB performed 

consistently with the detection of only one outlier in the data. 

However, the presence of outlier affected the performance of 

SDSF, SDSFB, TB and TBB. When there was single outlier in 

…  and … data with size ὲ ςπ, SDSF, SDSFB and TB and 

TBB misidentified more than one outlier.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4. Average number of data beyond the upper and 

lower whiskers when (a) 0% contamination, (b) one outlier, 

(c) two outliers and (d) three outliers at upper tail  

The benefits of the SSFB over other methods are even more 

apparent in data sets with medium and large size with 

multiple outliers. The SSFB method was substantially better 

in not misclassifying uncontaminated data as outlier while 

SDSF, SDSFB, TB and TBB methods were good in correctly 

identifying all the outliers but more likely to mislabel the 

uncontaminated observation as outlying observation. When 

(a)  

(b)  

(c)  

(d) 
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there were multiple outliers, SSFB still can identify the 

outliers correctly in symmetric and positively ske wed 

distribution s. There were only exceptions when ὲ ςπ  with 

three outliers where other approaches were slightly better 

than SSFB in correctly identifying all the real outliers. More 

specifically, for sample size 20 with three outliers, SSFB was 

only able to detect 2 outliers in both normal and …  

distribution which are symmetric and less skewed 

distribution. However, the other methods misidentified too 

many uncontaminated observations as outliers in skewed 

distributions such as log normal (5, 0.8), … and … in small 

and large size data.  

The results of the simulation revealed that determination of 

fences using bootstrap can decrease the occurrence of 

misclassification uncontaminated data. For instance, when 

the sample size is 100 with two outliers in …  distribution 

data, the SDSF detected 8 outliers while SDSFB classified 

only 7 outliers. Using the boxplot method, the TB identified 5 

outliers while TBB detected 4 outliers. The rate of 

misclassification of uncontaminated observation as outliers 

of SDSFB and TBB are reduced compared to SDSF and TB.  

The obtained fences were then applied to each bootstrap 

sample. Based on the number of outliers detected in each 

bootstrap sample, the robust mean and robust standard 

deviation were calculated using the proposed method TEB in 

two different ways.  The first way is trimming one sided while 

the second way is trimming both sides equally when outliers 

are detected on either side of the distribution. This procedure 

was done in both clean data and screened contaminated data. 

Performances of the techniques on different scenarios can be 

observed in Figures 5-12. 

Figure 5 and Figure 6 display bias and root mean square 

error (RMSE) of the one-sided trimmed mean of the 

proposed bootstrap method, SSFB, SDSFB and TBB at 

various number  of outliers and sample size. In 0% 

contamination , it can be observed that after B = 2000  

bootstrap resampling, most of the bias and RMSE produced 

by SSFB method are smaller than the SDSFB and TBB.  

 

 

 

 

 

Figure 5. Average Bias for the One-sided Trimmed Mean for 

(a) 0% contamination, (b) one outlier, (c) two outliers , and 

(d) three outliers upper tail  

(a) 

(b) 

(c) 

(d) 
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Figure 6. Average RMSE for the One-sided Trimmed Mean 

for (a) 0% contamination, (b) one outlier, (c) two outliers , 

and (d) three outliers upper tail  

 

 

 

 

Figure 7. Average Bias for the Two-sided Trimmed Mean for 

a) 0% contamination, (b) one outlier, (c) two outliers , and 

(d) three outliers upper tail  

 

(a) 

(b) 

(c) 

(d) 

(a) 

(b) 

(c) 

(d) 
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Figure 8. Average RMSE for the Two-sided Trimmed Mean 

for (a) 0% contamination, (b) one outlier, (c) two outliers , 

and (d) three outliers upper tail  

 

 

 

 

Figure 9. Average Bias for the One-sided Trimmed Standard 

deviation for (a) 0% contamination, (b) one outlier, (c) two 

outliers , and (d) three outliers upper tail  

 

(a) 

(b) 

(c) 

(d) 

(a) 

(b) 

(c) 

(d) 
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Figure 10. Average RMSE for the One-sided Trimmed 

Standard deviation for (a) 0% contamination, (b) one 

outlier, (c) two outliers , and (d) three outliers upper tail  

 

 

 

 

Figure 11. Average Bias for the Two-sided Trimmed 

Standard deviation for (a) 0% contamination, (b) one 

outlier, (c) two outliers , and (d) three outliers upper tail  

(a) 

(b) 

(c) (c) 

(d) (d) 

(a) 

(b) 


