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Microalgae are extensively used in industry due to their potential in producing high-value metabolites. 

The good microalgae growth kinetics performance is essential owing to excellent microalgae biomass 

harvesting efficiency. Therefore, the best mathematical model for the growth kinetics of microalgae is 

required to predict the correct growth kinetics value and helps in the elucidation of downstream 

processes. This study embarks on the objective to determine the best mathematical models for three 

local microalgae which are Characium sp. UKM1, Chlorella sp. UKM2 and Coelastrella sp. UKM4 

cultured in Bold Basal Media (BBM). The four mathematical models are used to evaluate the growth 

kinetics of microalgae which include logistic model (Lm), modified logistic model (MLm), modified 

Gompertz model (MGm) and Baranyi-Roberts model (BRm). The experimental data were compared to 

the predicted data through the residual plot. The comparison shows that BRm is the best model to fit 

UKM1, UKM2 and UKM4 due to the experimental data which is close to the x-axis of the residual plot 

indicating the data were fitted the best to the BRm. The statistical analysis confirmed that all 

microalgae growth patterns exhibited that the BRm is the best model owing to the lowest percentage of 

standard error prediction indicating the lowest error compared to the other models. In addition, 

accuracy and bias factors are near to one which assess the precision of these models. In conclusion, the 

growth of UKM1, UKM2 and UKM4 grown in BBM is best fitted to the Baranyi-Roberts model.  

Keywords: Microalgae; Characium sp. UKM1; Chlorella sp. UKM2; Coelastrella sp. UKM4; 

mathematical model 

 

 

I. INTRODUCTION 

 

Microalgae are widely used in wastewater treatment, CO₂ 

sequestration and the metabolites produced in microalgae 

are often used to produce third-generation biofuel. 

Microalgae can grow in a robust condition with faster 

growth rates compared to terrestrial plants. Nevertheless, 

high-value microalgae-based products are interesting 

insights for commercialisation (Japar, Takriff & Mohd 

Yasin, 2021).  

In order to enhance the product accumulation in 

microalgae biomass, the growth of microalgae is an 
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important parameter. The growth of microalgae requires 

several phases. The time for the microalgae to adapt to the 

new culture condition is represented as the lag phase (λ). 

The time taken for microalgae growth utilising substrate in 

the fermenter is called an exponential phase. In a given 

period, the growth accelerates to a maximal value of a 

specific growth rate (µmax). Next, the microalgae enter a 

stationary phase where the amount of growth is similar to 

death. Finally, the growth rate decreases and in the end 

reaches zero or an asymptote (A) (Johari, 2014). 

The specific growth rate (µ) and lag phase (λ) of microbial 

growth was described by mathematical kinetic modelling. 

Despite the decline phase in the microbial growth profile, 

microalgae often used sigmoidal function to describe their 

growth. The growth phases usually resulted in a sigmoidal 

curve (López et al., 2004). A sigmoidal growth data set can 

be described as a nonlinear regression model. The estimated 

µmax, λ and A can be derived from the growth model 

(Matsuda & Sugawara, 2017). Several sigmoidal functions 

describe microalgae growth such as Gompertz, modified 

Gompertz, logistic, modified logistic, Richards, Von 

Bertanlanffy, Baranyi-Roberts, Morgan and Weibull (López 

et al., 2004). The growth of commercial microalgae species 

were scientifically evaluated. However, no studies have been 

carried out to understand the best mathematical model for 

local microalgae species, Characium sp. UKM1, Chlorella sp. 

UKM2 and Coelastrella sp. UKM4. 

Characium sp. UKM1, Chlorella sp. UKM2 and 

Coelastrella sp. UKM4 are often used in the 

phycoremediation of palm oil mill effluent (POME) and CO₂ 

sequestration study (Ding et. al., 2020; Minhat et al., 2016). 

The study of microalgae growth during phycoremediation 

process is essential in the determination of their 

performance in harsh environmental conditions and high 

organic load. However, the suitability of a mathematical 

model to describe these microalgae curve fitting was not yet 

understood. Perhaps the comparison of different 

mathematical models to fit each of the experimental data is 

timely.  

The logistic model is frequently used to describe microbial 

population growth. The changes in the number of organisms 

will be described by this model as the function of growth 

rate (μ), initial biomass (Xo) and maximum biomass 

concentration (Xmax) with respect to the cultivation time 

(Phukoetphim et al., 2017).  The modified logistic model 

(MLm) is derived from the classical logistic (Lm) differential 

equation (Windarto, Eridani & Purwati, 2018). In this 

model, the estimated yield and lag phase could be obtained 

over time (Halil, 2020).  

Modified Gompertz (MGm) is the model that has been 

widely used by researchers. During the stationary phase, it 

gives lag time, specific growth rate and maximum 

biovolume (Çelekli, Balci & Bozkurt, 2008). Meanwhile, the 

Baranyi model has become the most commonly preferred 

growth model owing to its excellent fitting potential. 

Therefore, this model is the best to understand various 

environmental conditions due to its ability to interpret 

various kinetics values (Yilmaz, 2011). 

The best mathematical model has been used extensively to 

predict the growth kinetics including lag time (λ), potential 

values of maximum cell concentration (Xmax), maximum 

specific growth rate (μmax) to estimate the trend of cell 

growth. Based on the best model, the correct growth kinetics 

value can be determined. The utilisation of incorrect 

mathematical models will create erroneous data and 

justification in downstream processes. Therefore, the 

comparison of different mathematical models will be 

evaluated in this study. The experimental data of 

Characium sp. UKM1, Chlorella sp. UKM2 and Coelastrella 

sp. UKM4 cultured in the Bold Basal Medium will be used to 

fit on different models of Lm (Fujikawa, Kai & Morozumi, 

2003), MLm, MGm and BRm (Matsuda & Sugawara, 2017). 

In addition, the significant growth fit of microalgae will be 

indicated by statistical analysis. 

 

II. MATERIALS AND METHODS 
 

A. Microalgae Cultivation and Biomass 
Determination 

 
The three native microalgae Characium sp. UKM1 (NCBI: 

KJ143753), Chlorella sp. UKM2 (NCBI: KP262476) and 

Coelastrella sp. UKM4 (NCBI: KP691597) were cultured in 

Bold Basal Media (BBM). Each culture was seeded with 10% 

(v/v) inoculum in 1000 mL of BBM in Duran bottle at a 

temperature of 25˚C under constant illumination with 

fluorescent light aerated with 0.5 vvm of air sparging (Ding 

et al., 2020). 
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BBM content was prepared according to Hariz and Takriff 

(2017).  Microalgal growth was evaluated for twenty days by 

determination of its biomass amount. The biomass was 

measured by using the dry cell weight method according to 

Hariz et al. (2018).  

 

B. Mathematical Models and Growth Kinetics 
Evaluation 

 
Four mathematical models were employed to compare the 

best-fit growth model for three native microalgae. The four 

models are Lm, MLm, MGm and BRm. MATLAB R2020a 

software was used for the growth rate fitting. Table 1 shows 

the equation used for each model. Each equation was fitted 

in the MATLAB R2020a for growth kinetics evaluation. 

 

Table 1. Mathematical models equation used in this study 

No. Model Equation 

 
(1) 

 
Logistic 
(Lm) 

 

y= 
𝐴+𝐶

1+ 𝑒𝑥𝑝(−𝐵(𝑡−𝑀)) 

 
(2) Modifie

d 
Logistic 
(MLm) 
 

y= 
𝐴

1 +𝑒𝑥𝑝𝑒𝑥𝑝 [
4𝜇𝑚𝑎𝑥

𝐴
 (𝜆−𝑡)+2] 

 

(3) Modifie
d 
Gomper
tz 
(MGm) 
 

y= Aexp{-exp [
𝜇 𝑒 

𝐴
(𝜆 − 𝑡) + 1]} 

(4) 
 

Baranyi
-
Roberts 
(BRm) 

y = A + µmax x + 
1

µ𝑚𝑎𝑥
𝑙𝑛 𝑙𝑛 (𝑒−𝜇𝑥   +

 𝑒−ℎ𝑜 − 𝑒−𝜇𝑥−ℎ𝑜 ) 

- ln(1 +

𝑒
𝜇𝑥+ 

1
𝜇𝑚𝑎𝑥𝑙𝑛𝑙𝑛 (𝑒𝜇𝑥 + 𝑒−ℎ𝑜− 𝑒−𝜇𝑥−ℎ𝑜 

) −1  

𝑒(𝑦𝑚𝑎𝑥−𝐴)
) 

 
 

According to Mohd, Yasin & Takriff 2021, in Lm, A 

represent as asymptotic at Xt /X0 as with the constant 

reduction of t, while C was asymptotic at Xt/X0 with the 

regular rise of t, B was the microalgae development rate at 

time M (day-1), t indicated time (day), and M was the point 

of the highest complete development degree (day). 

Furthermore, Xt referred to the microalgae biomass 

concentration at time t (gL-1), while X0 was the original 

concentration of microalgae mass (gL-1). 

In MLm and MGm, λ refers to the lag phase (day), while 

µmax is the maximum growth rate (day-1) and A is the 

asymptotic ln Xt/X0 maximum on the y-axis.  

Meanwhile, in BRm, y referred to ln (Xt/X0), while µmax 

was the highest development rate (day-1), A was the original 

cell concentration (X0), ymax referred to the asymptotic ln 

(Xt/X0) with the constant rise of t. Furthermore, h0 was a 

dimensionless parameter quantifying the original 

physiological condition of the cells. The calculation of the 

lag duration λ (day) could be represented as h0 / µmax 

(Mohd, Yasin & Takriff 2021). 

 

C. Statistical Analysis 
 

In order to find the best model among four types of 

mathematical models, several statistical parameters were 

used. In this study, statistical parameters that have been 

used are regression coefficient (R²), adjusted regression 

coefficient (R²), bias factor (BF), root mean squared error 

(RMSE), sum square error (SSE), standard error prediction 

(%SEP) and accuracy factor (AF) according to the following 

mathematical and statistical equations in Table 2.  

 

Table 2. The equations used for statistical analysis 

No. Equation 

 
(5) 

 

(6) 

 

 
 

(7) 

 

 
 

(8) 

 

 
 

(9) 

 

 
 

(10) 
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(11) 

 
  

The predicted value by the model represents ‘pred’ and the 

experimental data represent as ‘obs’, the number of 

experimental data represented as ‘n’ (Johari, 2014). 

Otherwise, Yei is the experimental value and Yci is the 

predicted value of Yei (Vega et al., 2007), N is the number 

observation (Abbaszadeh et al., 2011). 

III. RESULTS AND DISCUSSION 

A. Growth Curve Assessment of UKM1, UKM2 and 
UKM4 

 
Figure 1 shows the growth curve of UKM1, UKM2 and 

UKM4 grown in BBM as observed for 20 days. Production of 

biomass trend of this microalgae follows the sigmoid curve 

with lag phase. The maximum biomass concentrations 

produced by UKM1, UKM2 and UKM4 are 0.3 gLˉ¹, 1.42 

gLˉ¹ and 1.74 gLˉ¹, respectively.  

The cultivation parameters for the UKM1 are similar to 

UKM2 and UKM4. However, the growth for UKM1 is slower 

than UKM2 and UKM4. This shows that the conditions of 

this study are not suitable to enhance the growth of UKM1. 

The previous study shows that UKM1 can achieve maximum 

biomass up to 2.27 g/L (Minhat et al., 2016). This is due to 

the presence of carbon dioxide (CO2) during the cultivation 

of UKM1 as indicated in Table 3. It was shown that the 

maximum specific growth rate (μmax) of UKM1 can achieve 

up to 0.5625 day-1 in the experiment with the presence of 

CO2 (Minhat et. al., 2016; Khalid et al., 2019), which is 3 to 

4 fold higher compared to other experiments without CO2 

supplementation (Tamil Selvam, Pegnanathan & Takriff, 

2015; Khalid et al., 2019). This indicates that UKM1 is 

dependent on CO2 as a carbon source for its growth. 

 

Table 3. Comparison with previous study for the growth kinetics of Characium sp. UKM1 

Microalgae sp. Medium and Condition Cultivation Day 

(days) 

Xmax 

(g/L) 

Umax 

(days-1) 

Reference 

Characium sp. 

UKM1 

 

BBM 20 0.3 0.2741 This study 

Characium sp. 

UKM1 

 

BBM + 0.04% CO2 10 2.27 0.5625 (Minhat et al., 2016) 

Characium sp. 

UKM1 

 

2 L, POME (10% inoculum) 

 

20 - 0.163 (Tamil Selvam, 

Renganathan & Takriff 

2015) 

Characium sp. 

UKM1 (CR) 

 

BBM + 5% CO2 (12:12 

light: dark, 20% 

inoculation) 

 

11 0.315 0.5 (Khalid et al., 2019) 

 

Characium sp. 

UKM1 (CR) 
Pome + 20% distilled water 

 

20 1.43 0.17 (Khalid et al., 2019) 
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Figure 1. Growth curve of UKM1, UKM2 and UKM4 in BBM for 20 days. The data were represented as mean ± standard 

deviation of duplicated analysis. 

The growth of microalgae as illustrated in Figure 1 were 

used to fit the four mathematical models: Lm, MLm, MGm 

and BRm. The curves fitted by four mathematical models for 

UKM1, UKM2 and UKM4 through MATLAB are presented 

in Figures 2, 3 and 4, respectively.

 

 

Figure 2. Mathematical model plots for UKM1; (a) Lm, (b) MLm, (c) MGm and (d) BRm 
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Figure 3. Mathematical model plots for UKM2; (a) Lm, (b) MLm, (c) MGm and (d) BRm 

 

 

Figure 4. Mathematical model plots for UKM4; (a) Lm, (b) MLm, (c) MGm and (d) BRm

In general, all the models were fitted to all microalgae 

growth profiles, indicating the suitability of these four 

models in determination of the kinetics profile in 

microalgae. The mathematical model has been used 

extensively to predict the trend of cell growth by estimating 

the maximum specific growth rate, lag phase and maximum 

cell concentration (Lam et al., 2017).  
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The best fit growth curve is when the plot is close to the x-

axis. This to estimate the value of lag phase (λ) (Matsuda & 

Sugawara, 2017). In growth kinetics, this λ value is 

important. The best fit growth curve for UKM2 and UKM4 

are Lm, MGm and BRm. However, all four mathematical 

models do not perform the best fit for the UKM1 growth 

curve. The model cannot fit well for UKM1 because the 

growth of UKM1 was not supported without the 

supplementation of CO2 (Table 3). Thus, the growth pattern 

was not similar to UKM2 and UKM4.  

However, the lag phase (λ) also can be obtained from the 

graph by drawing a straight line between the minimum and 

maximum exponent value, indicating the intersection to the 

x-axis is the lag phase value. The lag phase (λ) values are 

positive as indicated in Table 4. In growth kinetics, this λ 

value is important to estimate the time taken for microalgae 

to adapt to environmental culture conditions.  

Finally, the growth rate decreases and in the end reaches 

zero or an asymptote (A).  A previous study reported that the 

lag phase took about four days on average and the 

exponential phase took up about ten days for 10% of local 

microalgae cultured in BBM (Japar, Takriff & Mohd Yasin, 

2021). In general, all the models were almost fitted to all 

microalgae growth profiles, indicating the suitability of 

these four models in determining kinetics profile in 

microalgae. However, further analysis needs to be carried 

out by looking at the differences between the experimental 

and predicted values.  

Further analysis was carried out from the data illustrated 

in Figures 2, 3 and 4. The residual plot clarified the data as 

shown in Figures 5, 6 and 7 for UKM1, UKM2 and UKM4, 

respectively. The residual plot indicates the differences 

between the predicted and experimental values. The value 

must be closed to the x-axis and a random distribution 

pattern should not be displayed, indicating a good residual 

plot (Lam et al., 2017). 

.

 

 

Figure 5. UKM1 residuals mathematical model plots; (a) Lm, (b) MLm, (c) MGm and (d) BRm 
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Figure 6. UKM2 residuals mathematical model plots; (a) Lm, (b) MLm, (c) MGm and (d) BRm 

 

 

Figure 7. UKM4 residuals mathematical model plots; (a) Lm, (b) MLm, (c) MGm and (d) BRm

It can be observed from Figure 5(d), 6(d) and 7(d) that the 

best residual plot for UKM1, UKM2 and UKM4 is a BRm 

model due to the scattered trend with the least extent of 

sigmoidal bar placement along the x-axis. The other 

mathematical models proved that the models were not 

suitable for experimental data fitting due to the scattered 

trend with the greater extent of sigmoidal bar placement 

along the x-axis. 

 

 

 

B. Statistical Analysis 
 

To predict the best model for each microalga, the statistical 

analysis was carried out considering several factors such as 

regression coefficient (R²), adjusted regression coefficient 

(R²), bias factor (BF), root mean squared error (RMSE), 

sum square error (SSE), standard error prediction (%SEP) 

and accuracy factor (AF). The precision of each model in the 

curve fitting of the experimental data was indicated by the 

coefficient regression, R² (Lam et al., 2017). Table 4 shows 

the several parameters of statistical analysis. This statistical 

analysis is to justify the best fit mathematical model
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Table 4. Statistical analysis of mathematical models for three local microalgae species 

    λ µmax R² adj R² SSE RMSE BF AF %SEP 

UKM1            

Logistic model (Lm)   0.2741 0.9338 0.9338 0.0062 0.0248 0.9699 1.0311 15.05 

Modified Logistic model (MLm) 2.541 0.0185 0.9369 0.9299 0.0059 0.0255 1.0977 1.0978 14.69 

Modified Gompertz model (MGm) 1.964 0.0181 0.9392 0.9325 0.0057 0.0251 1.0414 1.0414 14.41 

Baranyi-Roberts model (BRm) 9.505 0.1368 0.9469 0.9336 0.0050 0.0249 1.0404 1.0404 13.37 

          

UKM2          

Logistic model (Lm)  0.3769 0.9849 0.9849 0.0397 0.0630 0.9038 1.1064 9.33 

Modified Logistic model (MLm) 5.093 0.114 0.9921 0.9912 0.0208 0.0481 1.1536 1.1536 6.75 

Modified Gompertz model (MGm) 4.598 0.1112 0.9875 0.9861 0.0329 0.0604 0.9166 1.0910 8.49 

Baranyi-Roberts model (BRm) 8.957 0.2681 0.9951 0.9399 0.0129 0.0401 1.0448 1.0448 5.31 

          

UKM4           

Logistic model (Lm)  0.4183 0.9586 0.9586 0.1628 0.1276 0.8377 1.1938 14.36 

Modified Logistic model (MLm) 3.875 0.1333 0.9852 0.9835 0.0583 0.0805 1.2088 1.2088 8.60 

Modified Gompertz model (MGm) 3.423 0.1299 0.9807 0.9786 0.0758 0.0917 1.0002 0.9998 9.79 

Baranyi-Roberts model (BRm) 7.029 0.232 0.9911 0.9889 0.0349 0.0661 1.0619 1.0619 6.65 
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The values of more than 0.95 for R² indicate the accuracy 

of each model to fit with the experimental data. The curve 

fitting for the Lm, MLm, MGm and BRm model was 

unsatisfactory. It shows the value of less than 95% and lower 

precision was found as indicated in Table 4 for growth 

prediction of UKM1. It indicates that the highest R² for 

UKM2 and UKM4 are fitted to be BRm with the value of 

0.9951 and 0.9911 for UKM2 and UKM4, respectively. 

According to the R2 values, the result shows that the BRm 

model provides a good fit for UKM2 and UKM4.  

However, the R² value is often used for linear regression 

models only. For nonlinear regression, the number of 

parameters expressed in the models would be different and 

R² analysis would not provide a comparative analysis. 

Therefore, the adjusted R² was further used for non-linear 

models quality evaluation (Johari, 2014). 

The adjusted R² values for UKM1 to Lm, MLm, MGm and 

BRm model were 0.9338, 0.9299, 0.9325 and 0.9336, 

respectively. However, the value presented for UKM1 was 

unsatisfactory as the value of adjusted R² is less than 0.95 

indicating lower precision in growth prediction. The 

adjusted R² shows that the MLm model gave higher 

precision in growth prediction in UKM2 with the value of 

0.9912, while the BRm model was the highest precision for 

UKM4 with 0.9889 (Table 4). 

Meanwhile, the lowest value of RMSE and SSE give the 

best fit (Abbaszadeh et al., 2011). It was shown in Table 4 

that the BRm presents an excellent model as reflected by 

lower RMSE and SSE value for all microalgae. 

Then, to evaluate the relative difference between the 

predictive and observed values, BF was calculated.  An ideal 

match between the mathematical model prediction data and 

experimental data can be represented by a BF value of 1. BF 

value of 1 shows the perfect agreement between the model 

with the experimental data (López et al., 2004). The higher 

or lower BF values represent the overestimation or 

underestimation of the observed values, respectively. In this 

study, all four models produced the best prediction 

concerning the BF value. The perfect match between 

predicted and observed values is when the BF equals 1. The 

fail-dangerous model was indicated as the value of BF < 1, 

while the fail-safe model was indicated as the value of BF > 1 

(Matsuda & Sugawara, 2017). The value can be considered 

acceptable for BF value in the range 0.70-0.90 or 1.06-1.15. 

However, the BF value that is considered unacceptable is in 

the range < 0.70 or > 1.15. Referring to this standard, there 

was no bias in this study for all models. All the BF values 

obtained in this study were within the good range (Dong et 

al., 2007).  

The mean contrast between the experimental and model 

prediction data presented as AF value. The typical AF value 

is more than or equal to 1. The higher AF value indicates 

insignificant efficiency of model prediction for correctness 

between the predicted and actual data (Matsuda & 

Sugawara, 2017). In this study, the Lm was found to be close 

to 1 for UKM1 with 1.0311. However, BRm was close to 1 

with 1.0448 and 1.0619 for UKM2 and UKM4, respectively. 

Furthermore, the lower error between the predictive and 

experimental values can be determined by the lowest value 

of %SEP. The %SEP proved that the BRm model 

demonstrated lower residuals with a difference of 13.8% for 

UKM1, 5.3% for UKM2 and 6.7% for UKM4 between the 

predictive and experimental values. 

Statistical analysis shows that the ideal mathematical 

models are the BRm model for UKM1, UKM2 and UKM4 by 

referring to the lower value of %SEP. The BRm model 

present µmax= 0.1368 dˉ¹, λ= 9.505 and Xmax= 0.1546 

gLˉ¹ for UKM1. Meanwhile, the values for UKM2 is µmax= 

0.2681 dˉ¹, λ= 8.957 and Xmax= 0.6305 gLˉ¹. In contrast, 

UKM4 give µmax= 0.232 dˉ¹, λ= 7.029 and Xmax= 0.8197 

gLˉ¹. This is because most of the parameters by the BRm 

model are biologically interpretable (Johari, 2014).  

A lower value of %SEP shows the lowest error in the 

models from all the statistical analysis parameters. Thus, the 

BRm model was selected due to its lower %SEP values for all 

three microalgae compared to the Lm, MLm and MGm 

models.  

 

IV. CONCLUSION 
 

The UKM1, UKM2 and UKM4 growth modelling were 

investigated using four different mathematical models. 

Logistic, modified logistic, modified Gompertz and Baranyi-

Roberts models were used. All sigmoidal models can be used 

for the curve fitting of microalgae growth. However, based 

on the statistical evidence by comparing four models, it can 
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be concluded that the BRm model indicates the best 

mathematical model due to the lowest %SEP value. This 

presents that the BRm model has the lowest error compared 

to the others model. Therefore, the BRm is the best model to 

fit the microalgae growth for further kinetics studies. 
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