The Symmetries of \((k: \alpha_1, \alpha_2, \ldots, \alpha_k)\)-step Fibonacci Functions

K. Paikhlaew, S. Kerdmongkon, N. Nawapongpipat and Y. Tongron

Department of Mathematics, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, 30000, Thailand

It is well known that the Fibonacci sequence \((F_n)\) is denoted by \(F_0 = 0, F_1 = 1\) and \(F_n = F_{n-1} + F_{n-2}\), while the Lucas sequence \((L_n)\) is denoted by \(L_0 = 2, L_1 = 1\) and \(L_n = L_{n-1} + L_{n-2}\). There are several studies showing relations between these two sequences. An interesting generalisation of both the sequences is a Fibonacci function \(f: \mathbb{R} \rightarrow \mathbb{R}\) defined by \(f(x + 2) = f(x + 1) + f(x)\) for any real number \(x\) (Elmore, 1967). Research about periods of Fibonacci numbers modulo \(m\) (Jameson, 2018) results in a contribution on the existence of primitive period of a Fibonacci function \(f: \mathbb{Z} \rightarrow \mathbb{Z}\) modulo \(m\) (Thongngam & Chinram, 2019). Recently, a \(k\)-step Fibonacci function \(f: \mathbb{Z} \rightarrow \mathbb{Z}\) denoted by \(f(n + k) = f(n + k - 1) + f(n + k - 2) + \cdots + f(n)\) for any integer \(n\) and \(k \geq 2\) (which is a generalisation of a Fibonacci function \(f: \mathbb{Z} \rightarrow \mathbb{Z}\)) is introduced and the existence of primitive period of this function modulo \(m\) is established (Tongron & Kerdmongkon, 2022). In this work, let \(k\) be an integer \(\geq 2\). For nonnegative integers \(\alpha_1, \alpha_2, \ldots, \alpha_k\) and \(\alpha_1 \neq 0\), a \((k: \alpha_1, \alpha_2, \ldots, \alpha_k)\)-step Fibonacci function \(f: \mathbb{Z} \rightarrow \mathbb{Z}\) is defined by \(f(n) = f(n - \alpha_1) + f(n - \alpha_1 - \alpha_2) + \cdots + f(n - \alpha_1 - \alpha_2 - \cdots - \alpha_k)\) for any integer \(n\). In fact, a \(k\)-step Fibonacci function is a special case of a \((k: \alpha_1, \alpha_2, \ldots, \alpha_k)\)-step Fibonacci function. We present the existence of primitive period of this function modulo \(m\) and show that certain \((k: \alpha_1, \alpha_2, \ldots, \alpha_k)\)-step Fibonacci functions are symmetric-like.

Keywords: Fibonacci functions; \(k\)-step Fibonacci function; \((k: \alpha_1, \alpha_2, \ldots, \alpha_k)\)-step Fibonacci function; primitive period modulo \(m\); symmetric-like

1. **INTRODUCTION**

The Fibonacci sequence \((F_n)\) is defined by (Koshy, 2001; Vorob’ev, 2011):

\[F_0 = 0, F_1 = 1 \text{ and } F_n = F_{n-1} + F_{n-2} \]

for any natural number \(n \geq 2\). The beginning of the sequence is thus:

\[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, \ldots \]

Similar to the Fibonacci sequence, the Lucas sequence \((L_n)\) is defined by (Koshy, 2001):

\[L_0 = 2, L_1 = 1 \text{ and } L_n = L_{n-1} + L_{n-2} \]

for any natural number \(n \geq 2\). The beginning of the sequence is thus:

\[2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, \ldots \]

Recently, there are several interesting relations between the Fibonacci sequence and the Lucas sequence, for example, (Adegoke, 2022; Phunphayap, Khemaratchatakumthorn & Sumrithnorrapong, 2022), etc.

In 1967, Elmore (Elmore, 1967) consider a relation between the Fibonacci sequence and the Lucas sequence and define a Fibonacci function \(f: \mathbb{R} \rightarrow \mathbb{R}\) which is denoted by:

\[f(x + 2) = f(x + 1) + f(x) \]

for all real numbers \(x\). Observe that if \(f(0) = 0\) and \(f(1) = 1\), then we get the Fibonacci sequence. Furthermore, if \(f(0) = 2\) and \(f(1) = 1\), then we get the Lucas sequence. Consequently, a Fibonacci function is a generalisation of both the Fibonacci sequence and the Lucas sequence.

*Corresponding author’s e-mail: yanapat.t@nru.ac.th
In 2018, Jameson (Jameson, 2018) studies periods of Fibonacci numbers modulo m and provides some properties on periods of such numbers. His work motivates Thongngam and Chinram (Thongngam & Chinram, 2019) to show the existence of primitive period of a Fibonacci function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ modulo m. They also establish some relations among periods and the primitive periods of such functions.

Recently, Tongron and Kerdmongkon (Tongron & Kerdmongkon, 2022) study about a k-step Fibonacci function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by:

$$f(n + k) = f(n + k - 1) + f(n + k - 2) + \cdots + f(n)$$

for any integer n and $k \geq 2$. We can say equivalently that it is denoted by:

$$f(n) = f(n - 1) + f(n - 2) + \cdots + f(n - k)$$

for any integer n and $k \geq 2$. Observe that this function when $k = 2$ is a generalisation of a Fibonacci function defined from \mathbb{Z} to \mathbb{Z}. We refer to their work as follows:

Theorem 1.1. (Tongron & Kerdmongkon, 2022) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a k-step Fibonacci function and m be a positive integer > 1. Then there exists an integer $1 \leq l \leq m^k$ such that $f(n + l) \equiv f(n) \pmod{m}$ for any integer n.

Such integer l is called a Period of f modulo m. If such integer l is the smallest, then it is called the Primitive Period of f modulo m and write $l = \ell_f(m)$.

Theorem 1.2. (Tongron & Kerdmongkon, 2022) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a k-step Fibonacci function and l, m be positive integers > 1. l is a period of f modulo m if and only if $\ell_f(m) \mid l$.

Theorem 1.3. (Tongron & Kerdmongkon, 2022) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a k-step Fibonacci function and m, n be positive integers > 1. If $\gcd(m, n) = 1$, then $\ell_f(mn) = \text{lcm}[\ell_f(m), \ell_f(n)]$.

Indeed, Thongngam and Chinram’s results (Thongngam & Chinram, 2019) are special cases of the above facts. Tongron and Kerdmongkon (Tongron & Kerdmongkon, 2022) also provide the explicit primitive periods of some k-step Fibonacci function as follows:

Lemma 1.4. (Tongron & Kerdmongkon, 2022) Let m be a positive integer and $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a k-step Fibonacci function with the starting values $f(0) = a_0, f(1) = a_1, \ldots, f(k - 1) = a_{k-1}$ and $\gcd(m, k - 1) = 1$. Then $m|a_i$ for all $i \in \{0, 1, \ldots, k - 1\}$ if and only if $\ell_f(m) = 1$.

Theorem 1.5. (Tongron & Kerdmongkon, 2022) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a 2-step Fibonacci function with the starting values $f(0) = a$ and $f(1) = b$. Assume that $2m \nmid a$ or $2m \nmid b$. For a positive integer m, $m|a$ and $m|b$ if and only if $\ell_f(2m) = 3$.

Theorem 1.6. (Tongron & Kerdmongkon, 2022) Let m be a positive odd integer and $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a 3-step Fibonacci function with the starting values $f(0) = a$, $f(1) = b$ and $f(2) = c$. Assume that $3m \nmid a$, $3m \nmid b$ or $3m \nmid c$. Then the following statements hold.

1. If $m|a$, $m|b$ and $m|c$ then $\ell_f(3m) = 13$.
2. If $\ell_f(3m) = 13$, then
 - $91a + 141b + 168c \equiv 0 \pmod{m}$
 - $168a + 259b + 309c \equiv 0 \pmod{m}$
 - $309a + 477b + 568c \equiv 0 \pmod{m}$.

Corollary 1.7. (Tongron & Kerdmongkon, 2022) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a 3-step Fibonacci function with the starting values $f(0) = a$, $f(1) = b$ and $f(2) = c$. Then the following statements hold.

1. If $\ell_f(9) = 13$ and a, b or c is not divisible by 9, then $3|a$, $3|b$ and $3|c$.
2. If $\ell_f(21) = 13$ and a, b or c is not divisible by 21, then $7|a$, $7|b$ and $7|c$.

Theorem 1.8. (Tongron & Kerdmongkon, 2022) Let m be a positive integer and $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a 4-step Fibonacci function with the starting values $f(0) = a$, $f(1) = b$, $f(2) = c$ and $f(3) = d$. Assume that $\gcd(4m, 3) = 1$ and a, b, c or d is not divisible by $4m$. Then the following statements hold.

1. If $m|a$, $m|b$, $m|c$ and $m|d$, then
 $$\ell_f(4m) = \begin{cases} 5 & \text{if } b + c + d, a + b + 2c + 2d, 2a + 3b + 3c + 4d \\ 10 & \text{and } 4a + 6b + 7c + 7d \text{ are divisible by } 2m, \\ \text{otherwise}. \end{cases}$$
2. If $\ell_f(4m) = 10$, then
In this paper, we define a \((k: \alpha_1, \alpha_2, ..., \alpha_k)\)-step Fibonacci function \(f: \mathbb{Z} \rightarrow \mathbb{Z}\) for nonnegative integers \(\alpha_1, \alpha_2, ..., \alpha_k\) and \(\alpha_1 \neq 0\) by:

\[
f(n) = f(n - \alpha_1) + f(n - \alpha_1 - \alpha_2) + \cdots + f(n - \alpha_1 - \alpha_2 - \cdots - \alpha_k)
\]

for any integer \(n\). Notice that the \((k: \alpha_1, \alpha_2, ..., \alpha_k)\)-step Fibonacci function is a generalisation of a \(k\)-step Fibonacci function when all \(\alpha\) are equal to 1. Theorem 1.1 – 1.3 are going to be proven in the version of \((k: \alpha_1, \alpha_2, ..., \alpha_k)\)-step Fibonacci functions. There are also several examples to support our facts. Some of these examples motivate us to verify that certain \((k: \alpha_1, \alpha_2, ..., \alpha_k)\)-step Fibonacci functions are symmetric-like.

II. MAIN RESULTS

Let \(k\) be an integer \(\geq 2\) and \(\alpha_1, \alpha_2, ..., \alpha_k\) be nonnegative integers such that \(\alpha_1 \neq 0\). Recall that a \((k: \alpha_1, \alpha_2, ..., \alpha_k)\)-step Fibonacci function \(f: \mathbb{Z} \rightarrow \mathbb{Z}\) is defined by:

\[
f(n) = f(n - \alpha_1) + f(n - \alpha_1 - \alpha_2) + \cdots + f(n - \alpha_1 - \alpha_2 - \cdots - \alpha_k)
\]

for any integer \(n\). For general use, a \((k: \alpha_1, \alpha_2, ..., \alpha_k)\)-step Fibonacci function \(f: \mathbb{Z} \rightarrow \mathbb{Z}\) satisfies:

\[
f(n) = f(n + \alpha_1 + \alpha_2 + \cdots + \alpha_k) - f(n + \alpha_2 + \cdots + \alpha_k) - f(n + \alpha_3 + \cdots + \alpha_k) - \cdots - f(n + \alpha_k)
\]

for any integer \(n\).

Example 2.1. Let \(f: \mathbb{Z} \rightarrow \mathbb{Z}\) be a \((3: 2,1,1)\)-step Fibonacci function such that \(f(0) = 0\), \(f(1) = 1\), \(f(2) = -1\) and \(f(3) = -2\). We can calculate the other \(f(n)\) as follow:

\[
\begin{align*}
\quad f(-3) & = f(1) - f(-1) - f(-2) = 2 \\
f(-2) & = f(2) - f(0) - f(-1) = 2 \\
f(-1) & = f(3) - f(1) - f(0) = -3 \\
f(0) & = 0 \\
f(1) & = 1 \\
f(2) & = -1 \\
f(3) & = -2 \\
f(4) & = f(2) + f(1) + f(0) = 0 \\
f(5) & = f(3) + f(2) + f(1) = -2 \\
f(6) & = f(4) + f(3) + f(2) = -3 \\
& \vdots
\end{align*}
\]

Then we get the following tables:

Table 1. The values of the \((3: 2,1,1)\)-step Fibonacci function \(f(n)\)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(-10)</th>
<th>(-9)</th>
<th>(-8)</th>
<th>(-7)</th>
<th>(-6)</th>
<th>(-5)</th>
<th>(-4)</th>
<th>(-3)</th>
<th>(-2)</th>
<th>(-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n))</td>
<td>4</td>
<td>10</td>
<td>-7</td>
<td>-4</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n))</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>0</td>
<td>-2</td>
<td>-3</td>
<td>-4</td>
<td>-5</td>
<td>-9</td>
</tr>
</tbody>
</table>

Example 2.2. Let \(f: \mathbb{Z} \rightarrow \mathbb{Z}\) be a \((4: 1,0,0,1)\)-step Fibonacci function such that \(f(0) = 0\) and \(f(1) = 1\). We can calculate the other \(f(n)\) as follow:

\[
\begin{align*}
\quad f(-3) & = f(-1) - f(-2) - f(-2) = 10 \\
f(-2) & = f(0) - f(-1) - f(-1) = -3 \\
f(-1) & = f(1) - f(0) - f(0) = 1 \\
f(0) & = 0 \\
f(1) & = 1 \\
f(2) & = f(1) + f(1) = 3 \\
f(3) & = f(2) + f(2) + f(2) = 10 \\
& \vdots
\end{align*}
\]

Then we get the following tables:

Table 2. The values of the \((4: 1,0,0,1)\)-step Fibonacci function \(f(n)\)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(-8)</th>
<th>(-7)</th>
<th>(-6)</th>
<th>(-5)</th>
<th>(-4)</th>
<th>(-3)</th>
<th>(-2)</th>
<th>(-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n))</td>
<td>-3927</td>
<td>1189</td>
<td>-360</td>
<td>109</td>
<td>-33</td>
<td>10</td>
<td>-3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n))</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>33</td>
<td>109</td>
<td>360</td>
<td>1189</td>
<td>3927</td>
<td>12970</td>
</tr>
</tbody>
</table>

Next, we show the existence of primitive period of \((k: \alpha_1, \alpha_2, ..., \alpha_k)\)-step Fibonacci functions modulo \(m\).

Theorem 2.3. Let \(f: \mathbb{Z} \rightarrow \mathbb{Z}\) be a \((k: \alpha_1, \alpha_2, ..., \alpha_k)\)-step Fibonacci function with \(\alpha_k \geq 1\) and \(m\) be a positive integer.
> 1. Then there exists an integer $1 \leq l \leq m^{\alpha_1 + \alpha_2 + \cdots + \alpha_k}$ such that $f(n + l) \equiv f(n) \pmod{m}$ for any integer n.

Proof. For any integer $a \in \{0, 1, \ldots, m^{\alpha_1 + \alpha_2 + \cdots + \alpha_k} + 1\}$ elements, consider \((a, a + \alpha_2 + \cdots + \alpha_k)\) - tuple
\[
(f(a), f(a + 1), \ldots, f(a + 1 + \alpha_2 + \cdots + \alpha_k - 1))
\]
modulo m which can be $m^{\alpha_1 + \alpha_2 + \cdots + \alpha_k}$ possible values:
\[
(0, 0, 0, \ldots, 0, 0), (0, 0, 0, \ldots, 0, 1), \ldots, (0, 0, \ldots, 0, 1, m - 1),
\]
\[
(0, 0, \ldots, 1, 0), (0, 0, \ldots, 1, 1), \ldots, (0, 0, \ldots, 1, m - 1),
\]
\[
\vdots \quad \vdots \quad \vdots
\]
\[
(m - 1, m - 1, \ldots, m - 1, 0), (m - 1, m - 1, \ldots, m - 1, 1), \ldots
\]
\[
(m - 1, m - 1, \ldots, m - 1, m - 1, m - 1).
\]
We obtain from the Pigeonhole Principle (Burton, 2011) that there are integers $0 \leq i < j \leq m^{\alpha_1 + \alpha_2 + \cdots + \alpha_k}$ such that:
\[
(f(i), f(i + 1), \ldots, f(i + 1 + \alpha_2 + \cdots + \alpha_k - 1)) \equiv (f(i), f(i + 1), \ldots, f(i + 1 + \alpha_2 + \cdots + \alpha_k - 1)) \pmod{m}.
\]
In other words, we have:
\[
f(i + a) \equiv f(i + a) \pmod{m},
\]
where $a \in \{0, 1, \ldots, \alpha_1 + \alpha_2 + \cdots + \alpha_k - 1\}$. Choose a positive integer $l := j - i$ so that:
\[
f(i + a + l) \equiv f(i + a) \pmod{m}
\]
and $1 \leq l \leq m^{\alpha_1 + \alpha_2 + \cdots + \alpha_k}$. The proof is divided into two cases: $n \geq i$ and $n \leq i$.

Case 1. Assume that $f(r + l) \equiv f(r) \pmod{m}$ for $i \leq r \leq n$ and $n \geq i + \alpha_1 + \alpha_2 + \cdots + \alpha_k - 1$. Since $i \leq n + 1 - \alpha_1 - \alpha_2 - \cdots - \alpha_k < n + 1 - \alpha_1 - \alpha_2 - \cdots - \alpha_k - 1 \leq \cdots \leq n + 1 - \alpha_1 - \alpha_2 \leq n + 1 - \alpha_1 \leq n$, we obtain that:
\[
f(n + 1)
\]
\[
\equiv f(n + 1 - \alpha_1) + f(n + 1 - \alpha_1 - \alpha_2) + \cdots + f(n + 1 - \alpha_1 - \alpha_2 - \cdots - \alpha_k) \pmod{m}
\]
\[
\equiv f(n + 1 - \alpha_1 + \alpha_2 + \cdots + \alpha_k - 1) \pmod{m}
\]
\[
\equiv f(n + 1 + l) \pmod{m}.
\]
It follows from the Principle of Strong Mathematical Induction that $f(n + l) \equiv f(n) \pmod{m}$ for $n \geq i$.

Case 2. Assume that $f(r + l) \equiv f(r) \pmod{m}$ for all $n \leq r \leq i + \alpha_1 + \alpha_2 + \cdots + \alpha_k - 1$ and $n \leq i$. Since $n \leq n + 1 - \alpha_1 - \alpha_2 - \cdots - \alpha_k \leq \cdots \leq n + 1 - \alpha_2 - \cdots - \alpha_k \leq \cdots \leq n - 1 + \alpha_2 + \cdots + \alpha_k \leq n - 1 + \alpha_1 + \alpha_2 + \cdots + \alpha_k \leq i$, we obtain that:
\[
f(n - 1)
\]
\[
\equiv f(n - 1 + \alpha_1 + \alpha_2 + \cdots + \alpha_k) - f(n - 1 + \alpha_2 + \cdots + \alpha_k) - \cdots - f(n - 1 + \alpha_k) \pmod{m}
\]
\[
\equiv f(n - 1 + \alpha_1 + \cdots + \alpha_k + l) - f(n - 1 + \alpha_2 + \cdots + \alpha_k + l) - \cdots - f(n - 1 + \alpha_k + l) \pmod{m}
\]
\[
\equiv f(n - 1 + l) \pmod{m}.
\]
It follows from the Principle of Strong Mathematical Induction that $f(n + l) \equiv f(n) \pmod{m}$ for $n \leq i$.

The proof is complete. \(\square \)

Theorem 2.3 tells us that there always exists a period of \((k: \alpha_1, \alpha_2, \ldots, \alpha_k)\)-step Fibonacci functions modulo m.

Definition 2.4. Let $f: \mathbb{Z} \to \mathbb{Z}$ be a \((k: \alpha_1, \alpha_2, \ldots, \alpha_k)\)-step Fibonacci function such that $f(n + l) \equiv f(n) \pmod{m}$ for any integer n is called a **Period** of f modulo m. The smallest positive integer l such that $f(n + l) \equiv f(n) \pmod{m}$ for any integer n is called the **Primitive Period** of f modulo m and write $l := l_f(m)$.

This unique primitive period always exists by The Well Ordering Principle (Burton, 2011). The following statements show some properties about a period and the primitive period of a \((k: \alpha_1, \alpha_2, \ldots, \alpha_k)\)-step Fibonacci function modulo m.

Corollary 2.5. (Tongron & Kerdmongkon, 2022) If $l_f(m)$ is the primitive period of a \((k: \alpha_1, \alpha_2, \ldots, \alpha_k)\)-step Fibonacci function f modulo m, then $1 \leq l_f(m) \leq m^{\alpha_1 + \alpha_2 + \cdots + \alpha_k}$.

Theorem 2.6. (Tongron & Kerdmongkon, 2022) Let $f: \mathbb{Z} \to \mathbb{Z}$ be a \((k: \alpha_1, \alpha_2, \ldots, \alpha_k)\)-step Fibonacci function with $\alpha_k \geq 1$. For positive integers $l, m > 1, l$ is a period of f modulo m if and only if $l_f(m) | l$.

Theorem 2.7. (Tongron & Kerdmongkon, 2022) Let $f: \mathbb{Z} \to \mathbb{Z}$ be a \((k: \alpha_1, \alpha_2, \ldots, \alpha_k)\)-step Fibonacci function with $\alpha_k \geq 1$. If $gcd(m, n) = 1$, then $l_f(mn) = lcm\{l_f(m), l_f(n)\}$ for positive integers $m, n > 1$.

Example 2.8. Let \(f: \mathbb{Z} \to \mathbb{Z} \) be a \((4; 1,0,0,1)\)-step Fibonacci function such that \(f(0) = 0 \) and \(f(1) = 1 \). Then we get the following tables:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(-7)</th>
<th>(-6)</th>
<th>(-5)</th>
<th>(-4)</th>
<th>(-3)</th>
<th>(-2)</th>
<th>(-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n))</td>
<td>1189</td>
<td>360</td>
<td>109</td>
<td>33</td>
<td>10</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>(f(n) \mod 2)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(f(n) \mod 3)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(f(n) \mod 6)</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

We see that \(l_f(2) = 3 \leq 2^{1+0+0+1} \), \(l_f(3) = 2 \leq 2^{1+0+0+1} \), and \(l_f(6) = l_f(2 \cdot 3) = \text{lcm}[l_f(2), l_f(3)] = \text{lcm}[3,2] = 6 \leq 2^{1+0+0+1} \). Moreover, we observe that \(f(1) = f(-1) \), \(f(2) = -f(-2) \), \(f(3) = f(-3) \), \(f(4) = -f(-4) \) and so on. We can say that \(f \) is symmetric-like. This observation is explained in general as follows:

Theorem 2.9. Let \(f: \mathbb{Z} \to \mathbb{Z} \) be a \((k;1,0,\ldots,0,1)\)-step Fibonacci function with \(f(0) = 0 \). Then \(f(n) = (-1)^n+1 f(-n) \) for all non-negative integers \(n \).

Proof. It is obvious that \(f(0) = 0 = (-1)^0 f(-0) \) and \(f(1) = (k-1) f(0) + f(-1) = f(-1) = (-1)^2 f(-1) \). Assume that:

\[
f(t) = (-1)^t+1 f(-t)
\]

for all \(1 \leq t \leq r \). Consider:

\[
f(r+1) = (k-1) f(r) + f(r-1)
\]
\[
= (k-1)[(-1)^r f(-r)] + (-1)^r f(-r + 1)
\]
\[
= (-1)^{r+2}[-(k-1) f(-r) + f(-r + 1)]
\]
\[
= (-1)^{r+2} f(-r - 1) .
\]

We are done.

We are motivated by Theorem 2.9 to ask if this fact for a \((k; a, 0,\ldots,0, a)\)-step Fibonacci function with \(a \geq 2 \) holds or not. First of all, let us consider the following example.

Example 2.10. Let \(f: \mathbb{Z} \to \mathbb{Z} \) be a \((5; 2,0,0,0,2)\)-step Fibonacci function such that \(f(0) = f(1) = f(2) = 0 \) and \(f(3) = -1 \). Then we get the following tables:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(-9)</th>
<th>(-8)</th>
<th>(-7)</th>
<th>(-6)</th>
<th>(-5)</th>
<th>(-4)</th>
<th>(-3)</th>
<th>(-2)</th>
<th>(-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n))</td>
<td>-305</td>
<td>0</td>
<td>72</td>
<td>0</td>
<td>-17</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>(f(n) \mod 2)</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>-4</td>
<td>0</td>
<td>-17</td>
<td>0</td>
<td>-72</td>
</tr>
</tbody>
</table>

Again, we see that \(f \) is symmetric-like, i.e., \(f(2) = f(0) \), \(f(3) = f(-1) \), \(f(4) = f(-2) \), \(f(5) = -f(-3) \) and so on. To show that certain \((k; a, 0,\ldots,0, a)\)-step Fibonacci functions with \(a \geq 2 \) are symmetric-like, the following lemmas are important tools.

Lemma 2.11. Let \(a \) and \(a \) be integers with \(a \geq 2 \). Then the following statements are equivalent.

1. \(a \equiv a - 1 \mod 2a \) or \(a - a \equiv a - 1 \mod 2a \)
2. \(a \equiv a - 1 \mod a \)

Proof. It is clear that \(a \equiv a - 1 \mod 2a \) implies \(a \equiv a - 1 \mod a \). If \(a - a \equiv a - 1 \mod 2a \), then \(a - a \equiv a - 1 \mod a \) and so \(a \equiv a - 1 \mod a \). Conversely, assume that \(a \equiv a - 1 \mod a \) and \(a \equiv a - 1 \mod 2a \). It follows that:

\[
[a - (a - 1)]/a = a - (a - 1) \mod a - 1 \text{ is an odd integer.}
\]

Consequently, we obtain that:

\[
[(a - a) - (a - 1)]/a = [a - (a - 1)]/a - 1 \text{ is even.}
\]

In conclusion, \(a - a \equiv a - 1 \mod 2a \).

Lemma 2.12. Let \(f: \mathbb{Z} \to \mathbb{Z} \) be a \((k; a, 0,\ldots,0, a)\)-step Fibonacci function with \(a \geq 2 \) and \(f(n) = 0 \) for all \(0 \leq n \leq 2a - 2 \). Then \(f(an + b) = 0 \) for all integers \(n \) and \(0 \leq b \leq a - 2 \).

Proof. It is obvious that:

\[
f(a(1) + b) = 0 \quad \text{and} \quad f(a(2) + b) = (k - 1) f(a + b) + f(b) = 0
\]

because \(0 < a + b \leq 2a - 2 \). Assume that \(r \in \mathbb{N} \) and
for all \(2 \leq t \leq r\). We get that:

\[
f(a(r + 1) + b) = (k - 1) f(a(r + 1) + b - a) + f(a(r + 1) + b - 2a) = (k - 1) f(ar + b) + f(a(r - 1) + b) = 0.
\]

In another direction, assume that \(r \in \mathbb{N}\) and

\[
f(at + b) = 0
\]

for all \(r \leq t \leq 1\). We get that:

\[
f(a(r - 1) + b) = -(k - 1) f(a(r - 1) + b + a) + f(a(r - 1) + 2a) = -(k - 1) f(ar + b) + f(a(r + 1) + b) = 0.
\]

This completes the proof by the Principle of Strong Mathematical Induction. \(\Box\)

Lemma 2.12 can be rewritten in a simple way as follows:

Lemma 2.13. Let \(f : \mathbb{Z} \rightarrow \mathbb{Z}\) be a \((k : a, 0, ..., 0, a)\) -step Fibonacci function with \(a \geq 2\) and \(f(n) = 0\) for all \(0 \leq n \leq 2a - 2\). If \(n \equiv a - 1 \pmod{a}\), then \(f(n) = 0\) for any integers \(n\).

We are now ready to prove the desired theorem.

Theorem 2.14. Let \(f : \mathbb{Z} \rightarrow \mathbb{Z}\) be a \((k : a, 0, ..., 0, a)\) -step Fibonacci function with \(a \geq 2\) and \(f(n) = 0\) for all \(0 \leq n \leq 2a - 2\). Then:

\[
f(n) = \begin{cases} f(-n + 2a - 2) & \text{if } n \not\equiv a - 1 \pmod{2a} \\ f(-n + 2a) & \text{if } n \equiv a - 1 \pmod{2a} \end{cases}
\]

for all \(n \geq a\).

Proof. It is not hard to see from the assumption that this statement holds for every \(a \leq n \leq 2a - 2\). Since:

\[
f(2a - 1) = (k - 1) f(a - 1) + f(-1) = f(-1) = f(-2a - 1 + 2a - 2)\]

and \(2a - 1 \not\equiv a - 1 \pmod{2a}\), this statement holds for \(n = 2a - 1\). Let \(n\) be an integer such that \(2a \leq n \leq 3a - 2\). Then

\[
f(n) = (k - 1) f(n - a) + f(n - 2a) = 0
\]

because \(0 \leq n - 2a < n - a \leq 2a - 2\). On the other hand, we obtain:

\[
f(-n + 2a - 2) = -(k - 1) f(-n - 2a) + f(-n - 2a + 3a) = 0
\]

because \(0 \leq -n - 2a < -n - a \leq 2a - 2\). Hence,

\[
f(n) = f(-n + 2a - 2)
\]

and we are done for this case since \(n \not\equiv a - 1 \pmod{2a}\). We observe from the above that:

\[
f(3a - 1) = (k - 1) f(2a - 1) + f(a - 1) = -(k - 1) f(-1) = f(a - 1) - f(a - 1) = -f(-3a - 1 + 2a - 2)
\]

and \(3a - 1 \equiv a - 1 \pmod{2a}\). Now the statement holds for all \(a \leq n \leq 3a - 1\). Let \(r \in \mathbb{N}\) and:

\[
f(t) = \begin{cases} f(-t + 2a - 2) & \text{if } t \not\equiv a - 1 \pmod{2a} \\ f(-t + 2a - 2) & \text{if } t \equiv a - 1 \pmod{2a} \end{cases}
\]

for all \(a \leq t \leq r\) and \(r \geq 3a - 1\). Note that:

\[
a \leq r + 1 - 2a < r + 1 - a < r.
\]

If \(r + 1 \equiv a - 1 \pmod{2a}\), then:

\[
r + 1 - a \equiv a - 1 \pmod{2a}
\]

and

\[
r + 1 - 2a \equiv a - 1 \pmod{2a}.
\]

These imply from the inductive assumption that:

\[
f(r + 1) = (k - 1) f(r + 1 - a) + f(r + 1 - 2a) = -f(-r + 1 + 2a - 2) + f(-r + 1 - 2a + 2a - 2) = -f(-r + 1 + 2a - 2).
\]

Next, assume that \(r + 1 \not\equiv a - 1 \pmod{2a}\). The proof is divided into 2 cases: \(r + 1 - a \equiv a - 1 \pmod{2a}\) and \(r + 1 - a \not\equiv a - 1 \pmod{2a}\).

Case 1. \(r + 1 - a \equiv a - 1 \pmod{2a}\). Then \(r + 1 - 2a \equiv a - 1 \pmod{2a}\). We get from the inductive assumption that:

\[
f(r + 1) = (k - 1) f(r + 1 - a) + f(r + 1 - 2a) = -(k - 1) f(-r + 1 + a + 2a - 2)
\]

and

\[
f(-r + 1 + 2a - 2).
\]

Case 2. \(r + 1 - a \not\equiv a - 1 \pmod{2a}\). By Lemma 2.11, we have \(r + 1 \not\equiv a - 1 \pmod{2a}\). We also have that \(-(r + 1) + 2a - 2 \equiv a - 1 \pmod{2a}\) since otherwise \(r + 1 \equiv a - 1 \pmod{2a}\): a contradiction. It follows from Lemma 2.13 that:

\[
f(r + 1) = 0 = f(-r + 1 + 2a - 2).
\]

The proof is complete by the Principle of Strong Mathematical Induction. \(\Box\)

Theorem 2.9 and Theorem 2.14 yield the next theorem.
Theorem 2.15. Let \(f: \mathbb{Z} \to \mathbb{Z} \) be a \((k; a, 0, \ldots, 0, a)\)-step Fibonacci function with \(a \in \mathbb{N} \) and \(f(n) = 0 \) for all \(0 \leq n \leq 2a - 2 \). Then:

\[
 f(n) = \begin{cases}
 f(-n + 2a - 2) & \text{if } n \not\equiv a - 1 \pmod{2a} \\
 -f(-n + 2a - 2) & \text{if } n \equiv a - 1 \pmod{2a}
 \end{cases}
\]

for all \(n \geq a \).

\[\text{Proof.} \]

If \(a = 1 \), then we have from Theorem 2.9 that

\[f(n) = (-1)^{n+1} f(-n) \]

for all non-negative integers \(n \). This shows that:

\[f(n) = \begin{cases}
 f(-n) & \text{if } n \not\equiv 0 \pmod{2} \\
 -f(-n) & \text{if } n \equiv 0 \pmod{2}
 \end{cases} \]

for all non-negative integers \(n \) and so the statement holds for \(a = 1 \). On the other hand, if \(a \geq 2 \), then the statement clearly holds from Theorem 2.14. \(\square \)

III. DISCUSSION AND CONCLUSION

In this paper, we have already defined \((k; a_1, a_2, \ldots, a_k)\)-step Fibonacci Functions and generalised Tongron and Kerdmongkon's work (Tongron & Kerdmongkon, 2022) which relates to periods of \(k \)-step Fibonacci Functions. It is also verified that some \((k; a_1, a_2, \ldots, a_k)\)-step Fibonacci Functions are symmetric-like as in Theorem 2.15. For the future work, we are going to provide some explicit formulae like Theorem 1.5, Theorem 1.6 and Theorem 1.8 for \((k; a_1, a_2, \ldots, a_k)\)-step Fibonacci Functions. Besides, we are inspired to establish a generalisation of Theorem 2.15 by the following examples: Let \(f: \mathbb{Z} \to \mathbb{Z} \) be a \((3; 1, 2, 1)\)-step Fibonacci function such that \(f(0) = 0, f(1) = 1, f(2) = -1 \) and \(f(3) = -2 \). Consider the following tables:

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n))</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>-4</td>
<td>-7</td>
<td>-9</td>
<td>-14</td>
</tr>
</tbody>
</table>

Observe that this \(f \) does not satisfy Theorem 2.15 but \(f \) seems symmetric-like.

IV. ACKNOWLEDGEMENT

The authors are grateful to the referees for his/her useful comments and suggestions.

V. REFERENCES

Tongron, Y & Kerdmongkon, S 2022, 'Periods of \(k \)-step Fibonacci Functions Modulo \(m \)', Songklanakarin Journal of Science and Technology, vol. 44, no. 2, pp. 323-331.