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It is well known that the Fibonacci sequence (F,) is denoted by F, =0, F; = 1 and F, = F,,_; + F,_,,
while the Lucas sequence (L,) is denoted by L, =2,L; =1and L, = L,_; + L,_,. There are several
studies showing relations between these two sequences. An interesting generalisation of both the
sequences is a Fibonacci function f: R —» R defined by f(x + 2) = f(x + 1) + f(x) for any real number
x (Elmore, 1967). Research about periods of Fibonacci numbers modulo m (Jameson, 2018) results
in a contribution on the existence of primitive period of a Fibonacci function f:Z — Z modulo m
(Thongngam & Chinram, 2019). Recently, a k-step Fibonacci function f:Z — Z denoted by
fn+k)=fn+k—-1D+f(n+k—-2)+--+f(n) for any integer n and k=2 (which is a
generalisation of a Fibonacci function f:Z — Z) is introduced and the existence of primitive period
of this function modulo m is established (Tongron & Kerdmongkon, 2022). In this work, let k be an
integer > 2. For nonnegative integers a;,a,, ..., and a; # 0, a (k:ay, @y, ..., a;) -step Fibonacci
function f:Z > Z is defined by f(n)=f(n—a)+f(n—a;, —a,) + -+ f(n—a; —ay, — - — ;) for
any integer n. In fact, a k-step Fibonacci function is a special case of a (k: ay, @, ..., a;)-step Fibonacci
function. We present the existence of primitive period of this function modulo m and show that
certain (k: aq, a5, ..., @y )-step Fibonacci functions are symmetric-like.
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I. INTRODUCTION

The Fibonacci sequence (F,) is defined by (Koshy, 2001;

Vorob’ev, 2011):
Fo=0,F,=1andF, = F,_ + F,_,

for any natural number n > 2. The beginning of the sequence

is thus:
0,1,1,2,3,5,8,13,21,34,55,89,144, 233, ...

Similar to the Fibonacci sequence, the Lucas sequence (L,,) is

defined by (Koshy, 2001):
Lo=2,Ly=1andL, = Lp_y + Lp_,

for any natural number n > 2. The beginning of the sequence

is thus:

2,1,3,4,7,11,18,29,47,76,123,199, 322,521, ...

*Corresponding authot’s e-mail: yanapat.t@nrru.ac.th

Recently, there are several interesting relations between the
Fibonacci sequence and the Lucas sequence, for example,
(Adegoke, 2022; Phunphayap, Khemaratchatakumthorn &
Sumritnorrapong, 2022), etc.

In 1967, Elmore (Elmore, 1967) consider a relation between
the Fibonacci sequence and the Lucas sequence and define a

Fibonacci function f: R — R which is denoted by:

f+2)=fx+D+f()

for all real numbers x. Observe that if f(0) = 0 and f(1) = 1,
then we get the Fibonacci sequence. Furthermore, if £(0) = 2
and f(1) = 1, then we get the Lucas sequence. Consequently,
a Fibonacci function is a generalisation of both the Fibonacci

sequence and the Lucas sequence.
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In 2018, Jameson (Jameson, 2018) studies periods of
Fibonacci numbers modulo m and provides some properties
on periods of such numbers. His work motivates Thongngam
and Chinram (Thongngam & Chinram, 2019) to show the
existence of primitive period of a Fibonacci function f: Z — Z
modulo m. They also establish some relations among periods
and the primitive periods of such functions.

Recently, Tongron and Kerdmongkon (Tongron &

Kerdmongkon, 2022) study about a k -step Fibonacci

function f:Z — Z defined by:
fn+k)=fn+k—-D+f(n+k—-2)+-+f(n)

for any integer n and k > 2. We can say equivalently that it is

denoted by:
f)=fn-D+fn-2)++f(n—k)
for any integer n and k = 2. Observe that this function when

k = 2 is a generalisation of a Fibonacci function defined from

Z to Z. We refer to their work as follows:

Theorem 1.1. (Tongron & Kerdmongkon, 2022) Let f:Z —
Z be a k-step Fibonacci function and m be a positive integer
> 1. Then there exists an integer 1<1<m"* such that

f(n+ 1) = f(n) (mod m) for any integer n.

Such integer [ is called a Period of f modulo m. If such
integer [ is the smallest, then it is called the Primitive Period

of f modulo m and write [ := [;(m).

Theorem 1.2. (Tongron & Kerdmongkon, 2022) Let f: Z —
Z be a k-step Fibonacci function and I, m be positive integers

> 1. lis a period of f modulo m if and only if [;(m) | L.

Theorem 1.3. (Tongron & Kerdmongkon, 2022) Let f: Z —
Z be a k -step Fibonacci function and m, n be positive
If gcdimmn)=1 , then

integers > 1

lcm[lf (m), lf(n)].

lp(mn) =

Indeed, Thongngam and Chinram’s results (Thongngam &
Chinram, 2019) are special cases of the above facts. Tongron
and Kerdmongkon (Tongron & Kerdmongkon, 2022) also
provide the explicit primitive periods of some k -step

Fibonacci function as follows:

Lemma 1.4. (Tongron & Kerdmongkon, 2022) Let m be a
positive integer and f:7Z — 7Z be a k-step Fibonacci function
with the starting values f(0) = ay, f(1) = ay, ..., f(k—1) =
ai_1 and ged(m, k — 1) = 1. Then m|a; for alli € {0,1, ...,k —
1} if and only if [;(m) = 1.

Theorem 1.5. (Tongron & Kerdmongkon, 2022) Let f:Z —
Z be a 2-step Fibonacci function with the starting values
f(0) =aand f(1) = b. Assume that 2m t a or 2m t b. For a

positive integer m, m|a and m|b if and only if [;(2m) = 3.

Theorem 1.6. (Tongron & Kerdmongkon, 2022) Let m be a
positive odd integer and f:7Z - Z be a 3-step Fibonacci
function with the starting values f(0) = a, f(1) =b and
f(2) =c. Assume that 3m+ta, 3m+tb or 3m+tc. Then the
following statements hold.

(1) If m|a, m|b and m|c then l;(3m) = 13.

(2) If [;(3m) = 13, then

91a + 141b + 168¢c = 0 (mod m)
168a + 259b + 309¢ = 0 (mod m)
309a + 477b + 568¢c = 0 (mod m).

Corollary 1.7. (Tongron & Kerdmongkon, 2022) Let f: Z —
Z be a 3-step Fibonacci function with the starting values
f@®=a, f()=b and f(2)=c.
statements hold.

(1) If [;(9) = 13 and a, b or c is not divisible by 9,

Then the following

then 3|a, 3|b and 3|c.
(2) If [;(21) = 13 and a, b or c is not divisible by 21,

then 7|a, 7|b and 7|c.

Theorem 1.8. (Tongron & Kerdmongkon, 2022) Let m be a
positive integer and f:Z — 7Z be a 4-step Fibonacci function
with the starting values f(0) = a, f(1) =b, f(2) =c and
f(3) = d. Assume that gcd(4m,3) = 1 and a, b, c or d is not
divisible by 4m. Then the following statements hold.

(1) If m|a, m|b, m|c and m|d, then
lr(4m)

5 ifb+c+da+b+2c+2d,2a+3b+3c+4d
= and 4a + 6b + 7c + 7d are divisible by 2m,
10 otherwise.

(2) If [;(4m) = 10, then
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7a +11b + 13c + 14d = 0 (mod m)
14a + 21b + 25¢ + 27d = 0 (mod m)
27a + 41b + 48c + 52d = 0 (mod m)

52a + 79b +93c + 100d = 0 (mod m).

In this paper, we define a (k: ay, a5, ..., i )-step Fibonacci
function f: Z — Z for nonnegative integers a4, a,, ..., a; and

a; # 0 by:

fM=fh—a)+f(n—a; —az) +--

tfn—ay —ay — - — )

for any integer n. Notice that the (k:ay,ay, ..., ay) -step
Fibonacci function is a generalisation of a k-step Fibonacci
function when all @ are equal to 1. Theorem 1.1 — 1.3 are going
to be proven in the version of (k: a4, @5, ..., a; )-step Fibonacci
functions. There are also several examples to support our
facts. Some of these examples motivate us to verify that
functions are

certain (k:aq, ay,...,a;) -step Fibonacci

symmetric-like.

II. MAIN RESULTS

Let k be an integer > 2 and «,, a,, ..., @, be nonnegative
integers such that a; # 0. Recall that a (k: a4, ay, ..., @y )-step
Fibonacci function f:Z — Z is defined by:
f)=fn—a)+fn—a; —az) +--
tfn—ay —ay — =)
for any integer n. For general use, a (k: a4, @y, ..., a;) -step

Fibonacci function f: Z — Z satisfies:

f=fn+a +a,++a) —f(n+a,+-+a)
—fntas @) = ()

for any integer n.

Example 2.1. Let f:Z - Z be a (3:2,1,1) -step Fibonacci
function such that f(0) =0, f(1) =1, f(2) =—-1and f(3) =

—2. We can calculate the other f(n) as follow:

= fA) - f(-1) = f(~2) =2

f(=3) =

f2) =f@)-f0) - f(-1) =2
fED =fB) - f(1) - f(0)=-3
f(©) =0

fa =1

f@ =-1

f@ =-2

f@ =f@Q+fO+f0)=0
fG) =f@+f@+f1)=-2
f(6)

=f@+fB3)+f(2)=-3

Then we get the following tables:

Table 1. The values of the (3: 2,1,1)-step Fibonacci function

f(n)
-6

-9

f| 4 |10 —4| 7

n 0|12 |3 |45 ]6]|7]8] 9
fm) |01

Example 2.2. Let f:Z — Z be a (4:1,0,0,1)-step Fibonacci
function such that £(0) = 0 and f(1) = 1. We can calculate
the other f(n) as follow:

F(=3) =f(~1) - f(=2) — f(~2) — f(~2) = 10

fE2) =fO-fED-fED - (=) =-3
fED =fM-f0O)-f0)-f(0)=1

f(© =0

fa =1

f@ =fO+fO+fD+f(0)=3

f@ =f@+f@Q+f@+f1)=10

Then we get the following tables:

Table 2. The values of the (4: 1,0,0,1)-step Fibonacci function

fm)
n -8 =7 -6 5| -4 |-3|-2|-1
f(m) | —3927 | 1189 | =360 | 109 | =33 | 10 | =3 | 1

n [0(1(2|3|4|5 |6 | 7 |8 | 9

f(n){0|1|3|10| 33| 109| 360| 1189| 3927

Next, we show the existence of primitive period of

(k: @y, @y, ..., ay)-step Fibonacci functions modulo m.

Theorem 2.3. Let f:Z—>Z be a (k:ay,ay,...,a;) -step

Fibonacci function with a;, = 1 and m be a positive integer
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> 1. Then there exists an integer 1 < | < m®*1*%* "+ qych

that f(n + 1) = f(n) (mod m) for any integer n.

Proof. For any integer a € {0,1, ..., m*1* %2t %} which has
m*t@t ot 4 1 elements, consider (a; +a, + -+ ay) -
(f@,fla+1D),...fla+a; +a; ++ ap— 1))
modulo m which can be m*1t%z+* @ possible values:

(0,0, ...,0,0),(0,0, ...,0,1), ..., (0,0, ...,0,m — 1),
(,9,...,1,0),(0,0,...,1,1), ..., (0,0, ...,1,m — 1),

tuple

m-1,m-1,.,m—-10),(m—-1,m-1,..,m—-11),..,
m-1m-1,..,.m—-1m-1).
We obtain from the Pigeonhole Principle (Burton, 2011) that

there are integers 0 < i < j < m*+%* "+ @ gyuch that:
FOFG+D, e f+a+az+ -+ a,— 1))

=(F@, G+ 1), o, fli+a; + az + -+ a; — 1)) (mod m).
In other words, we have:

fG+a)=f(i +a) (modm),
where @ € {0,1, ..., @y + @, + -+ + a; — 1}. Choose a positive
integer [ := j — i so that:
fi+a+D)=f(G{+a)(modm)

and 1 <1 <m%*%*t "+t  The proof is divided into two
cases:n = iandn < i.

Case 1. Assume that f(r+1) = f(r) (modm)fori<r<n

and n=>ita +ta,+-+ -1 Since i<n+1-

a—a; ——aqp<nt+l—a—a,——ap 4 <-<n+

1—a;—a, <n+1-—a; <n,weobtain that:

f(n+1)

=fn+l—-aP+f(n+l—a;—ay)+-

+f(n+1—a, —a, — - —ay) (modm)

=fn+l-a+D+fn+1l—a;—ay+1)+--

+f(n+1—a; —ay, — - —ay + 1) (modm)

=f(n+1+1) (modm).

It follows from the Principle of Strong Mathematical
Induction that f(n + 1) = f(n) (mod m) forn > i.

Case 2. Assume that f(r + 1) = f(r) (mod m) for all n <
r<it+a;+a,++ag,—1landn<i. Sincen<n—-1+
ap<--<n—1+a,++ag,<n—-1+ata,+-+a, <

i, we obtain that:

f(n=1)

=fn—14+a+ay++ ap) —f(n—1+a, + -+ ap)
——f(n—1+ ay) (modm)
=Sfn—1+a;++ a+D—fn—1+a, +-+ ap+1)
—o—f(n—1+ ay + 1) (mod m)
= f(n—1+1) (mod m).
It follows from the Principle of Strong Mathematical

Induction that f(n + 1) = f(n) (mod m) forn < i.

The proof is complete. o

Theorem 2.3 tells us that there always exists a period of

(k: @y, @y, ..., ay)-step Fibonacci functions modulo m.

Definition 2.4. Let f:Z > 7Z be a (k:a,,ay, ..., a;) -step
Fibonacci function aj, = 1 with and m be a positive integer
> 1. A positive integer | such that f(n + 1) = f(n) (mod m)
for any integer n is called a Period of f modulo m. The
fn+D=

f(n) (mod m) for any integer n is called the Primitive

smallest positive integer | such that

Period of f modulo m and write | := l;(m).

This unique primitive period always exists by The Well
Ordering Principle (Burton, 2011). The following statements
show some properties about a period and the primitive period
of a (k:ay,ay,...,a;) -step Fibonacci function modulo m.
These facts can be verified similarly to Tongron and

Kerdmongkon’s work.

Corollary 2.5. (Tongron & Kerdmongkon, 2022) If I(m) is
the primitive period of a (k:aq,ay, ..., ay) -step Fibonacci

Sunction f modulo m, then 1 < I;(m) < m®* @+ &%,

Theorem 2.6. (Tongron & Kerdmongkon, 2022) Let f: Z —
Zbe a (k:ay, ay, ..., a)-step Fibonacci function with a;, > 1.
For positive integersl, m > 1, lis a period of f modulo m if

and only if l;(m) | L.

Theorem 2.7. (Tongron & Kerdmongkon, 2022) Let f:Z —
Zbe a (k:ay, ay, ..., ay)-step Fibonacci function with a;, =
1. If ged(m,n) = 1, then l;(mn) = lem|l;(m), [;(n)] for

positive integers m, n > 1.
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Example 2.8. Let f:Z - Z be a (4:1,0,0,1)-step Fibonacci
function such that f(0) = 0 and f(1) = 1. Then we get the

following tables:

Table 3. The values of the (4: 1,0,0,1)-step Fibonacci

function f(n) in modulo 2, 3, and 6

n -7 -6 5| -4 |-3|-2|-1
f(n) 1189 | —=360 | 109 | =33 | 10 | =3 | 1
f(n) (mod 2) 1 0 1 1 0 1 1
f(n) (mod 3) 1 1
f (@) (mod 6) 4|31
n 0112 3 4 5 6 7
f(n) 0|1|3|10|33|109 | 360 | 1189
f(n)(mod2) (O |1 |1| O 1 1 0 1
f(n) (mod3) | 0| 1 0 1
f (@) (mod 6) 0 1

We see that I, (2) = 3 < 214001 [, (3) = 2 < 314001 and
1:(6) = 1(2-3) = lem[l;(2),[;(3)] =1em[3,2] = 6 <

611t0+0+1 Moreover, we observe that f(1) = f(—1), f(2) =
—f(=2), f(3) = f(-3), f(4) = — f(—4) and so on. We can

say that f is symmetric-like. This observation is explained in

general as follows:

Theorem 2.9. Let f:Z->7Z be a (k:1,0,..,0,1) -step
Fibonacci function with f(0)=0 Then f(n)=

(=)™ f(—n) for all non-negative integers n.

Proof. It is obvious that £(0) = 0 = (—=1)°*1f(-0) and
f) =®k=-1f0)+f(=1)=f(-1) = (=D*f(-D.
Assume that:
f@® =D (-

forall 1 <t < r. Consider:

f+1) =Ck-DfE)+fr-1
=k =D+ DT f(=r+1)
=D~k -1 f(-r)+f(-r+1)]
= (D2 f(-r-1).
We are done. o

We are motivated by Theorem 2.9 to ask if this fact for a
(k:,0,...,0,a)-step Fibonacci function with a = 2 holds or

not. First of all, let us consider the following example.

Example 2.10. Let f:Z->7Z be a (5:2,0,0,0,2) -step
Fibonacci function such that f(0) = f(1) = f(2) =0 and
f(3) = —1. Then we get the following tables:

Table 4. The values of the (5:2,0,0,0,2)-step Fibonacci

function f(n)

n -9 [ -8[-7]-6] -5 [-4[-3[-2]-1
f | =305 0 [72] 0 |-17] 0] 4]0 -1
n|ol1[2]3[4]5]6] 7 [8] 9 [10] 11

fmlolo|o]-1]0] —-4] o] =17 0] =72 0 | =305

Again, we see that f is symmetric-like, i.e., f(2) = f(0),
f@3)=f(-1, f(4) = f(=2), f(5) = — f(-3) and so on. To
show that certain (k: ,0, ..., 0, a) -step Fibonacci functions
with @ > 2 are symmetric-like, the following lemmas are

important tools.

Lemma 2.11. Let a and « be integers with « = 2. Then the
following statements are equivalent.
(1) a=a—1(@mod2a)ora—a=a—1(mod 2a)

(2) a=a—1(moda)

Proof. Tt is clear that a = a — 1 (mod 2a) implies a = a —
1(moda). If a—a=a—1(mod2a), then a—a=a—
1 (mod @) and so a = a — 1 (mod «). Conversely, assume that
a=a—1(moda)anda # a — 1 (mod 2a). It follows that:
[a — (@ — 1)]/a is an odd integer.
Consequently, we obtain that:
[(a—a)—(a—1D]/a=[a— (a—1)]/a—1iseven.

In conclusion, a — @ = a — 1 (mod 2a). ]

Lemma 2.12. Let f:Z—->7Z be a (k:a,0,..,0,a) -step
Fibonacci function with a = 2 and f(n) =0 for all0 <n <
2a — 2. Then f(an+ b) = 0 for all integers n and 0 < b <

a— 2.

Proof. It is obvious that:
f(a(1) +b) =0and
fla@)+b)=(k-Df(a+b)+f(b)=0

because 0 < a + b < 2a — 2. Assume thatr € N and
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flat+b)=0
forall 2 <t < r. We get that:

flar+1)+b) =k -1 f(ar+1)+b—a)

+f(a(r+1)+b - 2a)
=(k—=-1f(ar+b)+ fla(r—1)+b)
=0.

In another direction, assume that » € N and
flat+b)=0
forall r <t < 1. We get that:
flar—1)+b) =—(k-1Df(a(r—1)+b+a)
+f(a(r—=1)+ b+ 2a)

=—(k—1)f(ar+b) + f(a(r +1) + b)
=0.

This completes the proof by the Principle of Strong

Mathematical Induction. o
Lemma 2.12 can be rewritten in a simple way as follows:

Lemma 2.13. Let f:Z—->Z be a (k:a,0,..,0,a) -step
Fibonacci function witha =2 and f(n) =0 for all0 <n <
2a — 2. If n # a — 1 (mod a), then f(n) = 0 for any integers

n.
We are now ready to prove the desired theorem.

Theorem 2.14. Let f:Z —>7Z be a (k:q,0,..,0,a) -step
Fibonacci function witha =2 and f(n) =0 for all0 <n <
2a — 2. Then:

f(—n+2a-2)

_ ifn%a—1(mod 2a)
fo = {—f(—n+2a ~2)

ifn=a—1(mod 2a)

forall n = a.

Proof. It is not hard to see from the assumption that this

statement holds for every « < n < 2a — 2. Since:

fQa-1) =k-Dfl@a-D+f(=D

= F(-1)
=f(-Qa—-1)+2a-2)

and 2a — 1 # a — 1 (mod 2a), this statement holds for n =
2a — 1. Let n be an integer such that 2a < n < 3a — 2. Then
fM=k-Dfn-a)+f(n-2a)=0
because 0 <n — 2a < n — a < 2a — 2. On the other hand, we
obtain:
f(-n+2a-2)=—=(k—-1)f(—n—-2+3a)
+f(—n—2+4a)=0

because 0 < —n— 2+ 3a < —n — 2 + 4a < 2a — 2. Hence,
f) =f(-n+2a-2)
and we are done for this case since n # a — 1 (mod 2a). We

observe from the above that:

fBa—-1) k-1DfRa—-1D+f(a—1)
—[-k -1 f(=D]
“[f(a=1) = fla—1)]
=—f(-Ba—-1)+2a—-2)

and 3a — 1 = @ — 1 (mod 2a). Now the statement holds for

alla <n<3a—1.Letr € Nand:

f(—=t+2a-2)

_ ift # a —1 (mod 2a)
f©= {—f(—t +2a—2)

ift =a—1 (mod 2a)
foralla <t <randr = 3a — 1. Note that:
a<r+l1-2a<r+l—-a<r.

Ifr+1=a-1(mod2a), then:
r+1—a#a—1(mod2a)and
r+1—-2a=a—1(mod2a).

These imply from the inductive assumption that:

fr+1)

=k-1Dfr+1-a)+fr+1-2a)

=—[-k-Df(-r+1-a)+2a-2)
+f(—(r+1-2a)+2a-2)]

=—f(-(r+1)+2a-2).

Next, assume that r+1 # a — 1 (mod 2a) . The proof is
dividedinto2cases: r+1—a =a —1(mod 2a) andr + 1 —
a #a—1(mod 2a).

Case1.r+1—a=a—1(mod2a). Thenr+1—-2a £ a —

1 (mod 2a). We get from the inductive assumption that:

for+1)

=k-Dfr+1-a)+fr+1-2a)

=—(k-1Df(-r+1-a)+2a-2)
+f(—(r+1-2a)+2a—-2)

=f(—(r+1)+2a-2).

Case 2. r+1—a #a—1(mod2a). By Lemma 2.11, we
have r+ 1 % a — 1 (mod a). We also have that —(r + 1) +
otherwise r+1=a-—

20 —2#a—1(moda) since

1 (mod a): a contradiction. It follows from Lemma 2.13 that:
fr+1)=0=f(—(r+1)+2a—-2).
The proof is complete by the Principle of Strong

Mathematical Induction. ]

Theorem 2.9 and Theorem 2.14 yield the next theorem.
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Theorem 2.15. Let f:Z—->7Z be a (k:a,0,...,0,a) -step
Fibonacci function with a € N and f(n) =0 for all 0 <n <
2a — 2. Then:

_(f(=n+2a-2)
fm = {—f(—n +2a-2)

forall n=a.

if n % a—1(mod 2a)
ifn=a—1(mod2a)

Proof. If @ = 1, then we have from Theorem 2.9 that
f@) = (=)™ f(-n)
for all non-negative integers n. This shows that:

f(=n)
—f(=n)

if n# 0 (mod 2)

f(n)={ if n=0(mod 2)

for all non-negative integers n and so the statement holds for
a = 1. On the other hand, if « > 2, then the statement clearly
holds from Theorem 2.14. o

III. DISCUSSION AND CONCLUSION

In this paper, we have already defined (k: a4, as, ..., a;)-step

Fibonacci Functions and generalised Tongron and
Kerdmongkon’s work (Tongron & Kerdmongkon, 2022)
which relates to periods of k-step Fibonacci Functions. It is
also verified that some (k:ay,ay,...,a;) -step Fibonacci

Functions are symmetric-like as in Theorem 2.15. For the
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future work, we are going to provide some explicit formulae
like Theorem 1.5, Theorem 1.6 and Theorem 1.8 for
(k: @y, @y, ..., ay) -step Fibonacci Functions. Besides, we are
inspired to establish a generalisation of Theorem 2.15 by the
following examples: Let f:Z—>Z be a (3:1,2,1) -step
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and f(3) = —2. Consider the following tables:

Table 5. The values of the (3: 1,2,1)-step Fibonacci function

f(n)
n | —10] -9 -8 -7]-6] 5] —4] =3[ -2] -1
f| —25[ 14| -9 7 [ -4 1| -1] 2 ]-1]-1

n|of1] 2|3 |4]5]6|7]8]9
fm) |01

—14

Observe that this f does not satisfy Theorem 2.15 but f seems

symmetric-like.
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