The Symmetries of $(k: \alpha_1, \alpha_2, ..., \alpha_k)$ -step Fibonacci Functions

K. Paikhlaew, S. Kerdmongkon, N. Nawapongpipat and Y. Tongron*

Department of Mathematics, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University,
Nakhon Ratchasima, 30000, Thailand

It is well known that the Fibonacci sequence (F_n) is denoted by $F_0 = 0$, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$, while the Lucas sequence (L_n) is denoted by $L_0 = 2$, $L_1 = 1$ and $L_n = L_{n-1} + L_{n-2}$. There are several studies showing relations between these two sequences. An interesting generalisation of both the sequences is a Fibonacci function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x+2) = f(x+1) + f(x) for any real number x (Elmore, 1967). Research about periods of Fibonacci numbers modulo m (Jameson, 2018) results in a contribution on the existence of primitive period of a Fibonacci function $f: \mathbb{Z} \to \mathbb{Z}$ modulo m (Thongngam & Chinram, 2019). Recently, a k-step Fibonacci function $f: \mathbb{Z} \to \mathbb{Z}$ denoted by $f(n+k) = f(n+k-1) + f(n+k-2) + \cdots + f(n)$ for any integer n and $k \ge 2$ (which is a generalisation of a Fibonacci function $f: \mathbb{Z} \to \mathbb{Z}$) is introduced and the existence of primitive period of this function modulo m is established (Tongron & Kerdmongkon, 2022). In this work, let k be an integer k 2. For nonnegative integers k 3, k 3, k 4, and k 4, and k 4, and 4, and 4, and 4, and 5, and 5

Keywords: Fibonacci functions; k -step Fibonacci function; $(k: \alpha_1, \alpha_2, ..., \alpha_k)$ -step Fibonacci function; primitive period modulo m; symmetric-like

I. INTRODUCTION

The Fibonacci sequence (F_n) is defined by (Koshy, 2001; Vorob'ev, 2011):

$$F_0 = 0$$
, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$

for any natural number $n \ge 2$. The beginning of the sequence is thus:

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, \dots$$

Similar to the Fibonacci sequence, the Lucas sequence (L_n) is defined by (Koshy, 2001):

$$L_0 = 2$$
, $L_1 = 1$ and $L_n = L_{n-1} + L_{n-2}$

for any natural number $n \ge 2$. The beginning of the sequence is thus:

*Corresponding author's e-mail: yanapat.t@nrru.ac.th

Recently, there are several interesting relations between the Fibonacci sequence and the Lucas sequence, for example, (Adegoke, 2022; Phunphayap, Khemaratchatakumthorn & Sumritnorrapong, 2022), etc.

In 1967, Elmore (Elmore, 1967) consider a relation between the Fibonacci sequence and the Lucas sequence and define a Fibonacci function $f: \mathbb{R} \to \mathbb{R}$ which is denoted by:

$$f(x+2) = f(x+1) + f(x)$$

for all real numbers x. Observe that if f(0) = 0 and f(1) = 1, then we get the Fibonacci sequence. Furthermore, if f(0) = 2 and f(1) = 1, then we get the Lucas sequence. Consequently, a Fibonacci function is a generalisation of both the Fibonacci sequence and the Lucas sequence.

^{2, 1, 3, 4, 7, 11, 10, 27, 47, 70, 123, 177, 322, 321, ..}

In 2018, Jameson (Jameson, 2018) studies periods of Fibonacci numbers modulo m and provides some properties on periods of such numbers. His work motivates Thongngam and Chinram (Thongngam & Chinram, 2019) to show the existence of primitive period of a Fibonacci function $f: \mathbb{Z} \to \mathbb{Z}$ modulo m. They also establish some relations among periods and the primitive periods of such functions.

Recently, Tongron and Kerdmongkon (Tongron & Kerdmongkon, 2022) study about a k -step Fibonacci function $f: \mathbb{Z} \to \mathbb{Z}$ defined by:

$$f(n+k) = f(n+k-1) + f(n+k-2) + \dots + f(n)$$

for any integer n and $k \ge 2$. We can say equivalently that it is denoted by:

$$f(n) = f(n-1) + f(n-2) + \dots + f(n-k)$$

for any integer n and $k \ge 2$. Observe that this function when k = 2 is a generalisation of a Fibonacci function defined from \mathbb{Z} to \mathbb{Z} . We refer to their work as follows:

Theorem 1.1. (Tongron & Kerdmongkon, 2022) Let $f: \mathbb{Z} \to \mathbb{Z}$ be a k-step Fibonacci function and m be a positive integer k = 1. Then there exists an integer $k \leq 1 \leq m^k$ such that $k \leq m \leq 1 \leq m^k$ for any integer $k \leq n$.

Such integer l is called a *Period* of f modulo m. If such integer l is the smallest, then it is called the *Primitive Period* of f modulo m and write $l := l_f(m)$.

Theorem 1.2. (Tongron & Kerdmongkon, 2022) Let $f: \mathbb{Z} \to \mathbb{Z}$ be a k-step Fibonacci function and l, m be positive integers > 1. l is a period of f modulo m if and only if $l_f(m) \mid l$.

Theorem 1.3. (Tongron & Kerdmongkon, 2022) Let $f: \mathbb{Z} \to \mathbb{Z}$ be a k-step Fibonacci function and m, n be positive integers > 1 . If gcd(m,n) = 1 , then $l_f(mn) = lcm[l_f(m), l_f(n)]$.

Indeed, Thongngam and Chinram's results (Thongngam & Chinram, 2019) are special cases of the above facts. Tongron and Kerdmongkon (Tongron & Kerdmongkon, 2022) also provide the explicit primitive periods of some k-step Fibonacci function as follows:

Lemma 1.4. (Tongron & Kerdmongkon, 2022) *Let m be a positive integer and* $f: \mathbb{Z} \to \mathbb{Z}$ *be a k-step Fibonacci function with the starting values* $f(0) = a_0$, $f(1) = a_1$, ..., $f(k-1) = a_{k-1}$ and gcd(m, k-1) = 1. Then $m|a_i$ for all $i \in \{0,1,...,k-1\}$ if and only if $l_f(m) = 1$.

Theorem 1.5. (Tongron & Kerdmongkon, 2022) Let $f: \mathbb{Z} \to \mathbb{Z}$ be a 2-step Fibonacci function with the starting values f(0) = a and f(1) = b. Assume that $2m \nmid a$ or $2m \nmid b$. For a positive integer m, $m \mid a$ and $m \mid b$ if and only if $l_f(2m) = 3$.

Theorem 1.6. (Tongron & Kerdmongkon, 2022) *Let m be a positive odd integer and* $f: \mathbb{Z} \to \mathbb{Z}$ *be a* 3-step Fibonacci function with the starting values f(0) = a, f(1) = b and f(2) = c. Assume that $3m \nmid a$, $3m \nmid b$ or $3m \nmid c$. Then the following statements hold.

(1) *If* m|a, m|b *and* m|c *then* $l_f(3m) = 13$.

(2) If
$$l_f(3m) = 13$$
, then

$$91a + 141b + 168c \equiv 0 \pmod{m}$$

$$168a + 259b + 309c \equiv 0 \pmod{m}$$

$$309a + 477b + 568c \equiv 0 \pmod{m}$$
.

Corollary 1.7. (Tongron & Kerdmongkon, 2022) Let $f: \mathbb{Z} \to \mathbb{Z}$ be a 3-step Fibonacci function with the starting values f(0) = a, f(1) = b and f(2) = c. Then the following statements hold.

(1) If $l_f(9) = 13$ and a, b or c is not divisible by 9, then 3|a, 3|b and 3|c.

(2) If $l_f(21) = 13$ and a, b or c is not divisible by 21, then 7|a, 7|b and 7|c.

Theorem 1.8. (Tongron & Kerdmongkon, 2022) *Let m be a positive integer and* $f: \mathbb{Z} \to \mathbb{Z}$ *be a* 4-step Fibonacci function with the starting values f(0) = a, f(1) = b, f(2) = c and f(3) = d. Assume that gcd(4m, 3) = 1 and a, b, c or d is not divisible by 4m. Then the following statements hold.

(1) If m|a, m|b, m|c and m|d, then

$$\begin{split} &l_f(4m) \\ &= \begin{cases} 5 & \text{if } b+c+d, a+b+2c+2d, 2a+3b+3c+4d\\ & \text{and } 4a+6b+7c+7d \text{ are divisible by } 2m,\\ 10 & \text{otherwise}. \end{cases} \end{split}$$

(2) If
$$l_f(4m) = 10$$
, then

$$7a + 11b + 13c + 14d \equiv 0 \pmod{m}$$

 $14a + 21b + 25c + 27d \equiv 0 \pmod{m}$
 $27a + 41b + 48c + 52d \equiv 0 \pmod{m}$
 $52a + 79b + 93c + 100d \equiv 0 \pmod{m}$.

In this paper, we define a $(k: \alpha_1, \alpha_2, ..., \alpha_k)$ -step Fibonacci function $f: \mathbb{Z} \to \mathbb{Z}$ for nonnegative integers $\alpha_1, \alpha_2, ..., \alpha_k$ and $\alpha_1 \neq 0$ by:

$$f(n) = f(n - \alpha_1) + f(n - \alpha_1 - \alpha_2) + \cdots$$
$$+ f(n - \alpha_1 - \alpha_2 - \cdots - \alpha_k)$$

for any integer n. Notice that the $(k:\alpha_1,\alpha_2,...,\alpha_k)$ -step Fibonacci function is a generalisation of a k-step Fibonacci function when all α are equal to 1. Theorem 1.1 – 1.3 are going to be proven in the version of $(k:\alpha_1,\alpha_2,...,\alpha_k)$ -step Fibonacci functions. There are also several examples to support our facts. Some of these examples motivate us to verify that certain $(k:\alpha_1,\alpha_2,...,\alpha_k)$ -step Fibonacci functions are symmetric-like.

II. MAIN RESULTS

Let k be an integer ≥ 2 and α_1 , α_2 , ..., α_k be nonnegative integers such that $\alpha_1 \neq 0$. Recall that a $(k: \alpha_1, \alpha_2, ..., \alpha_k)$ -step Fibonacci function $f: \mathbb{Z} \to \mathbb{Z}$ is defined by:

$$f(n) = f(n - \alpha_1) + f(n - \alpha_1 - \alpha_2) + \cdots$$
$$+ f(n - \alpha_1 - \alpha_2 - \cdots - \alpha_k)$$

for any integer n. For general use, a $(k: \alpha_1, \alpha_2, ..., \alpha_k)$ -step Fibonacci function $f: \mathbb{Z} \to \mathbb{Z}$ satisfies:

$$f(n) = f(n + \alpha_1 + \alpha_2 + \dots + \alpha_k) - f(n + \alpha_2 + \dots + \alpha_k)$$
$$- f(n + \alpha_3 + \dots + \alpha_k) - \dots - f(n + \alpha_k)$$

for any integer n.

Example 2.1. Let $f: \mathbb{Z} \to \mathbb{Z}$ be a (3:2,1,1)-step Fibonacci function such that f(0) = 0, f(1) = 1, f(2) = -1 and f(3) = -2. We can calculate the other f(n) as follow:

$$f(-3) = f(1) - f(-1) - f(-2) = 2$$

$$f(-2) = f(2) - f(0) - f(-1) = 2$$

$$f(-1) = f(3) - f(1) - f(0) = -3$$

$$f(0) = 0$$

$$f(1) = 1$$

$$f(2) = -1$$

$$f(3) = -2$$

$$f(4) = f(2) + f(1) + f(0) = 0$$

$$f(5) = f(3) + f(2) + f(1) = -2$$

$$f(6) = f(4) + f(3) + f(2) = -3$$

Then we get the following tables:

Table 1. The values of the (3:2,1,1)-step Fibonacci function

				J	(n)					
n	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1
f(n)	4	10	-7	-4	7	-1	-4	2	2	-3

n	0	1	2	3	4	5	6	7	8	9
f(n)	0	1	-1	-2	0	-2	-3	-4	-5	-9

Example 2.2. Let $f: \mathbb{Z} \to \mathbb{Z}$ be a (4:1,0,0,1)-step Fibonacci function such that f(0) = 0 and f(1) = 1. We can calculate the other f(n) as follow:

:
$$f(-3) = f(-1) - f(-2) - f(-2) - f(-2) = 10$$

 $f(-2) = f(0) - f(-1) - f(-1) - f(-1) = -3$
 $f(-1) = f(1) - f(0) - f(0) - f(0) = 1$
 $f(0) = 0$
 $f(1) = 1$
 $f(2) = f(1) + f(1) + f(1) + f(0) = 3$
 $f(3) = f(2) + f(2) + f(2) + f(1) = 10$
:

Then we get the following tables:

Table 2. The values of the (4: 1,0,0,1)-step Fibonacci function

f(n)-8-7-6-5 -4-3-2-1n f(n)-3927 1189 -360109 -33 1

Ī	n	0	1	2	3	4	5	6	7	8	9
	f(n)	0	1	3	10	33	109	360	1189	3927	12970

Next, we show the existence of primitive period of $(k: \alpha_1, \alpha_2, ..., \alpha_k)$ -step Fibonacci functions modulo m.

Theorem 2.3. Let $f: \mathbb{Z} \to \mathbb{Z}$ be a $(k: \alpha_1, \alpha_2, ..., \alpha_k)$ -step Fibonacci function with $\alpha_k \ge 1$ and m be a positive integer

that $f(n + l) \equiv f(n) \pmod{m}$ for any integer n.

$$\begin{aligned} & Proof. \text{ For any integer } a \in \{0,1,\dots,m^{\alpha_1+\alpha_2+\dots+\alpha_k}\} \text{ which has} \\ & m^{\alpha_1+\alpha_2+\dots+\alpha_k}+1 \text{ elements, consider } (\alpha_1+\alpha_2+\dots+\alpha_k) - \\ & \text{tuple} & \left(f(a),f(a+1),\dots,f(a+\alpha_1+\alpha_2+\dots+\alpha_k-1)\right) \\ & \text{modulo } m \text{ which can be } m^{\alpha_1+\alpha_2+\dots+\alpha_k} \text{ possible values:} \\ & (0,0,\dots,0,0), (0,0,\dots,0,1),\dots, (0,0,\dots,0,m-1), \\ & (0,0,\dots,1,0), (0,0,\dots,1,1),\dots, (0,0,\dots,1,m-1), \\ & \vdots & \vdots \\ & (m-1,m-1,\dots,m-1,0), (m-1,m-1,\dots,m-1,1),\dots, \\ & (m-1,m-1,\dots,m-1,1) - \dots, \\ & (m-1,m-1,\dots,m-1,m-1). \end{aligned}$$

there are integers $0 \le i < j \le m^{\alpha_1 + \alpha_2 + \dots + \alpha_k}$ such that:

$$\begin{split} & \left(f(j), f(j+1), \dots, f(j+\alpha_1+\alpha_2+\dots+\alpha_k-1)\right) \\ & \equiv \left(f(i), f(i+1), \dots, f(i+\alpha_1+\alpha_2+\dots+\alpha_k-1)\right) \text{ (mod } m\text{)}. \end{split}$$
 In other words, we have:

$$f(j + \alpha) \equiv f(i + \alpha) \pmod{m}$$
,

where $\alpha \in \{0,1,...,\alpha_1 + \alpha_2 + \cdots + \alpha_k - 1\}$. Choose a positive integer l := j - i so that:

$$f(i + \alpha + l) \equiv f(i + \alpha) \pmod{m}$$

and $1 \le l \le m^{\alpha_1 + \alpha_2 + \dots + \alpha_k}$. The proof is divided into two cases: $n \ge i$ and $n \le i$.

Case 1. Assume that $f(r+l) \equiv f(r) \pmod{m}$ for $i \le r \le n$ and $n \ge i + \alpha_1 + \alpha_2 + \dots + \alpha_k - 1$. Since $i \le n + 1 - 1$ $\alpha_1 - \alpha_2 - \dots - \alpha_k < n + 1 - \alpha_1 - \alpha_2 - \dots - \alpha_{k-1} \le \dots \le n + 1 - \alpha_k - \alpha_k < n + 1 - \alpha_k < n +$ $1 - \alpha_1 - \alpha_2 \le n + 1 - \alpha_1 \le n$, we obtain that:

$$f(n+1)$$

$$\equiv f(n+1-\alpha_1) + f(n+1-\alpha_1-\alpha_2) + \cdots$$

$$+ f(n+1-\alpha_1-\alpha_2-\cdots-\alpha_k) \; (\text{mod } m)$$

$$\equiv f(n+1-\alpha_1+l) + f(n+1-\alpha_1-\alpha_2+l) + \cdots$$

$$+ f(n+1-\alpha_1-\alpha_2-\cdots-\alpha_k+l) \; (\text{mod } m)$$

$$\equiv f(n+1+l) \; (\text{mod } m).$$

It follows from the Principle of Strong Mathematical Induction that $f(n + l) \equiv f(n) \pmod{m}$ for $n \ge i$.

Case 2. Assume that $f(r+l) \equiv f(r) \pmod{m}$ for all $n \le 1$ $r \le i + \alpha_1 + \alpha_2 + \dots + \alpha_k - 1$ and $n \le i$. Since $n \le n - 1 + 1$ $\alpha_k \le \dots \le n-1+\alpha_2+\dots+\alpha_k < n-1+\alpha_1+\alpha_2+\dots+\alpha_k \le$ i, we obtain that:

$$f(n-1)$$

> 1. Then there exists an integer
$$1 \le l \le m^{\alpha_1 + \alpha_2 + \dots + \alpha_k}$$
 such $\equiv f(n-1+\alpha_1+\alpha_2+\dots+\alpha_k) - f(n-1+\alpha_2+\dots+\alpha_k)$ that $f(n+l) \equiv f(n) \pmod{m}$ for any integer n . $-\dots - f(n-1+\alpha_k) \pmod{m}$ $\equiv f(n-1+\alpha_1+\dots+\alpha_k+l) - f(n-1+\alpha_2+\dots+\alpha_k+l)$ Proof. For any integer $\alpha \in \{0,1,\dots,m^{\alpha_1+\alpha_2+\dots+\alpha_k}\}$ which has $-\dots - f(n-1+\alpha_k+l) \pmod{m}$ $m^{\alpha_1+\alpha_2+\dots+\alpha_k}+1$ elements, consider $(\alpha_1+\alpha_2+\dots+\alpha_k) - \equiv f(n-1+l) \pmod{m}$.

It follows from the Principle of Strong Mathematical Induction that $f(n + l) \equiv f(n) \pmod{m}$ for $n \le i$.

The proof is complete.

Theorem 2.3 tells us that there always exists a period of $(k: \alpha_1, \alpha_2, ..., \alpha_k)$ -step Fibonacci functions modulo m.

We obtain from the Pigeonhole Principle (Burton, 2011) that **Definition 2.4.** Let $f: \mathbb{Z} \to \mathbb{Z}$ be $a(k: \alpha_1, \alpha_2, ..., \alpha_k)$ -step Fibonacci function $a_k \ge 1$ with and m be a positive integer > 1. A positive integer l such that $f(n + l) \equiv f(n) \pmod{m}$ for any integer n is called a **Period** of f modulo m. The smallest positive integer l such that $f(n+l) \equiv$ $f(n) \pmod{m}$ for any integer n is called the **Primitive Period** of f modulo m and write $l := l_f(m)$.

> This unique primitive period always exists by The Well Ordering Principle (Burton, 2011). The following statements show some properties about a period and the primitive period of a $(k: \alpha_1, \alpha_2, ..., \alpha_k)$ -step Fibonacci function modulo m. These facts can be verified similarly to Tongron and Kerdmongkon's work.

> **Corollary 2.5.** (Tongron & Kerdmongkon, 2022) *If* $l_f(m)$ *is* the primitive period of a $(k: \alpha_1, \alpha_2, ..., \alpha_k)$ -step Fibonacci function f modulo m, then $1 \le l_f(m) \le m^{\alpha_1 + \alpha_2 + \dots + \alpha_k}$.

Theorem 2.6. (Tongron & Kerdmongkon, 2022) *Let* $f: \mathbb{Z} \to \mathbb{Z}$ \mathbb{Z} be a $(k: \alpha_1, \alpha_2, ..., \alpha_k)$ -step Fibonacci function with $\alpha_k \geq 1$. $+f(n+1-\alpha_1-\alpha_2-\cdots-\alpha_k+l) \pmod{m}$ For positive integers l,m>1,l is a period of f modulo m if and only if $l_f(m) \mid l$.

> **Theorem 2.7.** (Tongron & Kerdmongkon, 2022) Let $f: \mathbb{Z} \to \mathbb{Z}$ \mathbb{Z} be a $(k: \alpha_1, \alpha_2, ..., \alpha_k)$ -step Fibonacci function with $\alpha_k \geq$ 1. If gcd(m, n) = 1, then $l_f(mn) = lcm[l_f(m), l_f(n)]$ for positive integers m, n > 1.

function such that f(0) = 0 and f(1) = 1. Then we get the following tables:

Table 3. The values of the (4: 1,0,0,1)-step Fibonacci function f(n) in modulo 2, 3, and 6

n	-7	-6	-5	-4	-3	-2	-1
f(n)	1189	-360	109	-33	10	-3	1
f(n) (mod 2)	1	0	1	1	0	1	1
<i>f</i> (<i>n</i>) (mod 3)	1	0	1	0	1	0	1
f(n) (mod 6)	1	0	1	3	4	3	1

n	0	1	2	3	4	5	6	7
f(n)	0	1	3	10	33	109	360	1189
f(n) (mod 2)	0	1	1	0	1	1	0	1
<i>f</i> (<i>n</i>) (mod 3)	0	1	0	1	0	1	0	1
f(n) (mod 6)	0	1	3	4	3	1	0	1

We see that $l_f(2) = 3 \le 2^{1+0+0+1}$, $l_f(3) = 2 \le 3^{1+0+0+1}$ and $l_f(6) = l_f(2 \cdot 3) = \text{lcm}[l_f(2), l_f(3)] = \text{lcm}[3,2] = 6 \le$ $6^{1+0+0+1}$. Moreover, we observe that f(1) = f(-1), f(2) =-f(-2), f(3) = f(-3), f(4) = -f(-4) and so on. We can say that f is symmetric-like. This observation is explained in general as follows:

Theorem 2.9. Let $f: \mathbb{Z} \to \mathbb{Z}$ be a (k: 1,0,...,0,1) -step Fibonacci function with f(0) = 0. Then f(n) = $(-1)^{n+1}$ f(-n) for all non-negative integers n.

Proof. It is obvious that $f(0) = 0 = (-1)^{0+1}f(-0)$ and $f(1) = (k-1) f(0) + f(-1) = f(-1) = (-1)^2 f(-1).$ Assume that:

$$f(t) = (-1)^{t+1} f(-t)$$

for all $1 \le t \le r$. Consider:

$$f(r+1) = (k-1) f(r) + f(r-1)$$

$$= (k-1)[(-1)^{r+1} f(-r)] + (-1)^r f(-r+1)$$

$$= (-1)^{r+2} [-(k-1) f(-r) + f(-r+1)]$$

$$= (-1)^{r+2} f(-r-1).$$

We are done.

We are motivated by Theorem 2.9 to ask if this fact for a $(k: \alpha, 0, ..., 0, \alpha)$ -step Fibonacci function with $\alpha \ge 2$ holds or not. First of all, let us consider the following example.

Example 2.8. Let $f: \mathbb{Z} \to \mathbb{Z}$ be a (4:1,0,0,1)-step Fibonacci **Example 2.10.** Let $f: \mathbb{Z} \to \mathbb{Z}$ be a (5:2,0,0,0,2)-step Fibonacci function such that f(0) = f(1) = f(2) = 0 and f(3) = -1. Then we get the following tables:

Table 4. The values of the (5: 2,0,0,0,2)-step Fibonacci function f(n)

n	-9	-8	-7	-6	-5	-4	-3	-2	-1
f(n)	-305	0	72	0	-17	0	4	0	-1

n	0	1	2	3	4	5	6	7	8	9	10	11
f(n	0	0	0	-1	0	-4	0	-17	0	-72	0	-305

Again, we see that f is symmetric-like, i.e., f(2) = f(0), f(3) = f(-1), f(4) = f(-2), f(5) = -f(-3) and so on. To show that certain $(k: \alpha, 0, ..., 0, \alpha)$ -step Fibonacci functions with $\alpha \ge 2$ are symmetric-like, the following lemmas are important tools.

Lemma 2.11. *Let* a and α be integers with $\alpha \geq 2$. Then the following statements are equivalent.

(1)
$$a \equiv \alpha - 1 \pmod{2\alpha}$$
 or $a - \alpha \equiv \alpha - 1 \pmod{2\alpha}$

(2)
$$a \equiv \alpha - 1 \pmod{\alpha}$$

Proof. It is clear that $a \equiv \alpha - 1 \pmod{2\alpha}$ implies $a \equiv \alpha 1 \pmod{\alpha}$. If $a - \alpha \equiv \alpha - 1 \pmod{2\alpha}$, then $a - \alpha \equiv \alpha - 1 \pmod{2\alpha}$ 1 (mod α) and so $\alpha \equiv \alpha - 1$ (mod α). Conversely, assume that $a \equiv \alpha - 1 \pmod{\alpha}$ and $a \not\equiv \alpha - 1 \pmod{2\alpha}$. It follows that:

$$[a - (\alpha - 1)]/\alpha$$
 is an odd integer.

Consequently, we obtain that:

$$[(a - \alpha) - (\alpha - 1)]/\alpha = [a - (\alpha - 1)]/\alpha - 1$$
 is even.

In conclusion, $a - \alpha \equiv \alpha - 1 \pmod{2\alpha}$.

Lemma 2.12. Let $f: \mathbb{Z} \to \mathbb{Z}$ be a $(k: \alpha, 0, ..., 0, \alpha)$ -step Fibonacci function with $\alpha \ge 2$ and f(n) = 0 for all $0 \le n \le n$ $2\alpha - 2$. Then $f(\alpha n + b) = 0$ for all integers n and $0 \le b \le 1$ α – 2.

Proof. It is obvious that:

$$f(\alpha(1) + b) = 0 \text{ and}$$

$$f(\alpha(2) + b) = (k - 1) f(\alpha + b) + f(b) = 0$$

because $0 < \alpha + b \le 2\alpha - 2$. Assume that $r \in \mathbb{N}$ and

$$f(\alpha t + b) = 0$$

for all $2 \le t \le r$. We get that:

$$f(\alpha(r+1)+b) = (k-1) f(\alpha(r+1)+b-\alpha) + f(\alpha(r+1)+b-2\alpha) = (k-1) f(\alpha r+b) + f(\alpha(r-1)+b) = 0.$$

In another direction, assume that $r \in \mathbb{N}$ and

$$f(\alpha t + b) = 0$$

for all $r \le t \le 1$. We get that:

$$f(\alpha(r-1)+b) = -(k-1)f(\alpha(r-1)+b+\alpha) + f(\alpha(r-1)+b+2\alpha) = -(k-1)f(\alpha r+b) + f(\alpha(r+1)+b) = 0.$$

This completes the proof by the Principle of Strong Mathematical Induction.

Lemma 2.12 can be rewritten in a simple way as follows:

Lemma 2.13. Let $f: \mathbb{Z} \to \mathbb{Z}$ be a $(k: \alpha, 0, ..., 0, \alpha)$ -step Fibonacci function with $\alpha \ge 2$ and f(n) = 0 for all $0 \le n \le 2\alpha - 2$. If $n \not\equiv \alpha - 1 \pmod{\alpha}$, then f(n) = 0 for any integers n.

We are now ready to prove the desired theorem.

Theorem 2.14. Let $f: \mathbb{Z} \to \mathbb{Z}$ be a $(k: \alpha, 0, ..., 0, \alpha)$ -step Fibonacci function with $\alpha \ge 2$ and f(n) = 0 for all $0 \le n \le 2\alpha - 2$. Then:

$$f(n) = \begin{cases} f(-n+2\alpha-2) & \text{if } n \not\equiv \alpha-1 \text{ (mod } 2\alpha) \\ -f(-n+2\alpha-2) & \text{if } n \equiv \alpha-1 \text{ (mod } 2\alpha) \end{cases}$$

for all $n \ge \alpha$.

Proof. It is not hard to see from the assumption that this statement holds for every $\alpha \le n \le 2\alpha - 2$. Since:

$$f(2\alpha - 1) = (k - 1) f(\alpha - 1) + f(-1)$$

= f(-1)
= f(-(2\alpha - 1) + 2\alpha - 2)

and $2\alpha - 1 \not\equiv \alpha - 1 \pmod{2\alpha}$, this statement holds for $n = 2\alpha - 1$. Let n be an integer such that $2\alpha \le n \le 3\alpha - 2$. Then

$$f(n) = (k-1) f(n-\alpha) + f(n-2\alpha) = 0$$

because $0 \le n - 2\alpha < n - \alpha \le 2\alpha - 2$. On the other hand, we obtain:

$$f(-n+2\alpha-2) = -(k-1) f(-n-2+3\alpha) + f(-n-2+4\alpha) = 0$$

because $0 \le -n-2+3\alpha < -n-2+4\alpha \le 2\alpha-2$. Hence, $f(n) = f(-n+2\alpha-2)$

and we are done for this case since $n \not\equiv \alpha - 1 \pmod{2\alpha}$. We observe from the above that:

$$f(3\alpha - 1) = (k - 1) f(2\alpha - 1) + f(\alpha - 1)$$

$$= -[-(k - 1) f(-1)]$$

$$= -[f(-\alpha - 1) - f(\alpha - 1)]$$

$$= -f(-(3\alpha - 1) + 2\alpha - 2)$$

and $3\alpha - 1 \equiv \alpha - 1 \pmod{2\alpha}$. Now the statement holds for all $\alpha \le n \le 3\alpha - 1$. Let $r \in \mathbb{N}$ and:

$$f(t) = \begin{cases} f(-t+2\alpha-2) & \text{if } t \not\equiv \alpha-1 \text{ (mod } 2\alpha) \\ -f(-t+2\alpha-2) & \text{if } t \equiv \alpha-1 \text{ (mod } 2\alpha) \end{cases}$$

for all $\alpha \le t \le r$ and $r \ge 3\alpha - 1$. Note that:

$$\alpha \le r + 1 - 2\alpha < r + 1 - \alpha < r.$$

If $r + 1 \equiv \alpha - 1 \pmod{2\alpha}$, then:

$$r + 1 - \alpha \not\equiv \alpha - 1 \pmod{2\alpha}$$
 and $r + 1 - 2\alpha \equiv \alpha - 1 \pmod{2\alpha}$.

These imply from the inductive assumption that:

$$f(r+1)$$
= $(k-1) f(r+1-\alpha) + f(r+1-2\alpha)$
= $-[-(k-1) f(-(r+1-\alpha) + 2\alpha - 2) + f(-(r+1-2\alpha) + 2\alpha - 2)]$
= $-f(-(r+1) + 2\alpha - 2)$.

Next, assume that $r+1 \not\equiv \alpha-1 \pmod{2\alpha}$. The proof is divided into 2 cases: $r+1-\alpha \equiv \alpha-1 \pmod{2\alpha}$ and $r+1-\alpha \equiv \alpha-1 \pmod{2\alpha}$.

Case 1. $r+1-\alpha \equiv \alpha-1 \pmod{2\alpha}$. Then $r+1-2\alpha \not\equiv \alpha-1 \pmod{2\alpha}$. We get from the inductive assumption that:

$$f(r+1)$$
= $(k-1) f(r+1-\alpha) + f(r+1-2\alpha)$
= $-(k-1) f(-(r+1-\alpha) + 2\alpha - 2)$
+ $f(-(r+1-2\alpha) + 2\alpha - 2)$
= $f(-(r+1) + 2\alpha - 2)$.

Case 2. $r+1-\alpha \not\equiv \alpha-1 \pmod{2\alpha}$. By Lemma 2.11, we have $r+1\not\equiv \alpha-1 \pmod{\alpha}$. We also have that $-(r+1)+2\alpha-2\not\equiv \alpha-1 \pmod{\alpha}$ since otherwise $r+1\equiv \alpha-1 \pmod{\alpha}$: a contradiction. It follows from Lemma 2.13 that:

$$f(r+1) = 0 = f(-(r+1) + 2\alpha - 2).$$

The proof is complete by the Principle of Strong Mathematical Induction.

Theorem 2.9 and Theorem 2.14 yield the next theorem.

Theorem 2.15. Let $f: \mathbb{Z} \to \mathbb{Z}$ be a $(k: \alpha, 0, ..., 0, \alpha)$ -step Fibonacci function with $\alpha \in \mathbb{N}$ and f(n) = 0 for all $0 \le n \le 2\alpha - 2$. Then:

$$f(n) = \begin{cases} f(-n+2\alpha-2) & \text{if } n \not\equiv \alpha-1 \pmod{2\alpha} \\ -f(-n+2\alpha-2) & \text{if } n \equiv \alpha-1 \pmod{2\alpha} \end{cases}$$

for all $n \ge \alpha$.

Proof. If $\alpha = 1$, then we have from Theorem 2.9 that

$$f(n) = (-1)^{n+1} f(-n)$$

for all non-negative integers n. This shows that:

$$f(n) = \begin{cases} f(-n) & \text{if } n \not\equiv 0 \pmod{2} \\ -f(-n) & \text{if } n \equiv 0 \pmod{2} \end{cases}$$

for all non-negative integers n and so the statement holds for $\alpha = 1$. On the other hand, if $\alpha \ge 2$, then the statement clearly holds from Theorem 2.14.

III. DISCUSSION AND CONCLUSION

In this paper, we have already defined $(k: \alpha_1, \alpha_2, ..., \alpha_k)$ -step Fibonacci Functions and generalised Tongron and Kerdmongkon's work (Tongron & Kerdmongkon, 2022) which relates to periods of k-step Fibonacci Functions. It is also verified that some $(k: \alpha_1, \alpha_2, ..., \alpha_k)$ -step Fibonacci Functions are symmetric-like as in Theorem 2.15. For the

future work, we are going to provide some explicit formulae like Theorem 1.5, Theorem 1.6 and Theorem 1.8 for $(k: \alpha_1, \alpha_2, ..., \alpha_k)$ -step Fibonacci Functions. Besides, we are inspired to establish a generalisation of Theorem 2.15 by the following examples: Let $f: \mathbb{Z} \to \mathbb{Z}$ be a (3:1,2,1) -step Fibonacci function such that f(0) = 0, f(1) = 1, f(2) = -1 and f(3) = -2. Consider the following tables:

Table 5. The values of the (3:1,2,1)-step Fibonacci function f(n)

n	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1
f(n)	-25	14	-9	7	-4	1	-1	2	-1	-1

n	0	1	2	3	4	5	6	7	8	9
f(n)	0	1	-1	-2	-1	-1	-4	-7	-9	-14

Observe that this f does not satisfy Theorem 2.15 but f seems symmetric-like.

IV. ACKNOWLEDGEMENT

The authors are grateful to the referees for his/her useful comments and suggestions.

V. REFERENCES

Adegoke, K 2022, 'Fibonacci and Lucas identities derived via the golden ratio', Electronic Journal of Mathematics, vol. 4, pp. 20-31.

Burton DM 2011, 'Elementary Number Theory', 7th edn, New York, The McGraw-Hill Companies, Inc.

Elmore, M 1967, 'Fibonacci Functions', The Fibonacci Quarterly, vol. 5, no. 4, pp. 371-382.

Koshy, T 2001, 'Fibonacci and Lucas Number with Applications', John Wiley & Sons Inc., New Jersey.

Jameson, GJO 2018, 'Finonacci periods and Multiples', Mathematical Gazette, vol. 102, no. 553, pp. 63-76.

Phunphayap, P, Khemaratchatakumthorn, T & Sumritnorrapong, P 2022, 'Fibonacci and Lucas Numbers of Factorials and Factorials of Fibonacci and Lucas',

International Journal of Mathematics and Computer Science, vol. 17, no. 1, pp. 11-19.

Thongngam, N & Chinram, R 2019, 'Periods of Fibonacci Functions Modulo *m*', Thaksin University Journal, vol. 22, no. 2, pp. 53-58.

Tongron, Y & Kerdmongkon, S 2022, 'Periods of *k*-step Fibonacci Functions Modulo *m*', Songklanakarin Journal of Science and Technology, vol. 44, no. 2, pp. 323-331.

Vorob'ev, NN 2011, 'Fibonacci Numbers', Pergamon Press, New York, Oxford.