
*Corresponding author’s e-mail: itaramli@ukm.edu.my 

ASM Sc. J., 18, 2023 

https://doi.org/10.32802/asmscj.2023.1465 

 

Mortality Index Simulation for Forecasting 
Malaysian Mortality Rates 

 
N. Redzwan, P. Sivasundaram and R. Ramli∗ 

 
Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 

43600 UKM Bangi, Selangor, Malaysia. 

 
Mortality studies are very important in demography and actuarial areas because they assist 

policymakers and life insurers in managing longevity and mortality risks. In recent decades, many 

extrapolative mortality models have been developed following the Lee-Carter model. Despite the 

widely used Lee-Carter model for projecting mortality rates, the literature that has a thorough 

explanation of it is limited. In this study, we aim to provide a comprehensive explanation of the 

model with a focus on its fitting and simulation forecasting techniques. We fitted the mortality rates 

of the Malaysian population for the years 1991 to 2012 using the Lee-Carter model. We then 

projected the mortality rates for the years 2013 to 2018 using an autoregressive integrated moving 

average (ARIMA) (0,1,0) model by using a simulation of the mortality index. Findings showed that 

the Lee-Carter model performs well for this dataset based on the computed standard accuracy 

measures. The estimated age parameters exhibited a high mortality rate in the age group of 0-4 

years, while the estimated time-varying parameter indicated a decreasing trend. This study presents 

a thorough interpretation of the Lee-Carter model and a detailed simulation of the ARIMA (0,1,0) 

model and hence provides a comprehensive reference for beginners in mortality studies. 
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I. INTRODUCTION 

 
The global population is experiencing an increase in life 

expectancies. According to the United Nations (2019), the 

Malaysian life expectancy at birth in 2019 was 76.2 years, as 

compared to 70.9 years in 1990. The increase in life 

expectancies is a challenge, especially for life insurers and 

pension funds, in managing longevity risks. Following this, 

much scientific literature provides insights on fitting and 

forecasting mortality rates. Mortality models can be 

categorised into three types: expectation, explanatory, and 

extrapolative (Booth & Tickle, 2008). The expectation model 

is based on the opinions of experts; the explanatory model is 

based on structural models of certain causes of death; and the 

extrapolative model is based on the past mortality trend. The 

extrapolative model can minimise the problem of bias in 

judgements faced by the expectation model. It is also suitable 

to be used for long-term forecasting, as compared to the 

explanatory model, which is usually limited to short-term 

forecasting.  

Much literature on mortality models in actuarial and 

demography fields are based on the extrapolative model. The 

development of these models can be traced back to works by 

Heligman and Pollard (1980), McNown and Rogers (1989), 

and Lee and Carter (1992). Lee and Carter (1992) proposed a 

mortality model with a bilinear factor and has since become 

a prominent stochastic mortality model. Following its 

development, many researchers have included some 

modifications and extensions to the Lee-Carter model. These 

include modifications to its statistical foundations and the 

development of new models (Cairns et al., 2011). For 

example, Brouhns et al. (2002), Booth et al. (2002), and 

Delwarde et al. (2007) modified the statistical foundations of 

the Lee-Carter model. Extensions of the Lee-Carter model as 

proposed by Renshaw and Haberman (2006), Cairns et al. 

(2006), and Plat (2009) included other factors such as the 

https://doi.org/10.32802/asmscj.2023.1465


ASM Science Journal, Volume 18, 2023  

2 

cohort effect and the age-period effect. Further details on the 

development of the Lee-Carter model are described in the 

next section.  

During the last decades, studies on stochastic mortality 

modelling have gained the interest of researchers. However, 

most of this literature is not straightforward, especially for 

young researchers and students. For example, previous 

studies provide insufficient explanation on methods such as 

singular value decomposition (SVD) and the autoregressive 

integrated moving average (ARIMA) forecasting model. This 

often leads to confusion in understanding the technique of 

the Lee-Carter model (Lee & Carter, 1992; Booth et al., 2002; 

Brouhns et al., 2002; Haberman & Russolillo, 2005; 

Renshaw & Haberman, 2006; Tsai & Lin, 2017). 

Furthermore, not many studies focused on forecasting by 

using the simulation process (Lee & Carter, 1992; Haberman 

& Russolillo, 2005; Tsai & Lin, 2017). Since the Lee-Carter 

model is the base model for many mortality models, this 

study is aimed at providing a comprehensive explanation on 

the model with a focus on its fitting and simulation 

forecasting techniques. The thorough interpretation of the 

Lee-Carter model and ARIMA (0,1,0) simulation in this work 

provides a good reference for beginners in mortality studies. 

It is important to understand the fundamentals of this model, 

so that they can comprehend its modifications and 

extensions. In addition to that, a practical application of Lee-

Carter in modelling and forecasting is shown in Section 3.  

This paper is organised as follows: Section 2 describes the 

fundamentals of the Lee-Carter model with its modifications 

and extensions; Section 3 shows the practical application of 

the Lee-Carter model to the Malaysian population’s mortality 

data; and Section 4 provides the conclusions of this paper.  

 
II. EXTRAPOLATIVE MORTALITY 

MODELS 
 

A. Lee-Carter Model 
 
Mortality data is an example of panel data in which the 

mortality rates for each age group (individual ages in 

insurance) are observed over time. Ages (age groups) and 

years are represented by positive integers to simplify the 

notations. While the first age and the first year are both 

represented by 1, the last age and the last year are represented 

by 𝑋𝑋  and 𝑇𝑇 , respectively. This data can be displayed in a 

matrix with ages and years as rows and columns, respectively. 

Let 𝑴𝑴  be an 𝑋𝑋 × 𝑇𝑇  original matrix whose element is the 

mortality rate 𝑚𝑚𝑥𝑥,𝑡𝑡 given by: 

𝑚𝑚𝑥𝑥,𝑡𝑡 =
𝐷𝐷𝑥𝑥,𝑡𝑡

𝐸𝐸𝑥𝑥,𝑡𝑡
 

(1) 

where 𝐷𝐷𝑥𝑥,𝑡𝑡  is the total number of deaths for age 𝑥𝑥  during 

period 𝑡𝑡  and 𝐸𝐸𝑥𝑥,𝑡𝑡  is the total exposure (number of people 

alive) for age 𝑥𝑥 at the beginning of period 𝑡𝑡. 

The Lee–Carter model (Lee & Carter, 1992) is used to model 

mortality rates as follows: 

𝑙𝑙𝑙𝑙�𝑚𝑚𝑥𝑥,𝑡𝑡� = 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡 + 𝜀𝜀𝑥𝑥,𝑡𝑡 

for all 𝑥𝑥 = 1,2, … ,𝑋𝑋 and 𝑡𝑡 = 1,2, … ,𝑇𝑇. 

(2) 

For all 𝑥𝑥  and 𝑡𝑡 , the error term 𝜀𝜀𝑥𝑥,𝑡𝑡  is independent and 

identically distributed normal random variable with mean 0 

and variance 𝜎𝜎2. The parameter 𝑎𝑎𝑥𝑥  and 𝑘𝑘𝑡𝑡  in (2) denote the 

general mortality rates for age 𝑥𝑥 and year 𝑡𝑡, respectively. The 

parameter 𝑏𝑏𝑥𝑥 in (2) denotes the change in mortality at age 𝑥𝑥 

for a unit change in total mortality at time 𝑡𝑡 as shown in (3).  

𝑑𝑑
𝑑𝑑𝑑𝑑 𝑙𝑙𝑙𝑙�𝑚𝑚𝑥𝑥,𝑡𝑡� = 𝑏𝑏𝑥𝑥

𝑑𝑑
𝑑𝑑𝑑𝑑 𝑘𝑘𝑡𝑡 

(3) 

Equation (3) implies that: 

𝑑𝑑
𝑑𝑑𝑑𝑑 𝑙𝑙𝑙𝑙�𝑚𝑚𝑥𝑥,𝑡𝑡�

𝑑𝑑
𝑑𝑑𝑑𝑑 𝑘𝑘𝑡𝑡

=
𝑑𝑑 𝑙𝑙𝑙𝑙�𝑚𝑚𝑥𝑥,𝑡𝑡�

𝑑𝑑 𝑘𝑘𝑡𝑡
= 𝑏𝑏𝑥𝑥 (4) 

Therefore, 𝑏𝑏𝑥𝑥  measures the change in 𝑙𝑙𝑙𝑙�𝑚𝑚𝑥𝑥,𝑡𝑡�  as 𝑘𝑘𝑡𝑡 

changes with respect to time. The estimations are subject to 

constraints ∑ 𝑏𝑏𝑥𝑥𝑋𝑋
𝑥𝑥=1 = 1  and ∑ 𝑘𝑘𝑡𝑡 = 0𝑇𝑇

𝑡𝑡=1 . First, matrix 𝒀𝒀  is 

formed for estimating parameter 𝑎𝑎𝑥𝑥 . For a given age 𝑥𝑥 , 

parameter 𝑎𝑎𝑥𝑥 is estimated by minimising the error terms for 

the age group. The constraint ∑ 𝑘𝑘𝑡𝑡 = 0𝑇𝑇
𝑡𝑡=1  and minimising the 

errors imply:  

�𝑙𝑙𝑙𝑙�𝑚𝑚𝑥𝑥,𝑡𝑡�
𝑇𝑇

𝑡𝑡=1

= ��𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡 + 𝜀𝜀𝑥𝑥,𝑡𝑡�
𝑇𝑇

𝑡𝑡=1

 

                        = 𝑎𝑎𝑥𝑥𝑇𝑇 + 𝑏𝑏𝑥𝑥�𝑘𝑘𝑡𝑡

𝑇𝑇

𝑡𝑡=1

+ �𝜀𝜀𝑥𝑥,𝑡𝑡

𝑇𝑇

𝑡𝑡=1

 

            = 𝑎𝑎𝑥𝑥𝑇𝑇. 

Thus, the estimate 𝑎𝑎�𝑥𝑥 is given by: 

𝑎𝑎�𝑥𝑥 =
∑ 𝑙𝑙𝑙𝑙�𝑚𝑚𝑥𝑥,𝑡𝑡�𝑇𝑇
𝑡𝑡=1

𝑇𝑇  
(5) 

Note that (5) is a row mean of matrix 𝒀𝒀. Next, matrix 𝒁𝒁 is 

formed by subtracting 𝑎𝑎�𝑥𝑥 from each of the elements of row 𝑥𝑥 
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of matrix 𝒀𝒀 for estimating parameter 𝑏𝑏𝑥𝑥 and 𝑘𝑘𝑡𝑡. Note that 𝑴𝑴, 

𝒀𝒀, and 𝒁𝒁 are all 𝑋𝑋 × 𝑇𝑇  matrices. The element of matrix 𝒁𝒁 is 

𝑧𝑧𝑥𝑥,𝑡𝑡 = 𝑙𝑙𝑙𝑙�𝑚𝑚𝑥𝑥,𝑡𝑡� − 𝑎𝑎𝑥𝑥 . By the definition of 𝑧𝑧𝑥𝑥,𝑡𝑡 , it is apparent 

that the constraint ∑ 𝑘𝑘𝑡𝑡 = 0𝑇𝑇
𝑡𝑡=1  is satisfied (the row sum of 

matrix 𝒁𝒁  equals 0 since each element is a mean-adjusted 

value).  

Since 𝑋𝑋 and 𝑇𝑇 are usually different, reduced singular value 

decomposition (RSVD) can be used to estimate 𝑏𝑏𝑥𝑥 and 𝑘𝑘𝑡𝑡 for 

matrix 𝒁𝒁. Since the rank of matrix 𝒁𝒁 is less than or equal to 

the minimum between 𝑋𝑋 and 𝑇𝑇, the maximum possible rank 

is 𝑙𝑙 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑋𝑋,𝑇𝑇}. The SVD on matrix 𝒁𝒁 produces matrices 𝑼𝑼, 

𝚺𝚺, and 𝑽𝑽 such that 𝒁𝒁 can be decomposed as follows:  

𝒁𝒁 = 𝑼𝑼𝚺𝚺𝑽𝑽𝑻𝑻 (6) 

The dimension of each matrix is labelled in the subscript as 

follows:  

𝒁𝒁
 RSVD 
�⎯⎯⎯⎯⎯�𝑼𝑼𝑋𝑋×𝑙𝑙 ,𝚺𝚺𝒍𝒍×𝒍𝒍,𝑽𝑽𝑇𝑇×𝑙𝑙 

Both matrices 𝑼𝑼  and 𝑽𝑽  contain orthogonal orthonormal 

singular vectors. 𝚺𝚺  is a diagonal matrix whose diagonal 

entries are 𝜎𝜎1,𝜎𝜎2, … ,𝜎𝜎𝑙𝑙−1,𝜎𝜎𝑙𝑙 . The squared of the sigma values 

are eigenvalues to the respective eigenvectors in 𝑼𝑼  and 𝑽𝑽 

which are ordered such that 𝜎𝜎1 > 𝜎𝜎2 > ⋯ > 𝜎𝜎𝑙𝑙−1 > 𝜎𝜎𝑙𝑙. Letting 

𝑢𝑢𝑖𝑖,𝑗𝑗 and 𝑣𝑣𝑖𝑖,𝑗𝑗 be the 𝑖𝑖th row and 𝑗𝑗th column element of matrices 

𝑼𝑼  and 𝑽𝑽 , respectively, the full-rank RSVD enables each 

element in 𝒁𝒁 to be written as follows:  

𝑧𝑧𝑥𝑥,𝑡𝑡 = 𝜎𝜎1𝑢𝑢𝑥𝑥,1𝑣𝑣𝑡𝑡,1 + 𝜎𝜎2𝑢𝑢𝑥𝑥,2𝑣𝑣𝑡𝑡,2 + ⋯

+ 𝜎𝜎𝑙𝑙−1𝑢𝑢𝑥𝑥,𝑙𝑙−1𝑣𝑣𝑡𝑡,𝑙𝑙−1 + 𝜎𝜎𝑙𝑙𝑢𝑢𝑥𝑥,𝑙𝑙𝑣𝑣𝑡𝑡,𝑙𝑙 

(7) 

Equation (7) produces one element of matrix 𝒁𝒁  and it is 

noticeable that equation (6) gives the complete matrix 𝒁𝒁. The 

Lee–Carter model uses the first-rank RSVD, hence each of its 

elements is estimated as follows:  

𝑧̂𝑧𝑥𝑥,𝑡𝑡 = 𝜎𝜎1𝑢𝑢𝑥𝑥,1𝑣𝑣𝑡𝑡,1 (8) 

The left-hand side of equation (8) is the product of 𝑏𝑏�𝑥𝑥 and 

𝑘𝑘�𝑡𝑡; hence, the constraint ∑ 𝑏𝑏𝑥𝑥𝑋𝑋
𝑥𝑥=1 = 1 is used to characterise 

each of the estimated parameters.  

𝑏𝑏�𝑥𝑥 =
𝑢𝑢𝑥𝑥,1

∑ 𝑢𝑢𝑥𝑥,1
𝑋𝑋
𝑥𝑥=1

 (9) 

𝑘𝑘�𝑡𝑡 = 𝜎𝜎1𝑣𝑣𝑡𝑡,1�𝑢𝑢𝑥𝑥,1

𝑋𝑋

𝑥𝑥=1

 
(10) 

We want equation (8) to be written in the form of 𝑧̂𝑧𝑥𝑥,𝑡𝑡 =

𝑏𝑏�𝑥𝑥𝑘𝑘�𝑡𝑡. Since 𝑧̂𝑧𝑥𝑥,𝑡𝑡 = 𝜎𝜎1𝑢𝑢𝑥𝑥,1𝑣𝑣𝑡𝑡,1, there is no unique representation 

of 𝑏𝑏�𝑥𝑥 and 𝑘𝑘�𝑡𝑡. For example, two possible representations of the 

parameters are 𝑏𝑏�𝑥𝑥 = 𝜎𝜎1𝑢𝑢𝑥𝑥,1  with 𝑘𝑘�𝑡𝑡 = 𝑣𝑣𝑡𝑡,1  and 𝑏𝑏�𝑥𝑥 = 𝑢𝑢𝑥𝑥,1  with 

𝑘𝑘�𝑡𝑡 = 𝜎𝜎1𝑣𝑣𝑡𝑡,1. 

Writing 𝑧̂𝑧𝑥𝑥,𝑡𝑡 = 𝜎𝜎1𝑢𝑢𝑥𝑥,1𝑣𝑣𝑡𝑡,1
∑ 𝑢𝑢𝑥𝑥,1
𝑋𝑋
𝑥𝑥=1

∑ 𝑢𝑢𝑥𝑥,1
𝑋𝑋
𝑥𝑥=1

 and letting 𝑏𝑏�𝑥𝑥 be a weighted 

average parameter as seen in equation (9) guarantees a 

unique characterisation of parameterisation of equation (8). 

Hence, it follows that 𝑘𝑘�𝑡𝑡  is obtained by equation (10). 

Therefore, equation (2) implies:  

𝑚𝑚�𝑥𝑥,𝑡𝑡 = 𝑒𝑒�𝑎𝑎�𝑥𝑥+𝑏𝑏�𝑥𝑥𝑘𝑘�𝑡𝑡� (11) 

From (11), 𝑚𝑚�𝑥𝑥,𝑡𝑡 represents the value of fitted mortality rate 

for age (age group) 𝑥𝑥 and year 𝑡𝑡. 

 
B. Modifications and Extensions to the Lee-Carter 

Model 
 
According to Cairns et al. (2011), different versions of the Lee-

Carter model can be categorised into two types. The first type 

is modifications to its statistical foundations. A study by Lee 

and Miller (2001) reported that forecasts of mortality rates 

performed better after adjustments to jump-off rates. 

Brouhns et al. (2002) proposed to model the number of 

deaths in a Poisson setting for Belgian mortality data. They 

concluded that their method allows for applications in life 

insurance. Meanwhile, both studies by Booth et al. (2002) 

and De Jong and Tickle (2006) proposed an improved model 

of 𝑘𝑘𝑡𝑡  to Australian mortality data. In terms of age effects, 

Delwarde et al. (2007) applied the p-splines method to 

overcome a lack of smoothness in the estimated 𝑏𝑏𝑥𝑥’s.  

The second type of Lee-Carter variant is in terms of its 

extensions and development of new models. Some of these 

extensions include inclusions of cohort effects, age-period 

and cohort effects, and multi-population factor. For example, 

Renshaw and Haberman (2006) included a cohort effect, 

denoted by 𝛾𝛾𝑡𝑡−𝑥𝑥. Cohort effect is also known as the year-of-

birth effect, which means that different individuals 

experience different mortality improvements determined by 

their year of birth.  

Besides age and period effects, mortality rates in some 

countries, such as England and Wales, were also determined 

by cohort effects (Cairns et al., 2008). Currie (2006) 
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simplified the method proposed by Renshaw and Haberman 

(2006) and removed the robustness problem. Cairns et al. 

(2008) also incorporated cohort effects into their multifactor 

age-period model for the England and Wales old-aged males 

mortality data. Another type of age-period-cohort model is 

proposed by Plat (2009). The model combines the good 

features proposed by Lee-Carter (1992), Renshaw and 

Haberman (2006), Currie (2006), and Cairns et al. (2006, 

2009). The model showed a better fit to U.S. male mortality 

data.  

In 1992, Carter and Lee (1992) suggested a joint-𝑘𝑘 model to 

be applied to multi-population data. This means that the 

model would have the same value of 𝑘𝑘𝑡𝑡  for all populations. 

However, Li and Lee (2005) argued that the Lee-Carter 

model works well for single populations because modelling 

multi-population mortality using the model will lead to 

divergent in forecasts. To overcome this, they proposed a 

multi-population model based on the Lee-Carter approach to 

provide a coherent forecast of mortality for a group of 

populations.  

Figure 1 illustrates the graphical representation of the 

summary of the Lee-Carter model and its variants as 

discussed above.  

 

 

Figure 1. Lee-Carter model and its modifications and 

extentions. 

 
III. METHODOLOGY 

 
As a supplementary, this paper provides a practical 

application of the Lee-Carter model in forecasting Malaysian 

age-specific mortality rates.  

 
A. Data 

 
The data for this study was obtained from the Department of 

Statistics Malaysia for a period of 28 years, from 1991 to 2018. 

The data includes the number of people in 17 five-year age 

groups ranging from 0 to above 80 years old, as well as the 

number of deaths in those groups. Mortality rates were then 

obtained by using equation (1). The data set was then divided 

into two periods: fitting and forecasting. The fitting period 

spanned from 1991 to 2012, while the forecasting period 

spanned from 2012 to 2018. By comparing the forecasts to 

actual out-of-sample data, the fitting period was used to 

compute one-year, three-year, and six-year forecast horizons 

and determine the forecast errors.  

 
B. Forecast of Mortality Index 

 
The estimation of the parameters of the Lee-Carter model 

were conducted by methods explained in Section II (A). Given 

that the age groups are fixed, a set of {𝑘𝑘𝑡𝑡|𝑡𝑡 > 𝑇𝑇}  was 

determined using an autoregressive integrated moving 

average (ARIMA) model on time series {𝑘𝑘𝑡𝑡|𝑡𝑡 ≤ 𝑇𝑇} to forecast 

𝑚𝑚𝑥𝑥,𝑡𝑡 for 𝑡𝑡 > 𝑇𝑇. An ARIMA model of order 𝑝𝑝, 𝑑𝑑, and 𝑞𝑞, denoted 

as ARIMA(𝑝𝑝,𝑑𝑑, 𝑞𝑞), implies 𝑑𝑑 times difference on the original 

time series {𝑘𝑘𝑡𝑡|𝑡𝑡 ≤ 𝑇𝑇} to obtain a stationary time series �𝑘𝑘𝑡𝑡𝑑𝑑� 

for the ARIMA model, 𝑝𝑝 autoregressive terms and 𝑞𝑞 moving 

average terms as follows:  

𝑘𝑘𝑡𝑡𝑑𝑑 = 𝜇𝜇 + 𝜑𝜑1𝑘𝑘𝑡𝑡−1𝑑𝑑 + 𝜑𝜑2𝑘𝑘𝑡𝑡−2𝑑𝑑 + ⋯+ 𝜑𝜑𝑝𝑝𝑘𝑘𝑡𝑡−𝑝𝑝𝑑𝑑 + 𝜃𝜃1𝜀𝜀𝑡𝑡−1
+ 𝜃𝜃2𝜀𝜀𝑡𝑡−2 + ⋯+ 𝜃𝜃𝑞𝑞𝜀𝜀𝑡𝑡−𝑞𝑞 + 𝜀𝜀𝑡𝑡 . 

(12) 

For 𝑑𝑑 = 0, the stationary time series 𝑘𝑘𝑡𝑡𝑑𝑑 is equal to 𝑘𝑘𝑡𝑡. For 

𝑑𝑑 > 0 , 𝑘𝑘𝑡𝑡𝑑𝑑 = 𝑘𝑘𝑡𝑡𝑑𝑑
− − 𝑘𝑘𝑡𝑡−1𝑑𝑑− , where 𝑑𝑑− = 𝑑𝑑  (see Appendix for 

details). Once parameters �𝜇̂𝜇,𝜑𝜑�1,𝜑𝜑�2, … ,𝜑𝜑�𝑝𝑝,𝜃𝜃�1,𝜃𝜃�2, … ,𝜃𝜃�𝑞𝑞� have 

been obtained, a simulation is run using equation (12) and the 

assumption that the error terms {𝜀𝜀𝑡𝑡}  are independent and 

identically normal-distributed with mean 0 and constant 

variance 𝜎𝜎2 (estimated by the ARIMA model) to give �𝑘𝑘�𝑡𝑡|𝑡𝑡 >

𝑇𝑇� for forecasting the mortality rates beyond time 𝑇𝑇, �𝑚𝑚𝑥𝑥,𝑡𝑡|𝑡𝑡 >

𝑇𝑇�.  

The mortality index in this study was forecasted for six 

years from 2013 to 2018 with three forecasting horizons: one, 

three, and six years. The mortality index data has to be 

stationary prior to applying the ARIMA model (Haberman & 

Russolillo, 2005), and we employed Lee and Carter's (1992) 

ARIMA (0,1,0) model for forecasting 𝑘𝑘𝑡𝑡 for 𝑡𝑡 > 𝑇𝑇 as given by 

equation (13).  

𝑘𝑘𝑡𝑡
 𝑓𝑓 = 𝑘𝑘𝑡𝑡−1

 𝑓𝑓 + 𝜃𝜃� + 𝜀𝜀𝑡𝑡 for 𝑡𝑡 = 𝑇𝑇 + 1,𝑇𝑇 + 2, … ,𝑇𝑇 + 𝑟𝑟 (13)) 
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where, 

𝑘𝑘𝑡𝑡
 𝑓𝑓 = 𝑘𝑘�𝑡𝑡 estimated by ARIMA (0,1,0) 

𝜃𝜃� = Drift parameter estimated by ARIMA (0,1,0) 

𝜀𝜀𝑡𝑡 = Error term at time 𝑡𝑡 

𝑟𝑟 = forecasting horizon 

 
The following represents the algorithm to obtain 𝑘𝑘𝑡𝑡

𝑓𝑓 

through simulation of 𝜀𝜀𝑡𝑡 . Since the mortality index is a 

function of time, we need it to forecast 𝑚𝑚𝑥𝑥,𝑡𝑡 by using equation 

(11). For each 𝑡𝑡 = 𝑇𝑇 + 1,𝑇𝑇 + 2, … ,𝑇𝑇 + 𝑟𝑟, 100 random values 

were generated for 𝜀𝜀𝑡𝑡 from a normal distribution with mean 

0 and standard deviation 𝜎𝜎. The latter was estimated by the 

ARIMA (0,1,0) standard error. The number of generated 

values is arbitrary as long as a set of values can be obtained to 

represent the distribution of random variable 𝜀𝜀𝑡𝑡 . In this 

study, 100 was used for simplicity.  

We substituted the first 100 set of 𝜀𝜀𝑡𝑡  for 𝑡𝑡 = 𝑇𝑇 + 1 in the 

equation (13) to give 100 values of 𝑘𝑘𝑇𝑇+1
𝑓𝑓 . These 100 values 

were ordered and the 50th percentile was chosen as the 

estimate of 𝑘𝑘𝑇𝑇+1
𝑓𝑓 . This follows from the fact that the 50th 

percentile coincides the mean of a normal distribution 

random variable.  

The previous step was repeated for 𝑡𝑡 = 𝑇𝑇 + 2 until 𝑡𝑡 = 𝑇𝑇 +

𝑟𝑟 for obtaining the complete estimate of forecasted mortality 

index, 𝑘𝑘𝑡𝑡
𝑓𝑓 for 𝑡𝑡 = 𝑇𝑇 + 1,𝑇𝑇 + 2, … ,𝑇𝑇 + 𝑟𝑟. 

 
C. Measures of Accuracy 

 
The fitting and projection accuracies were evaluated using 

standard accuracy measures, namely mean squared error 

(MSE), mean absolute percentage error (MAPE), and mean 

error (ME). The forecast horizons used in this study are one-

year, three-year, and six-year. The forecast performance was 

evaluated using the out-of-sample data from the year 2013 to 

2018. The three measures can be written as follows:  

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ ∑ �𝑚𝑚𝑥𝑥,𝑡𝑡 − 𝑚𝑚�𝑥𝑥,𝑡𝑡�

2𝑋𝑋
𝑥𝑥=1

𝑇𝑇+𝑟𝑟
𝑡𝑡=𝑇𝑇+1

𝑟𝑟𝑟𝑟  

 

(14) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ ∑ �

𝑚𝑚𝑥𝑥,𝑡𝑡 − 𝑚𝑚�𝑥𝑥,𝑡𝑡
𝑚𝑚𝑥𝑥,𝑡𝑡

� × 100𝑋𝑋
𝑥𝑥=1

𝑇𝑇+𝑟𝑟
𝑡𝑡=𝑇𝑇+1

𝑟𝑟𝑟𝑟  

 

(15) 

𝑀𝑀𝑀𝑀 =
∑ ∑ �𝑚𝑚𝑥𝑥,𝑡𝑡 − 𝑚𝑚�𝑥𝑥,𝑡𝑡�𝑋𝑋

𝑥𝑥=1
𝑇𝑇+𝑟𝑟
𝑡𝑡=𝑇𝑇+1

𝑟𝑟𝑟𝑟  
(16) 

where,  

𝑚𝑚�𝑥𝑥,𝑡𝑡 =  �
𝑚𝑚�𝑥𝑥,𝑡𝑡 
𝑚𝑚𝑥𝑥,𝑡𝑡
𝑓𝑓  

for in-sample accuracy measure
   for out-sample accuracy measure  

 
IV. RESULT AND DISCUSSION 

 
A. Mortality Trend in Malaysia 

 
This section discusses the trend of mortality rates in Malaysia 

from 1991 to 2018. 

 

Figure 2. Malaysia mortality rates from 1991 t0 2018 (Note: 

Lighter coloured lines represent the early years, while darker 

coloured lines represent later years). 

 
Figure 2 shows that mortality rates in Malaysia followed a 

similar pattern every year and decreased over the 28-year 

observation period. Malaysia has seen an increase in 

mortality with respect to age. The country’s mortality rate is 

highest between the ages of 0 and 4, then rapidly declines 

between the ages of 15 and 19. At the age of 20, mortality rates 

began to rise and continued to rise until the age of 80 and 

above. From one calendar year to the next, Malaysia’s 

mortality rate decreased for all age groups. Malaysia has 

significantly increased its healthcare expenditure over the 

years (Ministry of Health Malaysia, 2019), which has an 

impact on the Malaysian mortality rate, as healthcare 

expenditure allocation affects people's life expectancy 

(Linden & Ray, 2017; Babenko et al., 2019).  

Child mortality has improved globally, with UNICEF (2015) 

reporting a 53% reduction in child mortality under the age of 

five between 1990 and 2015. Figure 1 shows that Malaysia is 

on the right track in this regard, as evidenced by the 

decreasing trend in child mortality from 1991 to 2018. 



ASM Science Journal, Volume 18, 2023  

6 

Another point to note is that the ‘accident hump’ that occurs 

between the ages of 10 and 29 is more prominent in later 

years. The term ‘accident hump’ refers to a noticeable hump 

on the mortality curve that occurs most commonly between 

the ages of 10 and 40, and is more prominent in males than 

females (Heligman & Pollard, 1980; Haldrup & Rosenskjold, 

2019). The ‘accident hump’ in Figure 2 may have been caused 

by male mortality rates, which had a more distinct ‘accident 

hump’ than female mortality rates (Ibrahim et al., 2021).  

 
B. Parameters Estimation of the Lee-Carter Model 

 
The age and time parameters of the Lee–Carter model were 

estimated for the years 1991 to 2012. Figure 3 depicts the 

plots of the estimated parameters.  

 

Figure 3. Estimated values of parameters 𝑎𝑎𝑥𝑥, 𝑏𝑏𝑥𝑥 and 𝑘𝑘𝑡𝑡 

obtained from the Lee–Carter model. 

 
The plot of 𝑎𝑎𝑥𝑥  which represents the average log mortality 

rate, shows a high mortality rate in the age group 0 to 4 years 

old, followed by a sharp decline in the age group after that. 

The mortality rates of the remaining age groups increased as 

they grew older.  

Aside from the age parameter, the Lee–Carter model 

includes a time-varying parameter or mortality index 

denoted by 𝑘𝑘𝑡𝑡 , while 𝑏𝑏𝑥𝑥  captures the rate of change in 

mortality as 𝑘𝑘𝑡𝑡  changes. The plot of 𝑘𝑘𝑡𝑡  shows a decreasing 

trend from 1991 to 2012. Similarly, the plot of 𝑏𝑏𝑥𝑥  shows a 

decreasing trend for all age groups. Similar patterns of 

mortality improvement were visible in other countries, with 

the majority of the global population experiencing increased 

life expectancy (Chavhan & Shinde, 2016; Bozikas & Pitselis, 

2018). 

 

C. Fitted Mortality Rates 
 
Fitted log mortality rates for the fitting period of 1991 to 2012 

were obtained after parameter estimation. Figure 4 compares 

the actual and fitted mortality rates for the years 1991, 2002, 

and 2012 to denote the beginning, middle, and end of the 

fitting period, respectively. Actual mortality rates are 

represented by solid lines, and fitted mortality rates are 

represented by dotted lines.  

 

Figure 4. Fitted log mortality rates for the years 1991, 2002, 

and 2012. 

 
Figure 4 shows that the Lee–Carter model fits well into 

Malaysian mortality data by age, with little deviation from 

actual data for the three years studied. The model also fits 

other populations well, such as Indian mortality (Chavhan & 

Shinde, 2016) and cancer incidence rates (Yue et al., 2018). 

Table 1 presents the results of in-sample errors for the years 

1991 to 2012 which shows that the Lee–Carter model fits 

Malaysian mortality rate well since the error values are very 

small. This indicates a small difference between the actual 

observed mortality rates and the fitted mortality rates. It also 

supported the findings by Gylys and Šiaulys (2020) that the 

Lee–Carter model fits data with a stable mortality trend 

better than populations with volatile mortality trends and 

outliers. Then, fitted log mortality rates by year were 

calculated for each of the 17 age groups. Table 2 shows the 17 

age groups that were divided into four categories (Sully et al., 

2020; Ricci et al., 2010; United Nations, 2019). 
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Table 1. In-sample errors 

 MSE MAPE 
(%) ME 

Accuracy 
measure 0.00000421 4.055862 0.00002399 

 

Table 2. Classification of age groups. 

Category Age groups 

Child and Adolescence 0–4, 5–9, 10–14, 15–19 

Adult 20–24, 25–29, 30–34, 35–39 

Middle Age 40–44, 45–49, 50–54, 55–59, 60–64 

Elderly 65–69, 70–74, 75–80, 80+ 

 
As shown in Figure 5, the Lee–Carter model did not fit well 

for age-specific mortality by year across all ages. The 

mortality rates for the age group 0 to 4, as well as all age 

groups in the Adult and Elderly categories, are significantly 

different from the actual rates. 

 

 

 
Figure 5. Fitted log mortality rates by age groups  

(Note: Solid lines represent the actual log mortality rate, 

whereas dotted lines represent the fitted log mortality rate). 
 

Figure 5 also shows a decreasing age-specific mortality 

trend by year and fitted log mortality rates in the Middle Age 

category, which is consistent with the findings of Ngataman 

et al. (2016). The other three categories, on the other hand, 

are inconsistent in terms of deviations from actual mortality 

rates. This seemingly contradictory result could be due to the 

different samples used in both studies. While this study 

examined the Malaysian population as a whole, Ngataman et 

al. (2016) examined age-specific mortality rates by gender.  

Figure 6 depicts the results of a mortality index forecast at 

the 5th, 50th, and 95th percentiles. Dotted lines represent the 

forecast mortality index at the 5th and 95th percentiles, while 

the line represents the forecast mortality index at the 50th 

percentile.  

Figure 6. Estimated and forecast mortality index for the 

years 1991 to 2018. 

 
According to Figure 6, the forecast mortality index at the 

95th percentile increased from 2013 to 2018, whereas the 

forecast mortality index at the 5th and 50th percentile 

decreased. It can be suggested that the Malaysian population 

is projected to experience mortality improvement. These 

findings are consistent with those of Zulkifle et al. (2019), 

Bozikas and Pitselis (2018), and Maccheroni and Nocito 

(2017), which emphasised the declining mortality index as a 

measure of mortality improvement. Also, their findings 

indicated that females experienced greater mortality 

improvements than males. 

 
D. Forecasting Period Variants 

 
This study also focused on forecasting period variants, with 

out-of-sample log mortality rates that were forecasted for 

one-year, three-year and six-year periods. 
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(a) 1 year 

 
(b) 3 years  

 
(c) 6 years 

Figure 7. Different forecast horizons of log mortality rates 

for: (a) 1 year, (b) 3 years, and (c) 6 years. 

 
According to Figure 7, the one-year forecast, as opposed to 

the three- and six-year forecasts, remains close to the actual 

log mortality rates. Figures 7b and 7c show that there are 

significant differences between actual and forecast values for 

both the 5th and 95th percentiles. However, the forecast 

values at the 50th percentile (median) in both periods remain 

close to actual log mortality rates. The results also show that 

a longer forecasting period results in a wider gap, particularly 

between the ages of 0 and 24. These findings imply that 

different forecasting periods will produce different results. 

Interestingly, in the context of different fitting periods, 

Ibrahim et al. (2021) discovered that a Lee–Carter model 

with a shorter fitting period outperformed a model with a 

longer fitting period in modelling Malaysian mortality rate. 

 
E. Forecasts Accuracy 

 
The forecast accuracy was evaluated for each forecast horizon 

period using MSE, MAPE, and ME. Table 3 shows the forecast 

accuracy results in terms of the measure of errors between the 

actual mortality rates and the forecast mortality rates at the 

50th percentile.  

 

Table 3. Forecast accuracy 

Forecast 
horizon MSE MAPE 

(%) ME 

1-year 0.00000176 5.305624 -0.00063 

3-year 0.00000131 6.262131 -0.00045 

6-year 0.00000130 7.421837 -0.00022 

 
According to Table 3, the Lee–Carter model fits Malaysian 

mortality rate fairly well since the error values are very small. 

This indicates a small difference between the actual observed 

mortality rates and the forecasted mortality rates. The MAPE 

and ME increase as the forecast horizon increases, whereas 

the MSE decreases. MAPE results are consistent with a study 

on Malaysian fertility rates conducted by Hanafiah and 

Jemain (2013), in which the MAPE increases as the forecast 

horizon increases. As a result, this study found that longer 

forecasting periods result in higher error measures than 

shorter forecasting periods. In conclusion, a shorter forecast 

period fits Malaysian mortality rate better. Also, the Lee–

Carter model fits data with a stable mortality trend better 

than populations with volatile mortality trends and outliers 

(Gylys & Šiaulys, 2020).  
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V. CONCLUSION 
 
The purpose of this study is to guide beginners, particularly 

students and young researchers, in understanding the basics 

of the Lee-Carter model. As a supplementary note, this paper 

also provides practical application to forecast Malaysian 

mortality rates using the model. 

Overall, the Malaysian mortality rate has shown a 

decreasing trend from 1990 to 2018. The log mortality curve 

shows a noticeable ‘accident hump’ as the year progresses, 

particularly between the ages of 10 and 29. This observation 

is consistent with Heligman and Pollard (1980), which state 

that an ‘accident hump’ usually occurs between the ages of 10 

and 40. While the model fits the Malaysian mortality rate by 

age well, it does not fit age-specific log mortality rates by year 

across all age groups. The ARIMA (0,1,0) model was also used 

in this study to forecast the mortality index at the 5th, 50th,  
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APPENDIX 
 
For 𝑑𝑑 = 0,  we set 𝑘𝑘𝑡𝑡𝑑𝑑 = 𝑘𝑘𝑡𝑡 .  The following are examples when 
𝑑𝑑 = 1,𝑑𝑑 = 2 and 𝑑𝑑 = 3. 

 

(Note: 𝑘𝑘𝑡𝑡𝑑𝑑 is the stationary time series for ARIMA model) 

 

𝒅𝒅 𝒌𝒌𝒕𝒕𝒅𝒅 

1 𝑘𝑘𝑡𝑡1 = 𝑘𝑘𝑡𝑡0 − 𝑘𝑘𝑡𝑡−10 = 𝑘𝑘𝑡𝑡 − 𝑘𝑘𝑡𝑡−1 

2 

𝑘𝑘𝑡𝑡2 = 𝑘𝑘𝑡𝑡1 − 𝑘𝑘𝑡𝑡−11  

= (𝑘𝑘𝑡𝑡 − 𝑘𝑘𝑡𝑡−1) − (𝑘𝑘𝑡𝑡−1 − 𝑘𝑘𝑡𝑡−2) 

= 𝑘𝑘𝑡𝑡 − 2𝑘𝑘𝑡𝑡−1 + 𝑘𝑘𝑡𝑡−2 

3 

𝑘𝑘𝑡𝑡3 = 𝑘𝑘𝑡𝑡2 − 𝑘𝑘𝑡𝑡−12  

= (𝑘𝑘𝑡𝑡 − 2𝑘𝑘𝑡𝑡−1 + 𝑘𝑘𝑡𝑡−2) − (𝑘𝑘𝑡𝑡−1 − 2𝑘𝑘𝑡𝑡−2 + 𝑘𝑘𝑡𝑡−3) 

= 𝑘𝑘𝑡𝑡 − 3𝑘𝑘𝑡𝑡−1 + 3𝑘𝑘𝑡𝑡−2 −  𝑘𝑘𝑡𝑡−3 

 




