Pharmacological Activities of *Dioscorea* spp.: A Narrative Review

N. N. Jamaludin¹, A. Mokhtar¹, N. F. Md Jamil¹, H. Muhammad² and W. M. Md Saad²*

¹Centre of Medical Laboratory Technology, Faculty of Health Sciences, Universiti Teknologi Mara, Puncak Alam Campus, 42300 Puncak Alam, Selangor, Malaysia
²Toxicology and Pharmacology Unit, Herbal Medicine Research Centre, Institute for Medical Research, National Institute of Health Complex, Setia Alam, 40170 Shah Alam, Selangor, Malaysia

Pharmacological research has become essential for the development of nature-based drugs to support the claimed therapeutic properties of medicinal plants. *Dioscorea* species are medicinal plants found to have an impressive pharmacological profile. This review aims to compile the pharmacological properties of three *Dioscorea* species, *D. hispida*, *D. alata* and *D. bulbifera* and their derived compounds through scientific findings, mainly focusing on the biological activities. Relevant clinical and preclinical studies on the pharmacological properties of these plants were identified, screened, and analysed. A systematic search using predetermined keywords on electronic databases (Scopus, Springer and ScienceDirect) was conducted. This review found these *Dioscorea* species to possess various pharmacological activities such as anti-inflammatory, antimicrobial, anticancer, antioxidant, antidiabetic, antihypertensive and estrogenic effects. The plant tubers contain active compounds such as diosgenin that is responsible for anti-inflammatory and anti-diabetic activities in *D. alata* and *D. bulbifera*, respectively. Other compounds like dioscorine, phenolic, flavonoid and terpenoid elucidated from the yam tubers were found to be antimicrobial and showed prominent free radical scavenging effects. The plants demonstrated various pharmacological activities although data on their mechanisms of action is very limited. Therefore, further research is needed to explore the full potential of these plants as future therapeutic medicines.

Keywords: *Dioscorea alata*; *Dioscorea bulbifera*; *Dioscorea hispida*; pharmacological activity; biological activity

I. INTRODUCTION

Medicinal plants are being extensively researched for their phytochemical constituents which have therapeutic effects in treating diseases. *Dioscorea hispida* Dennst (*Dioscoreaceae*) is a climbing plant with a 6-10 mm prickly stem which grows wildly in Southeast Asia and Indonesia. The phytochemical contents showed that it mainly consists of alkaloids, phenol, saponin, phytosterols, and terpenoids (Daud Om *et al.*, 2016). Phosphorus is the main mineral found in *D. hispida* and it contains secondary metabolites of alkaloids, terpenoids, steroids, phenols, and diosgenin (Saleha *et al.*, 2018). Dioscorine (C₁₃H₁₉NO₂), an isoquinuclidine alkaloid is a toxic substance found in *D. hispida* tubers. The best-known part of this yam is its tuber which is water-soluble polysaccharides and contains various nutrient compositions that include water (7.96%), ash (0.49%), protein (5.59%), fat (2.55%), carbohydrates (83.40%), crude fibre (3.19%) and starch (14.61%) (Harijono *et al.*, 2013). *D. hispida* tuber peel is a rich source of phenolics compounds like caffeic acid, chlorogenic acid, p-hydroxybenzaldehyde and methylester of protocatechuic acid (Sheikh *et al.*, 2013). *Dioscorea alata*, a member of the *Dioscoreaceae* family is one of the herbal medicines that is widely cultivated in the tropics for its edible tubers and bulbs. This species is also virtually unknown in the wild...
except for occasional records. In Southeast Asia where it was first cultivated, it serves as a source of carbohydrate (Anisuzzman et al., 2016; Jumari et al., 2019). It usually appears as a single tuber varying in size and shape and has succulent caudiciform with an underground tuberous root. It is recognised that yam species has the highest yield of tubers which can be stored for longer duration compared to other species. The low sodium content but high potassium and total dietary fibre (TDF) suggest that D. alata plays a potential role as a functional food to satisfy consumer needs for fibre and minerals. Dioscorea bulbifera is an important herbal medicine that has been traditionally used in Indian and Chinese cultures to treat various diseases. It is derived from the Dioscoreaceae family which is commonly known as aerial yam or air potato. This species is native to tropical, temperate and mountainous land as found in Africa, Asia and Australia. According to the air potato (D. bulbifera) management plan (2014), the edible tuber varies from one region to another. In Africa, Australia and Nepal, this species has a well textured flesh with distinctly bitter taste while cultivar Asia has a softer sweeter flesh. D. bulbifera tuber also contains storage protein that may be suitable for the development of functional food (Osukoya & Kuku, 2018). However, the consumption of these plants is not recommended due to the toxic components such as saponins, oxalates, alkaloids and tannins. Diosbulbin B and 8-epidosbulin E acetate belong to diterpenoid lactones, a major constituent in D. bulbifera that contribute to liver toxicity, numerous studies have demonstrated and provided scientific rationale that Dioscorea species has higher efficacy, biocompatibility with the least side effects, and the potential to be developed into therapeutic medicine. Therefore, this review on the pharmacological aspects of Dioscorea species was made to acknowledge that these yams are not only edible as staple food but have pharmacological potential.

II. MATERIALS AND METHOD

In this review, the pharmacological properties of three Dioscorea species, D. hispida, D. alata and D. bulbifera and their derived compounds were compiled based on scientific evidence, with emphasis on their biological activities. Relevant clinical and preclinical studies on the pharmacological properties of these plants were identified, screened and analysed. A search using predetermined keywords in electronic databases (Scopus, Springer and ScienceDirect) was conducted.

III. RESULTS AND DISCUSSION

A. Phytochemical Constituents in Dioscorea spp.

Dioscorea spp. contains carbohydrates which make them staple food in some countries. However, they also have other beneficial chemical compounds that contribute to pharmacological activities. D. hispida is a rich source of high-calorie starch that contains vitamins, minerals, and pharmaceutical properties (Nudin et al., 2017). D. hispida contains a large amount of carbohydrates, mainly in the form of starch (Saleha et al., 2018). The percentage of carbohydrates in D. hispida ranges from 58.3% to 71.9%, making it the second-highest carbohydrate content among Dioscorea spp. after D. alata (Saleha et al., 2018). The protein content in D. hispida is relatively low at 5.59% (Harijono et al., 2013). It is a yam with low profile content along with D. bulbifera (Saleha et al., 2018) and is considered a good source of vitamin C compared to other tuber crops. Behera et al. (2010) studied the ascorbic acid content in eleven species of Dioscorea and reported that the vitamin C content of D. hispida tuber is 7.45 mg/100 gm. The percentage of lipid in D. hispida is higher than other yams such as D. bulbifera and D. deltoidea, ranging from 1.99% to 9.36% (Saleha et al., 2018). The lipid content in D. hispida is also higher than other tuber crops, with a percentage of 2.55% (Harijono et al., 2013). Moreover, the water content of D. hispida sample was in the range of 7.96% to 37.8%, the lowest among the yam species such as D. bulbifera (69.5%) and D. versicolor (80.2%) (Harijono et al., 2013; Saleha et al., 2018). However, the nutritional compositions may differ when affected by factors such as soil conditions, pH, organic matter, climate, and postharvest handling and storage (Behera et al., 2010; Nugroho & Estanyiana, 2018). D. hispida is a three-leaved yam best known for its poisonous tuber due to high content of alkaloid. However, it is a tuber crop with the highest starch content and vitamins.
with macro and micro minerals, making it a staple food among the people in the east coast of Peninsula Malaysia (Nudin et al., 2017). Dioscorine (C_{33}H_{50}NO_{5}) is one of the most potent alkaloid toxins found in the tuber of D. hispida (Panduranga Murthy et al., 2011; Saleha et al., 2018). The secondary metabolites of D. hispida mainly consist of alkaloids, terpenoids, steroids, and phenols (Daud Om et al., 2016; Saleha et al., 2018). Dioscorine has suppressive effects on acetylcholine in the nervous system, which was thought to contribute to its poisonous properties (Saleha et al., 2018). Therefore they can only be consumed after the poisonous tubers are removed (Kamaruddin et al., 2020) although they may not be harmful if ingested in a lower dosage (Lokman et al., 2017). Twenty-seven phytoconstituents were found in ethanol extract and ten in butanol extract of D. hispida (Daud Om et al., 2016). The removal of toxins can be done by washing and soaking the tubers in salt solutions for several days, drying, heating, or using the latest method, microwave-assisted solvent extraction. This method lowers the extraction time and reduces g environmental pollution (Daud Om et al., 2016; Saleha et al., 2018). Various methods including ultraviolet-visible spectrometry, TLC image analysis and LC-MS technique were performed to identify dioscorine alkaloids compounds in D. hispida (Kamaruddin et al., 2020; Kresnadipayana & Waty, 2019; Sasiwatpaisit et al., 2014). Based on the TLC densitometry and TLC image analysis, the researchers found that dioscorine content in dried tuber of D. hispida was much higher than in fresh tuber (Sasiwatpaisit et al., 2014). Kamaruddin et al. (2020) suggested that the usage of sodium chloride solution helped in removing the toxin alkaloid in D. hispida tuber in a shorter period to avoid food poisoning. However, dioscorine tuber contents may be varied as it can be affected by various factors including environmental conditions and genetic factors (Nugroho & Estanyiyan, 2018). Plants containing alkaloids were widely used in both traditional and modern medical practices. D. hispida tubers were found to have anti-inflammatory activity, antioxidants, hypoglycaemic effect and antimicrobial properties (Hazrin-Chong et al., 2018; Masdar et al., 2020; Panduranga Murthy et al., 2011; 2015).

In D. alata, TLC assay showed presence of at least six different phytoconstituents in each ethanol, methanol and water extract of D. alata tuber that includes alkaloids, steroids, fats, fixed oil, flavonoids, tannins, protein and carbohydrate (Saklani et al., 2013). Fluorescent analysis of phytochemical compounds in D. alata revealed the presence of saponins, flavonoids, phenols, alkaloids, terpenoids and glycosides in various concentration. Water is the best solvent to extract these bioactive compounds (Dsouza et al., 2019). Total phenolic and flavonoid content of D. alata tuber was confirmed by Saktihidevi and Mohan (2013) where the total phenolic content in methanol extract was found to be 0.68 g 100 g^-1 using Folin-ciocalteau method. Total flavonoids content determined using Aluminium chloride method was found to be 1.21 g 100 g^-1. Phytochemical analysis of tuber extracts confirmed the presence of alkaloids, tannins, phenolics, glycosides, saponins, resins, terpenoids and anthraquinones (Viji et al., 2016). However, there is difference in the polyphenol content of D. alata peels and flesh. The higher content of bioactive components in peel might be the reason for the peel extract to exert better biological activity than the flesh extract (Guo et al., 2015). The study conducted by Hsu et al. (2017), identified β-sitosterol, stigmasterol, 22-23-dihydro-., and γ-sitosterol as the major phytosterols in D. alata. Estrogenic compounds, hydro-Q9 chromene, γ-tocopherol-9, RRR-α-tocopherol, coenzyme Q9 and 1-feruloylglycerol were identified from ethyl acetate extract of D. alata using NMR and mass spectrometry (Cheng et al., 2007). D. alata, in each of its variants, contains a beneficial phytochemical. In fact, mineral composition contained in it may potentially contribute to the improvement of human health when consumed adequately (Dufie et al., 2013). Isoforms of dioscorine from the tuber namely DREB 1A (a transcription factor), caffeic acid 3-O-methyl-transferase and Rab-1 small GTP binding protein have been associated with oxidative stress, carotenoid synthesis and vesicular transport in plant. This finding shows that D. alata phytochemical compound has yet to be fully explored and exploited. Only a few phytochemical constituents that exists in D. alata have been acknowledged. In fact, essential steroidal sapogenin present in D. alata, diosgenin, has been widely used in conventional medicine, leading to preclinical and mechanistic studies to better understand and validate its function in pathologies (Dsouza et al., 2019). Thus, there is a need for the other
phytochemical constituents from the yam to be isolated and evaluated for their biological activities.

B. Pharmacological Activities

1. **Antioxidant Activity**

Plants containing antioxidant properties have been acknowledged for their competency in treating oxidative stress-related diseases. Natural antioxidants primarily originate from plants in phenolic compounds such as flavonoids, phenolic acids and others (Panduranga Murthy et al., 2015). The mechanism is mainly associated with enhancing the defence system in the body by regulating free radicals (Tsai et al., 2009). *D. alata* is one of the fourteen vegetables found to have high antioxidant activity (>70%) evaluated using β-carotene bleaching coupled with oxidation of linoleic acid. A study conducted by Kaur and Kapoor (2002) found positive correlation between antioxidant activity and phenolic content. They suggest that although vegetables have other antioxidant compounds, they do not contribute significantly to antioxidant activity (Kaur & Kapoor, 2002). A positive correlation was also found between total phenol, flavonoids, proanthocyanidins content and radical scavenging activity of the ethanolic and water extract of *D. alata in vitro* (Narkhede et al., 2013).

Antioxidant activities derived from purple yam flour positively correlated with anthocyanins and phenolic compounds in the plant based on %RSA and FRAP method (Tamaroh et al., 2018). This study also discovered methanol/HCl as the best solvent to be used in the extraction of anthocyanins from purple yam with high antioxidant activity. Yellow and purple-fleshed yams were found to have significantly higher antioxidant activity compared to white and pink-fleshed yam, estimated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and FRAP assay (Jose et al., 2019). This finding positively correlated to the phenolic, flavonoids and pigment expression using spectrophotometric assay. Although white fleshed yam was widely used, the study revealed that cultivation of purple and yellow-fleshed yam has better nutrient content than white fleshed yam as anthocyanin, phenol and flavonoids derived from plants were known to possess various therapeutic activities. Anthocyanin of the flavonoid group is responsible for the water and vacuolar pink, red purple and blue pigment present in coloured plants. These contribute to their agronomic value yet they are vulnerable as they could easily degrade and fade when exposed to light (Mahmad et al., 2018). The underground tuber of *D. alata* have higher phenolic content than aerial tuber and better protection against reducing power and hypochlorous acid damage at lower doses (Chatterjee et al., 2012). Hence Chatterjee et al. (2012) suggests further isolation of compounds in both aerial and underground tuber in evaluating antioxidant activities mechanism. Based on previous literatures, phenolic compound gives significant attribution in the antioxidant activities of this plant. Moriya et al. (2015) found compound 5 with cyanidin skeleton and two sinapic acid units in its structure. This indicated the highest antioxidant activity among all the isolated anthocyanins from *D. alata*. The result suggested the mechanism of action derived from B ring glucosylation at 3’-OH position and presence of acylation or catechol moiety at B ring are positively affected antioxidant activity of the compound in ORACFL assay and FRAP assay, respectively. Purple yam was found to have effect with MGO, a precursor and intermediate of AGEs that induces oxidative damage in HepG2 cell by strengthening the antioxidant defence system. Guo et al. (2015) ruled out that both peel and flesh extract of *D. alata* has cytoprotective effect on methylglyoxal (MGO)-induced oxidative damage in HepG2 cells. The researchers proposed that sinapic acid and ferulic acid were compounds that contribute to excellent antioxidant properties. A similar study also reported that synergistic effect of caffeic acid and higher amount of ferulic acid in *D. alata* exerted better antioxidant activity where both compounds were acknowledged to have the most effective radical scavenging (Zhang et al., 2018).

Previous in vivo study also indicated that daily intake of dioscorin from *D. alata* lowered oxidative stress and restored learning memory in D-galactose-induced BALB/c mice (Han et al., 2014). Increased glutathione (GSH) content and oxygen radical absorbance capacity (ORAC) activity with decreased malondialdehyde (MDA) content and inducible nitric oxide synthase (iNOS) protein expression showed that learning dysfunctions in mice can be improved by dioscorine intervention via reduction in oxidative stress.
This *in vitro* antioxidant activity was proposed to be exhibited by the peptides or amino acid synthesised from peptic hydrolysate of dioscorine. Higher GSH level and oxygen radical antioxidant capacity activity with lower MDA and iNOS level in mice brain compared to the control group reflects traditional juvenescent use of this plant with anti-aging potential treatment. Besides, no cytotoxicity effect was observed towards primary HUVEC cells *in vivo* (Han et al., 2014). *D. alata* supplementation also recovers oxidative stress in different regions of the brain induced by hyperhomocysteinemina (HHcy). The study result showed a decline in homocysteine (Hcy) and MDA plasma level compared to methionine-induced group, indicating that this plant has protective action against lipid peroxidation and HHcy (Tsai et al., 2009). The researchers stated that depleted GSH level in striatum was markedly restored possibly due to high synthesis of GSH by amino acid precursor in *D. alata*. This suggests the plant’s potential as the treatment of oxidative-related degenerative neurological disorder like Parkinson disease. Similar findings can be seen in reversed hepatic ROS production by *D. alata* feeding in methionine-induced HHcy in rat based on decline in platelet aggregation and plasma MDA level which was the indicator of lipid peroxidation (Chang et al., 2004).

Pepsin hydrolysis of yam dioscorin derived thiol-containing diotides exhibit hydroxyl radical scavenging activities, have anti-lipopolysaccharide (LPL) peroxidation properties, anti-AAPH-induced hemolysis activity, oxygen radical absorbance capacity and protective abilities against MGO-induced cell death in HUVEC cell model (Han et al., 2013). Glutathione peroxidase (GPx) activity was proposed to be the protective mechanism involved against tert-butylhydroperoxide-induced oxidative cell in both Hepa 1-6 and FL83B mouse liver cell using ethanolic extract of *D. alata* peel (Hsu et al., 2011). Higher antioxidant activity was observed in water soluble polysaccharides (WSP) extracted from purple yam compared to yellow yam (Estiasih et al., 2018). A study suggests that the result was due to the combination of dioscorine and other reducing compounds like anthocyanin (pigment) extracted during the preparation of crude WSP. This review indicated that the presence of dioscorine in crude WSP extract in purple yam have high yield protein content compared to yellow yam. Besides, Sakhidevi and Mohan (2013) showed that ethanol extract of *D. alata* tuber indicated positive antioxidant activities and strong DPPH scavenging activity *in vitro*. The tuber extracts of *D. hispida* was found to exhibit potent antioxidant activity (Han et al., 2014; Masdar et al., 2020; Miah et al., 2018; Murthy et al., 2017). Han et al. (2014) reported that the synthesised peptides extracted from dioscorine peptic hydrolysates exhibited *in vitro* antioxidant activities.

Methyl-3,4-dihydroxybenzoate, one of the phenolic compounds isolated for the first time from *D. alata* tuber has higher antioxidant activity (IC$_{50}$: 9.41 ppm) than the positive control ascorbic acid and the other compounds found in plant, 9,10-dihydrophenanthrene-2,4,7-triol (Aminah et al., 2017). Myricetin, a flavonoid was found to contribute to the antioxidant and reducing power activity possessed by *D. alata* bulb (Anisuzzaman et al., 2016). The extract showed stronger antioxidant properties (IC$_{50}$=14.68 µg/mL) than the standard antioxidant ascorbic acid (IC$_{50}$=24.95 µg/mL) in DPPH assay and comparable reducing power with maximum absorption of 1.317 compared to standard BHT of 1.472 at 1 mg/mL. Although flavonoid is a well-known antioxidant, there is a need to confirm myricetin and other phenolic compound contribution in antioxidant activity.

There were similar findings found from phenolic compound attribution to antioxidant activity in *D. hispida*. The phenolic compounds in *D. hispida* may produce significant antioxidant activity as it prominently scavenged the DPPH free radicals (Miah et al., 2018). It has antioxidant and anti-inflammatory activities, which can be related to the antiphlogistic effects of the steroidal saponins (Napisah et al., 2011). *D. hispida* was found to have a noticeable amount of phenolic content and showed a prominent free radical scavenging effect. Alkaloids, phenols, saponins, phytosterols and terpenoids were mostly found in the tuber of *D. hispida* (Daud Om et al., 2016). These might be linked to the membrane stabilisation and anti-inflammatory potentials of the plant (Miah et al., 2018). The production of free radicals can be linked to several diseases, including cell mutagenesis, cancer, atherosclerosis, diabetes, and inflammatory diseases (Santos-Sánchez et al., 2019). An alkaloid called dioscorine present in the tuber of *D. hispida* and steroidal sapogenin delivered an effective antioxidant
which showed anticancer activities (Panduranga Murthy et al., 2015). The free radical scavenging ability of D. hispida could be linked to its dioscorine content (Masdar et al., 2020; Miah et al., 2018; Murthy et al., 2017). The cyclic chain with nitrogen bonding to the carbon group (C-N) in the dioscorine compound contributes to the antioxidant ability of D. hispida (Masdar et al., 2020). Analysis showed that there is a link between total active phytochemicals with phenolic and flavonoid material, as well as radical scavenging activity with anti-proliferative breast cancer activity (Murthy et al., 2015). The studies not only paved the way for a tentative contribution to the investigation into medicinal botany but also showed a way for future pharmacological studies to discover new sources of medicinal products extracted from these phytochemicals (Sheikh et al., 2013).

2. Antidiabetic activity

Diabetes mellitus is known to be a serious multifactorial metabolic disorder characterised by hyperglycemia and impaired metabolism of carbohydrates. Multiple biochemical impairments associated with micro- and macrovascular complications such as hyperlipidemia, retinopathy and cardiovascular diseases are causal factors towards morbidity and death. Most D. alata variants had higher total dietary fibre (TDF) value due to starch content. This species has been studied for antidiabetic treatment as TDF was known to affect viscosity of the yam flour (Dufie et al., 2013). Similar finding was reported where D. alata variety, ‘Uwi Ungu Kudus’ as known in Indonesia, contains high amount of amylopectin useful for treating diabetic related problem as it has viscous property compared to amylose that has grainy character. Jumari et al. (2019) agree high amylose generates grainy character while high amylopectin produces sticky character. Two active compounds in D. alata, water soluble polysaccharides and anthocyanin were found to lower blood glucose in hyperglycaemia condition. Soluble polysaccharides can form viscous mass in solution and influence the properties of mucilage extracted from the yam. Increased viscosity from the soluble polysaccharides was believed to be the mechanism that caused decline in blood glucose level. This condition was effective in suppressing post-prandial high glucose as glucose transportation was hindered by high resistant of mucosal diffusion (Estiasih et al., 2018).

Ethanol extract of D. alata tuber show antihyperglycaemic effect in alloxan induced diabetic rat but did not produce hypoglycaemic effect in normal, fasting rat and show significantly reduce of blood glucose in normal rat. Blood glucose reduced significantly with serum lipid levels, total protein, albumin and creatinine were all reversed towards near normal in diabetic rat compared to control mice. Flavonoid was suggested to induce the antihyperglycaemic effect, yet more thorough research is needed to elucidate the mechanism of action (Maithili et al., 2011). Ethyl acetate extract of peel and flesh from D. alata exhibited excellent antiglycation ability by suppressing glycation cascade stages with antioxidant activities as their main underlying mechanism. It is proposed that sinapic acid and ferulic acid compound contributed to the excellent antiglycation properties in this plant (Guo et al., 2015).

Several studies reported that D. bulbifera extracts (DBE) has a potent antihyperglycaemic activity that significantly reduced blood glucose level (Ahmed et al., 2009; Igbokwe et al., 2017). 500 mg/kg p.o and 1000mg/kg p.o of DBE produced significant antihyperglycaemic effects (P<0.001). However, the effect was not superior to glibenclamide (0.5 mg/kg p.o glibenclamide) (Ahmed et al., 2009). Moreover, D. bulbifera amala flour samples significantly (p<0.05) reduced fasting blood glucose level from 645 to 75.67 mg/dl compared to the diabetic control group (Igbokwe et al., 2017).

Pancreatic and intestinal enzymes break down carbohydrate and lipid into smaller particles for it to be easily absorbed through intestinal mucosa, thus inhibiting this enzyme to slow down uptake into blood circulation. Diosgenin in D. alata was found to delay glucose diffusion and inhibit these key metabolic enzymes with maximum inhibition concentration, on par with the positive control of commercial inhibitor enzymes, Acarbose (amylase) and Orlistat (lipase). It was proposed that diosgenin would be able to replace metformin in treating Polycystic Ovary Syndrome (PCOS) and metabolic related diseases like hyperglycaemia and obesity. The compound produced similar effect as biguanide, yet it did not show any side effects of irritation within the gastrointestinal region. It was
also found to have a distinctive similar structure as estrogen which helps in treating PCOS, thus giving the compound ‘Triple Effect’ (D’Souza et al., 2019). Guo et al. (2015) corroborate that ethyl acetate fraction of D. alata extract also inhibit diabetes key enzyme, α-amylase and α-glucosidase, as well as non-enzymatic glycation that leads to diabetic complications. The extract could also alleviate free fatty acid (FFA)-induced insulin-resistant in HepG2 cell which is highly proposed to be functioned through their antioxidant activities.

One of the serious complications in diabetes is postprandial hyperglycaemia (PPHG). It is a condition where blood glucose level remains high after consuming meals due to alpha-glucosidase and alpha-amylase activities. One of the therapeutic methods in regulating PPHG in diabetic patients is to suppress the carbohydrate-digesting main enzymes by inhibiting their activity using alpha-glucosidase and alpha-amylase inhibitors. Thus, a study by Ghosh et al. (2014) was carried out to investigate inhibitory effects of D. bulbifera bulbs extracts against α-amylase and α-glucosidase enzymes. The enzymes were derived from pancreas, liver and small intestine tissues of Swiss mice that had been excised and homogenised with appropriate reagent. In D. bulbifera, four different extracts, petroleum ether, ethyl acetate, methanol and 70% ethanol, were prepared to evaluate which extract worked more effectively. The result of α-amylase and glucosidase inhibition assays found that extracts of methanolic D. bulbifera (73.64%) were potent inhibitor against porcine pancreatic α-amylase compared to petroleum ether (61.65%) and ethyl acetate (73.39%) extracts. Moreover, petroleum ether extracts of D. bulbifera showed 73.3% glucosidase inhibition against murine liver glucosidase enzyme and was most significant among the plant extracts. A HPLC Fingerprinting test was done to discover marker compounds and their phytochemical profile present in the plant extracts. The test presented high content of diosgenin in the methanol extracts of D. bulbifera bulbs (Chopade et al., 2012).

Diosgenin is a steroidal saponin derived from several plants which exhibits much potential in biological activities, with increasing interest in the pharmaceutical industry. Similar to D. alata, D. bulbifera is also known to contain saponins called diosgenin (Ghosh et al., 2014). It is believed to be a novel hit treatment for PPHG of type II diabetes mellitus due to their inhibitory activity against alpha-amylase and alpha-glucosidase (Ghosh et al., 2014). As a continuation from their previous study, Ghosh et al. (2014) provided solid evidence to prove D. bulbifera’s inhibitory activities against α-amylase and α-glucosidase. Their research provided further investigation in isolation, structural elucidation, inhibitory activity and kinetics of active components present in D. bulbifera against pancreatic α-amylase and α-glucosidase. Among other extracts, ethyl acetate extract was found to be more potent in inhibition activities. Thus, GC-TOF-MS test was done on extracts that showed maximum activity and found that diosgenin is a major phytoconstituent present in ethyl acetate extract. Compared to the crude starting source, HPTLC of the HPLC purified the compound D verified the single compound purity close to standard diosgenin. Ethyl acetate extracts of D. bulbifera showing maximum inhibition in porcine pancreatic amylase (72.06 ± 0.51%) equivalent to compound D (70.94±1.24%), same as inhibition in crude murine pancreatic amylase (37.28±1.6%) and 39.56±3.02% in compound D. bulbiferous. Glucosidase inhibition activity, ethyl acetate extract exhibited excellent activity of 71.15±2.9% followed by compound D (67.61±1.31%). Glucosidase inhibition in crude murine intestinal was in agreement with pure α-glucosidase inhibition assay result. In kinetic analysis of inhibition activity compound D, decreased Km and Vm indicated uncompetitive mode of inhibition. However, decrease in fluorescence intensity confirmed interaction of D with α-amylase. Next, changes in secondary structure of α-amylase were observed using CD spectrometry and this confirmed the interaction between compounds D with active site of α-amylase. Molecular docking studies were carried out which indicated interaction in hydrogen bonding between Asp300 residues of a-amylase with Tyr62, Trp58, Trp59, Val163, His305 and Gln63 residues responsible for hydrophobic binding. Glucosidase Asp352 and Gln63 residues interacted with diosgenin (Ghosh et al., 2014).

3. Antihyperlipidemic

In diabetes mellitus type 2, hyperglycaemia always accompanied dyslipidaemia which is one of the major risk
factors for cardiovascular disease in diabetic patients. It is characterised with high plasma concentration of triglycerides, low density lipoprotein (LDL), very low density lipoprotein (VLDL) and total cholesterol, with decrease in high density lipoprotein (HDL) concentration. *D. bulbifera* extracts are reported to be anti-hyperlipidemic by decreasing concentration of LDL, VLDL and total cholesterol, and recover low levels of HDL by increasing their concentration (Ahmed et al., 2009; Chinko et al., 2020). Chinko et al.’s study (2020) showed total cholesterol, triglycerides, low density lipoproteins, very low density lipoproteins, serum glucose. Besides, atherogenic index were found to be significantly lower in treated groups with 200 mg/kg of DBE compared to untreated hyperlipidaemic rats (P<0.005) (Chinko et al., 2020). This observation is in close agreement with Ahmed et al. (2009) whereby the lipid profile improved. TG, TC and LDL were reduced, and HDL increased significantly (P<0.001) in high fat diet fed mice treated with 500 and 1000 mg kg p.o. doses of DBE. It is also found that antidiyslipidemic effect of 1000 mg/kg p.o. of DBE corresponded to the 300 mg/kg p.o. of fenofibrate, which is the drug used to treat hyperlipidemia. Although DBE concentration is quite high and might cause side effects due to toxicity, it is proven to be safe throughout the study period whereby rat treated with 2000 mg/kg DBE did not show any physical signs of toxicity or death (Ahmed et al., 2009).

4. Antimicrobial activity

D. hispida has an antimicrobial activity that functions to kill or stop the growth of microorganisms (Azman et al., 2016; Hazrin-Chong et al., 2018; Miah et al., 2018; Napisah et al., 2011; Panduranga Murthy et al., 2015). A part of toxic alkaloids containing a large amount of nitrogen known as dioscorine is responsible for producing antioxidant ability and antibacterial properties against specific bacteria species (Azman et al., 2016). Dioscorine was found to be present with steroidal sapogenins suggesting that it may be involved with this biological activity (Panduranga Murthy et al., 2015). It shows the ability to inhibit certain groups of bacteria and fungi (Azman et al., 2016; Kartini et al., 2018; Miah et al., 2018). Various amounts of phenolic contents in the tuber of *D. hispida* have been demonstrated to be antibacterial based on several mechanisms (Hazrin-Chong et al., 2018). Napisah et al. (2011) found that the tuber extracts of *D. hispida* were effective against *S. aureus, B. cereus, C. albicans,* and *E. coli* at high concentration of extracts. It also showed high susceptibility to gram-positive bacteria such as *S. aureus* and *B. subtilis,* and other gram-negative bacteria including *E. coli, P. aeruginosa,* and *K. pneumoniae* (Hazrin-Chong et al., 2018; Panduranga Murthy et al., 2015). Kartini et al. (2018) demonstrated that the tuber extract was able to produce minimal inhibition growth of *Pleomorphomonas oryzae.* These prove that *D. hispida* has the ability to inhibit specific groups of bacterial and fungal pathogens (Azman et al., 2016; Miah et al., 2018). Flavonoids, a hydroxylated phenolic compound, known to be synthesised by plants in response to microbial infection and are an antimicrobial agent against a wide array of microorganisms in vitro. This is due to their ability to complement extracellular and soluble proteins with bacterial cell wall present in *D. hispida* tuber (Nugroho & Estiyaniyana, 2018; Panduranga Murthy et al., 2015). It is also one of the alkaloids that may exert antimicrobial activity of *D. hispida* with steroids (Panduranga Murthy et al., 2015). The phenolic compounds are able to inhibit microbial pathogens via various mechanisms including growth inhibition, cytological damage and mutagenic reaction (Miah et al., 2018). The established phytochemical compounds may be bioactive components and therefore these plants are proving to be increasingly valuable reservoir of bioactive compounds of significant medicinal value (Murthy et al., 2017; Panduranga Murthy et al., 2015). However, further studies regarding this matter is needed to clarify the chief active constituents responsible for *D. hispida* antimicrobial activity and the performance of *D. hispida* when combined with antibiotics (Hazrin-Chong et al., 2018).

Multidrug resistant (MDR) bacteria pose significant public health risk due to their ability to infect individuals without causing symptoms. They can endure harsh environments and grow resistance towards antibiotics. In a research by Dahiya (2017), aqueous and chloroform extracts of *D. bulbifera* were found to be more potent in inhibition activity against bacteria. Highest inhibition zones were observed in *K. pneumoniae* (17 ± 0.15 mm), *E. coli* (13 ± 0.11 mm) and
Acinetobacter spp. (11 ± 0.12) compared to methanol and ethanol extracts that did not show any inhibition zone on the tested organism (Dahiya, 2017). On the contrary, Adegosun (2016) and Enwani (2017) reported no inhibitory activities in aqueous extracts of D. bulbifera (Adeosun et al., 2016; Enweani, 2017). This is possibly due to water not being able to penetrate deep enough to extract the phytochemical constituents present in deeper tissues, and the compounds may not be water soluble (Enweani, 2017). Kuete et al. (2012) reported that methanol extracts and their six isolated compounds showed excellent inhibitory against MDR microorganisms and some strains of mycobacteria. Methanol crude extracts, DBB1 and DBB2 fractions and compound bafoudiosbulbins B, C, F and G are able to inhibit the growth of E. coli, E. aerogenes, K. pneumoniae and P. aeruginosa of different strains. In addition, they can also inhibit the growth of M. tuberculosis MTCS2 and ATCC strains. However, the most prominent compound is bafoudiosbulbins C which is able to inhibit the growth activity of the three of the four tested mycobacterial strains (M. smegmatis and M. tuberculosis ATCC, MTCS1 and MTCS2 strains). Phenylalanine arginine β-naphthylamide (PAßN), also known as efflux pump inhibitor, is used to rejuvenate activities of antibiotics against bacteria pathogen that develops resistances towards antibiotics. The combination of isolated compounds from D. bulbifera and PAßN showed an increase in inhibitory activities against tested bacteria. The application of inhibitors with combination of active compounds extracted from D. bulbifera as a substrate against efflux pump of MDR bacteria can be potential mechanisms to combat these strains (Kuete et al., 2012).

Phytochemical analysis of tuber extracts of D. alata confirmed the presence of alkaloids, tannins, phenolics, glycosides, saponins, resins, terpenoids and anthraquinones which produced positive results in antimicrobial activity besides expressed cytotoxicity against Dalton’s lymphoma ascites (DLA) cell ascertained using Trypan blue method. However, specific chemical constituents that act on the activity mentioned has yet to be identified (Viji et al., 2016). Other studies revealed that anthocyanin extracted from D. alata showed antibacterial activity in vivo and in vitro against Escherichia coli with highest inhibition zone in vivo (8.8 mm) followed by in vitro extract (7.8 mm) (Mahmad et al., 2018). The extract of D. alata bulb exhibited antibacterial activity based on significant zone of inhibition against all experimental bacterial strains used except for Staphylococcus epidermidis. However, further study is needed to confirm the contribution of myricetin and other phenolic compound actions on this antibacterial activity (Anisuzzman et al., 2016).

Other than compounds found in the plant itself, D. alata mediated silver nanoparticles also showed antimicrobial activity confirmed by agar well diffusion method with zone of inhibition of synthesised nano particles higher than the plant extract. This is due to the differences in local electronic structure on the surface of smaller size particles that enhanced their chemical reactivity and bactericidal effects. The antibacterial activity of nanoparticle is more effective against gram negative bacteria (Escherichia coli) than gram positive (Staphylococcus auricularis) ones due to variations in cell wall composition. Nanoparticles accumulate inside the membrane and subsequently penetrate the cell as positively charged nanoparticle attracted negatively charged bacteria cell. More nanoparticle mediated research needs to be done in the future to confirm its effectiveness compared to plant extracts (Pugazhendhi et al., 2016).

5. Synthesis of nanoparticles

Nanoparticles derived from plants have been gaining popularity due to its eco-friendly nature and cost-effectiveness. These particles produce a wide range in medicinal use such as antibiotics, anti-parasite, anticancer and antioxidant (Ghosh et al., 2015). Some of the most studied metallic nanoparticles include silver (Ag) (Ghosh et al., 2012; Ghosh et al., 2015), gold (Au), platinum (Pt), and palladium (Pd) (Ghosh et al., 2015). Due to its unique phytochemistry, D. bulbifera was found to be synthesised into gold, silver, platinum and palladium nanoparticles. The rapid synthesis of AucoreAgshellNPs was achieved within 5 hours with diameter between 5 and 11 nm of inner core and 13 to 19 mm of whole particle. The size was found to be monodispersed with spherical shape with dark contrast core surrounded by lighter shades of shells. EDS analysis confirmed the presence of silver and gold particles which contain 57.34 ±1.01% gold and 42.66 ±0.97% silver of the
total mass (Ghosh et al., 2015). A similar study by Ghosh et al. (2015) also showed rapid synthesis of bimetallic nanoparticles within 5 hours. The nanoparticles comprised 30.88±1.73% elemental Pt and 68.96±1.48% elemental Pd. In fact AucoreAgshellNPs derived from D. bulbifera is able to inhibit biofilm formation of A. baumannii (83.68±1.09%) effectively at concentration of 100μg/mL, followed by E. coli (22.33±0.56%), S. aureus (30.70±1.33%) and P. aeruginosa (18.93±1.94%). This activity was confirmed with the presence of irregular morphology due to cell damage, discreet cells, significant membrane disintegration and surface invaginations. The complete loss of spindle shaped morphology of L. donovii into spherical ones was observed and confirmed the effect of AucoreAgshellNPs in antileishmanial activity (Ghosh et al., 2015). Moreover, a combination of silver nanoparticles with antibiotics can enhance antimicrobial activities. K. pneumoniae, P. mirabilis and P. aeruginosa are resistant in the presence of vancomycin alone. However they were found to be inhibited after a combination of vancomycin with silver nanoparticles (Ghosh et al., 2012). In anticancer activity, Pt–PdNPs demonstrated high toxicity activity against HeLa cells (74.25%) compared to individual PdNPs (33.15%) and PtNPs (12.6%). This might be due to the synergistic effects of both components that have become more potent (Ghosh et al., 2015). Antioxidant is an important chemopreventive agent against cancer. Pt–PdNPs showed excellent antioxidant activity by scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide, nitric oxide, and hydroxyl radicals (Ghosh et al., 2015).

6. Immunomodulatory activities

Inflammation involves several mediators such as cytokines, free radical, nitric oxide (NO) neutrophil derived free radical, prostaglandins and reactive oxygen species (ROS). Overproduction of these mediators can lead to tissue injuries by lipid membrane peroxidation and damage to the macromolecular tissues (Dsouza et al., 2019). Hydromethanol extract of D. alata tuber significantly downregulate pro-inflammatory cytokines gradually by inhibiting NO and TNF-α expression (IC50=134.51). This result correlates with the decline in PGE2 level and COX-2 activity (R2=0.9393) (Dey et al., 2016). The finding was supported by the synergistic activities of the phytochemical constituents present that also attributed to the anti-inflammatory activity in this plant. Bioactive compounds identified were gallic acid, 4-hydroxy benzoic acid, syringic acid, p-coumaric acid and myricetin characterised using HPLC techniques while GCMS analysis revealed thirteen different phytocompounds including hexadecenoic acid, methyl stearate, cinnamyl cinnamate and squalene. Similarly, methanolic extract of D. alata aerial tuber (DATE) proved to improve humoral immunity, facilitate macrophage activity against foreign pathogen and act as potent anti-inflammatory agents (Dey et al., 2016). DATE downregulates pro-inflammatory cytokines (IFN-γ, TNF-α, NO, IL-2, COX-2 and PGE2) while upregulating anti-inflammatory cytokines (IL-4, IL-10) to promote the proliferation of T110 immune responds towards T12 phenotype. Declining in cell adhesion property helps to reduce macrophage recruitment and hinders the release of proinflammatory cytokines to injury site. Myeloperoxidase (MPO) released and respiratory burst activity able to kill internalised pathogen is evidence that DATE can modulate murine macrophage to be protective against tissue damage and microbial infections. Phytochemical constituents identified in HPLC analysis and GCMS include myricetin, vanillic acid, gallic acid, palmitic acid, linoleic acid and squalene, which were suggested to have profound influence on the immunomodulatory properties (Dey et al., 2016). In contrast, a study showed D. alata underground tuber actively polarise T10 lymphocyte to proliferate towards T12 immune response expression by upregulating IFN-γ and IL-2 expression and downregulating IL-4 and IL-10 expression through ELISA in vitro (Dey & Chaudhuri, 2014). This hydro-methanolic extract of D. alata underground tuber also possessed mitogenic activity by stimulating splenic T-lymphocyte proliferation in vitro.

Dioscorin isolated from D. alata can induce TLR-4 downstream cytokine expression in bone marrow cell of TLR-functional C3H/HeN mice and stimulated multiple signalling molecules and induced signalling of cytokines in murine RAW 264.7 macrophages (Fu et al., 2006). Therefore, this study determined dioscorin as a novel TLR-4 activator that induced macrophage activation via typical TLR-4 signalling pathway. Cytokine production and iNOS
expression in macrophage cell line was stimulated which indicate dioscorin treatment may lead to macrophage activation to eliminate pathogen in innate immune response and activate TH cell for adaptive immunity (Fu et al., 2006). Different mouse strains responded differently to immunomodulatory effects of dioscorine because in RAW264.7 macrophages, TNF-α, IL-1β, IL-6, IL-1, RANTES, MCP-1 and GCSF gene expression were upregulated whereas in BALB/c and C57BL/6 models, gene expression of TNF-α, IL-1β, IL-6, IL-1- and RANTES were higher in spleen cell compared to bone marrow and thymus cells (Hsu et al., 2015). This suggests that the regulation of various cytokine expressions during immune response would be a reasonable strategy in treatment using dioscorine for immune related diseases in the future. Purified dioscorin from D. alata tuber acted as immunomodulatory substance that stimulated both NO and cytokine productions, and enhanced phagocytosis in macrophages (Lu et al., 2012). This in vitro study was previously conducted with in vivo test in animal model done by Liu et al. (2009). Ingested dioscorin was found to enhance phagocytosis activity and NK activity in BALB/c model. Increased NK cell subpopulation in peripheral blood and spleen cell was probably due to elevated IFN-γ which eventually stimulated splenocyte-mediated NK activity. Besides, oral dioscorin in vivo also increased number of Peyer’s patches which enhance proliferation of lymphocyte and elevate secretion of IgA (Liu et al., 2009). Active peptides with immunomodulatory activity from dioscorin hydrolysate should be isolated to evaluate the compound responsible in this mechanism. Besides that, TN-1 dioscorins from D. alata has better ability in modulating phagocytic activity of lymphoid cell against E.coli compared to D. japonica in vivo (Lin et al., 2009).

Diosgenin from water extract of D. alata was revealed to possess anti-inflammatory property with optimal inhibitory activity of (IC₅₀ = 0.16 µg/mL) comparable to aspirin (IC₅₀ = 1.76 µg/mL) (Dsouza et al., 2019). Ethanolic extract of D. alata decreased IgE level in ovalbumin- induced mice with increase in TNF-α expression similar to antihistamine drug dose. The author proposed the flavonoid act as cyclooxygenase inhibitor which reduced pro-inflammatory mediators while phenolic compound binds to the receptor on lymphocyte to initiate anti-inflammatory response (Makiyah et al., 2014). Newly developed noodles made of yam (D. alata) and boxthorn (Lycium barbarum) was found capable of elevating IgG and IgA serum level in dose-dependent manner in mouse model. Although the study confirmed that boxthorn polysaccharide has the best immunomodulatory effect on gut, it is assumed that the lectin proteins and mucopolysaccharides in Dioscorea batatas were also present in D. alata. This combination of food formula was shown to be safe with no toxic effect on the body. The findings indicated that continuous intake of yam-boxthorn noodle can modulate Th1/Th2 balance with favour to Th1, providing the possibility for this new food to exhibit protective immunity and antiallergic activity (Lin et al., 2006). Besides that, D. hispida was reported to be anti-inflammatory which also demonstrated prominent thrombolytic activity, which inhibited platelet aggregation of thrombin and oxidised low-density lipoprotein (Miah et al., 2018). The data collected from literature supports the idea that yam has the potential as an immune-promoting medicinal plant.

7. Antiosteoporotic activity

Ethanol extract of D. alata rhizome (Dispo85E) was found to have the potential as a candidate drug for osteoporosis therapy (Peng et al., 2011). In vivo data revealed that osteoblastogenesis was significantly modulated by Dispo85E with increasing ALP activity and bone nodule formation in both intact and ovariectomised (OVX) mice. Dispo85E was proven in vitro to promote bone formation by inducing pluripotent C3H10T1/2 stem cells differentiation into osteoblast rather than adipocyte based on cell viability assessment, thus eliminating concerns on whether the cell would proliferate into cancer. Dispo85E also has anti-adipogenic ability as the extract reduced adipogenic cell differentiation, thus the potential use for hematopoietic disorder. Peng et al. (2011) also used an OVX mouse model to mimic the osteoporosis condition common among postmenopausal women. The extract made of D. alata was discovered to enhance osteoblastogenesis without giving side effect to the uterine weight after six weeks compared to the usual restorative effect of estrogen replacement therapy. Therefore, Dispo85E has the potential in the treatment of...
bone disease without affecting uterus in postmenopausal women (Peng et al., 2011).

8. Antihypertensive activity

Purified dioscorin from D. alata Tainong No.1 derived by spectrophotometric method was determined to inhibit angiotensin converting enzyme (ACE) in dose dependent manner using qualitative TLC method. It is also found that the smaller peptides are elevated with the increase of pepsin hydrolytic, therefore dioscorin and its hydrolysate were proposed to have potential for hypertensive-related disease treatment (Hsu et al., 2002). The above-mentioned study was supported with reports on both powdered and liquid-yam products that were found to effectively reduce blood pressure in spontaneously hypertensive rat, therefore oral administration of water extract of yam products may be potential antihypertensive food in the future (Liu et al., 2009).

9. Anticlastogenic, anticancer and antineoplastic activity

The study done by Wang et al. (2011) demonstrated that water soluble mucilaginous polysaccharide within aqueous extract of D. alata were the protective compound that carry out anticlastogenic activity by acting as the metal copper ions chelator against copper-mediated DNA damage in vitro. However, the aqueous extract of D. alata protects against ferric-ion induced DNA damage only observed on human lymphoblastoid cells. Besides that, active compounds such as anisaldehyde, sulphuric acid-reactive and highly polar substances were proposed to be involved in the mechanism of anticlastogenic activity compared to polyphenol which turned to be ineffective as it was suppressed with copper-H2O2-induced DNA damage. A survey conducted on medicinal plants used for cancer treatment by traditional healers in Africa showed D. alata tuber can treat skin cancer yet no literature has been published to support the claims (Agyare et al., 2018).

D. hispida was also found to be the most potential anticancer agent. The integration of the different herbal composition remedy may reduce and lower cancer risks associated with oxidative stress disease (Panduranga Murthy et al., 2011; Wei et al., 2013). Dioscrine from the tuber content demonstrated its anticancer properties by inducing DNA damages, blocking the S phase cell cycle, and activating the mitochondrial signal pathway (Wei et al., 2013).

Cytotoxic activity of compounds is important in inhibiting proliferation of cancer cells. In order to prove D. bulbifera is able to antagonise actions of cancer cells, Nur and Nugroho (2018) investigated cytotoxic activities of fractions from chloroform and methanol extracts of D. bulbifera against T47D breast cancer cells. The result showed that chloroform extracts have potent cytotoxic activity compared to methanol extracts. Twelve fractions were obtained from fractionation of chloroform extracts using vacuum liquid chromatography. The fractions that have similar profiles were merged and tested for cytotoxic activity whereby five out of six combined fractions had significant cytotoxic activity where their IC50 were less than 100 μg/mL. It is coordinated with the range prescribed by National Cancer Institute (NCI). Furthermore, DBE does not show any cytotoxic effects against normal cells, thus indicating its safe use. Alkaloid and terpenoid compounds were present in potential fractions where alkaloid helps in reducing and antagonising cytotoxic activity of terpenoid (Nur & Nugroho, 2018). Rachaiah et al. (2019) concurred the cytotoxic activity and antineoplastic activity of DBE against MCF-7 and murine mammary carcinoma cells. Cytotoxic activity was evaluated by performing proliferation assay on cells against different extracts of D. bulbifera. The result showed 60 – 70% of cell death were observed in ethyl acetate, acetone and methanol extracts. With the addition of MTA1 protein into cells, there was a significant decrease in MCF-7 cells proliferation (70-75%) in ethyl acetate and acetone extracts. Presence of membrane blebbing and fragmented nuclei of cells indicated the cells undergo apoptosis. Next, wound healing assays were done to investigate DBE activity in preventing MTA1 induced migration activity of cells. The wound gaps were then observed. Cells treated with ethyl acetate, acetone, chloroform and methanol inhibited the cell migration by keeping the wound open. This can be compared with MTA1 induced cells, where the gap between wounds was gradually narrowed down (Rachaiah et al., 2019). Kaempferol-3,5-dimethylether, caryatin, myricetin and catechin were isolated from DBE fractions. They were
excellent antitumor promoter that inhibited the formation of colony on TPA induced soft agar (Gao et al., 2002).

Angiogenesis is a formation of new blood vessels. Although it plays a normal part in growth and healing, it is also vital to invasion of cancer cells. This neovascularisation provides oxygen and essential nutrients towards developing tumours. It also facilitates tumour metastasis and invasion into nearby normal tissue. A study reported DBE has angi-inhibitory activity by inhibiting formation of new blood vessels. Angio-inhibitory effects were evaluated by performing in vivo peritoneal angiogenesis assay. Regressions of neovascularisation were observed in ethyl acetate and acetone extracts compared to tumour control. For further investigation, these two extracts were assessed for inhibitory effect neovascularisation induced by MTA1 protein in the corneal micro pocket of Wister rat. The result proved that both extracts can effectively inhibit the formation of new blood vessels induced by MTA1 protein (Rachaiah et al., 2019).

10. Neuropharmacological activity

Methanolic extract of D. alata tuber has anxiolytic-like properties and exhibit moderate antidepressant effect based on the standard behavioural test on mice models (Amin et al., 2018). Significant antidepressant properties with decrease in locomotor activity is probably due to the inhibition of serotonin and noradrenaline level in mice. Anxiolytic behaviour was proposed to be reflected from high level of neophilia. Thus, further research on isolating bioactive compound and their exact mechanism of action that contribute to this neuropharmacological activity by this plant (Amin et al., 2018) is recommended.

11. Gastroprotective and gastrointestinal function

D. alata resistant starches (RS) have gastroprotective effect on ethanol-induced gastric injury in mice. Compared to model group of mice with ethanol-induced gastric ulcer, all four types of D. alata RS-pre-treated mice show attenuated level of histopathological injury and ulcerative lesion index (Mao et al., 2018). Resistant starches promote gastric motility and generate more short chain fatty acid (SCFA) which lower pH value in intestinal tract thus inhibit saprophytic bacterial growth while promote probiotics population in the stomach. Significantly elevated SOD level with MDA level significantly reduced prove that D. alata RS has antioxidative effect in vivo and probably is one of the mechanisms associated in gastroprotective activity in ethanol-induced mice (Mao et al., 2018). Based on Cheng-Chin Hsu et al. (2006), Chinese yam improved gastrointestinal function by inhibiting the population of Clostridium perfringens (p<0.05) and promoted the growth of intestinal microflora (Bifidobacterium and Lactobacillus) in mice’s small intestine. The mechanism was proposed as yam contains soluble fibre and resistant starch that effectively changed intestinal microflora variation. D. alata consumption also significantly increases intestinal enzymes activity of leucine aminopeptidase, lipase, sucrase and maltase (p<0.05) in dose-dependent manner. The antioxidant activity exhibited from pre-intake of yam was proven based on significant decline of MDA activity and fibroinectin level with increase in superoxide dismutase (SOD) activity compared to lipopolysaccharide (LPS)-treated control group without yam supplement. Therefore, it is assumed that dietary fibre, polyphenol and flavonoids might contribute to observed gastrointestinal functions and antioxidant protection exhibited. Similar study also reported an intake of 25% yam supplementation efficiently modulated intestinal enzyme activity. However, plasma and hepatic cholesterol level could only be decreased by 50% of yam supplementation with increased faecal steroid extractions. It is suggested that the decrease of fat, cholesterol and bile acid absorption was due to increased viscosity of the digesta and the thickness of unstirred layer in small intestine caused by yam mucilage (Chen et al., 2003) which warrants further investigation.

12. Cardioprotective activity

Taiwanese and Japanese yam possess significant cardioproteective properties against doxorubicin (DOX)-induced damage via multiple effects on antioxidant, anti-inflammatory and antiapoptotic activities (Chen et al., 2017). Ethanol extract of D. alata recovered the most cardiotoxicity effect from DOX treatment by improving cardiac physical and functional parameters on experimental mice. Preserved heart function correlates with reduction in oxidative stress level, inflammation status in cardiomyocytes.
and significant decrease in apoptotic response. This finding is truly useful to combat the use of DOX as chemotherapeutic agent in cancer treatment as it has the potential to cope with major side effect of DOX which is cardiotoxicity. Inhibition of thiobarbituric acid reactive substance (TBARS) and ROS with concomitant decline in serum lactic acid dehydrogenase (LDH) while restoring GSH level, GPx and SOD activities in heart tissue show ethanol extract of *D. alata* exhibit antioxidant activity. Anti-inflammation could be observed from reduced protein level of mRNA and NF-κB and cardiac level of pro-inflammation cytokines. Cotreatments with *D. alata* showed antiapoptosis activity from the dramatically decline of DOX-dependent cleavage caspase and PARP-1 expression as well as cytosolic cytochrome c release. However, the mechanism of caspase activation inhibition by the extract is yet to be understood. Diosgenin was suggested as the mediating candidate responsible for all activities exhibited (Chen *et al.*, 2017) but further work is needed to clarify the claim.

13. Other activities

Estrogenic compounds identified from ethyl acetate extract of *D. alata* could activate human estrogen receptor, ERα and ERβ, providing evidence for further research on beneficial intake of yam among menopausal women. The study speculated that phenolic hydroxyl group (hydro-Q9 chromene, γ-tocopherol-9, RRR-α-tocopherol and coenzyme Q9) might play a role in the binding with the estrogen receptor besides being a good antioxidant (Cheng *et al.*, 2007).

Aqueous extract of *D. alata* was proposed to act as a novel fibrosis antagonist by suppressing β-HB-induced expression of fibronectin in NRK-49F cell along with inhibition of Smad2/3, pSmad2/3 and Smad4. This action provides nephroprotective effect of *D. alata* by down regulation of TGF-β signalling pathway and EMT expression based on *in vitro* test (Liu *et al.*, 2012).

Fermentation of *D. alata* causes significant increase in some mineral content such as calcium, magnesium, potassium and phosphorus. However, there was also antinutrient content determined by decrease of oxalate and tannin in fermented yam compared to raw one. The pH value reduced as the fermentation progressed with no change in phytate content (Bello *et al.*, 2012). Therefore, this finding showed that fermented *D. alata* could be used as a functional food due to its elevated mineral content than raw yam.

IV. CONCLUSION

In summary, this review analysed the pharmacological activities of three *Dioscorea* spp. namely *D. alata*, *D. hispida* and *D. bulbifera* through scientific findings on several relevant clinical and preclinical studies. We could conclude that dioscorin, diosgenin, alkaloid, anthocyanin and myricetin from the flavonoid groups were the main compounds involved in the biological activities of these yams. The tuber or rhizome of the yam contains most of the bioactive compounds and carry various pharmacological activities. This article addressed the application of *Dioscorea* spp. as therapeutic medicine plant that possessed antioxidant, immunomodulatory, antiosteoporotic, antimicrobial, antihypertensive, nanoparticulate synthesis, gastroprotective, neuropharmacological, cardioprotective and nephroprotective effects. Various pharmacological activities have been demonstrated by these plants, although data on their mechanism of action are very limited. Therefore, further research needs to be conducted to determine the specific mechanism of action of the pharmacological activities in order to realise the full potential of these plants as future therapeutics.

V. ACKNOWLEDGEMENT

We would like to thank Universiti Teknologi MARA Puncak Alam Campus for the opportunity to finish this review. We also thank to Dr. Hussein Mohammad, Head of Toxicology and Pharmacology Unit, Herbal Medicine Research Centre, Institute for Medical Research, National Institute of Health, Setia Alam for assistance in completing this review.
VI. REFERENCES

Aminah, NS, Yulvia, A & Tanjung, M 2017, 'Methyl-3,4-dihydroxybenzoate and 9-10-dihydrophenanthrene-2,4,7-triol two phenolic compounds from Dioscorea alata L. and their antioxidant activity'. AIP Conference Proceedings, p. 1888.

Daud Om, A, Azlan Azizan, K & Baharum, SN 2016, 'Phytochemical Screening of Ubi Gadong (Dioscorea hispida) by using GC-MS', in Seminar dan konvensyen penyelidikan perikanan, August.

Dey, P & Chaudhuri, TK 2014, 'In vitro modulation of TH1 and TH2 cytokine expression by edible tuber of Dioscorea

Harijono, Estiasih, T, Sunarharum, WB & Hartono, MD

Kresnadipayana, D & Waty, HI 2019, ‘Concentration of NaCl soaking to decreasing cyanide levels in Gadung (Dioscorea hispida Dennst)’, Jurnal Teknologi Laboratorium, vol. 8, no. 1, pp. 36–40.

Liu, YH, Lin, YS, Liu, DZ, Han, CH, Chen, CT, Fan, M & Hou, WC 2009, ‘Effects of different types of yam (Dioscorea alata) products on the blood pressure of spontaneously hypertensive rats’, Bioscience,
Biotechnology, and Biochemistry, vol. 73, no. 6, pp. 1371–1376.

Lu, YL, Chia, CY, Liu, YW & Hou, WC 2012, 'Biological activities and applications of dioscorins, the major tuber storage proteins of yam', Journal of Traditional and Complementary Medicine, vol. 2, no. 1, pp. 41–46.

Sheikh, N, Kumar, Y, Misra, AK & Pfoze, L 2013, 'Phytochemical screening to validate the ethnobotanical importance of root tubers of Dioscorea species of Meghalaya, North East India', Journal of Medicinal Plants Studies Year, vol. 1, no. 6.

